
The aforementioned paper contains some technical errors concerning some of the lower bounds on the performance of multiclass Markovian queueing networks. The corrections are listed below.

1 Statement and proof of Proposition 2

The statement and the proof of Proposition 2 of the paper contain errors. The claimed statement with values of p_{min} and ν_{min} as defined in the paper is not correct, and p_{min} and ν_{min} have to be redefined. Specifically, the correct value of p_{min} should be as follows. For every station σ_j, let I_j be the set of classes $i = 1, \ldots, I$ such that $(i, k) \in \sigma_j$ for some stage k. Namely, I_j is the set of types that are eventually served by server σ_j. Instead of letting p_{min} to be $\sum_i \lambda_i$, as was done in the paper, we define

$$p_{\text{min}} = \sum_{i \in I_j} \lambda_i.$$

Similarly, instead of defining $\nu_{\text{min}} = \rho_{\sigma_j}/\lambda_{\text{max}}$, we let

$$\nu_{\text{min}} = \min_{i \in I_j} \frac{\rho_{\sigma_j}^+}{\lambda_i}.$$

We claim that Proposition 2 is valid with these modified definitions of p_{min} and ν_{min}. The proof of the proposition is corrected as follows. The value of the Lyapunov function increases when an arrival into class $i \in I_j$ occurs, (as opposed to any arrival into the network, as was incorrectly stated in the proof of the proposition in the paper). In particular, an arrival into class i for which no stages correspond to station σ_j does not change the value of the Lyapunov function. An arrival into type I occurs with probability λ_i and therefore p_{min} is as stated. The derivation of the correct value of ν_{min} is similar.

2 Statement and proof of Proposition 4

Similarly, the statement and the proof of Proposition 4 of the paper contain errors. In the statement, the correct value of p_{min} should be as follows. For every K-virtual station V, let I_V be the set of classes $i = 1, \ldots, I$ such that $(i, k) \in V$ for some stage k. Then define

$$p_{\text{min}} = \sum_{i \in V} \lambda_i.$$

Similarly, the definition of ν_{min} is incorrect. The correct definition is

$$\nu_{\text{min}} = \min_{i \in V} \frac{\rho_{\sigma_j}^+}{\lambda_i}.$$

The changes in the argument are similar to the ones for Proposition 2.
3 Implications for other statements

In light of these changes, the lower bounds appear in Theorem 2 should be corrected as follows.

\[
\mathbb{P} \left(\sum_{i,j} \frac{\rho_{i,k}^{\sigma_j^+}}{\lambda_i} Q_{i,k}(t) \geq \frac{1}{2} \left(\min_{i \in I_j} \frac{\rho_{i,1}^{\sigma_j^+}}{\lambda_i} \right) m \right) \geq \frac{\left(\frac{1}{2} \left(\sum_{i \in I_j} \lambda_i \right) \left(\min_{i \in I_j} \frac{\rho_{i,1}^{\sigma_j^+}}{\lambda_i} \right) \right)^m}{\left(\frac{\left(1 - \rho_{\sigma_j} \right)}{4} \right)}.
\]

\[
\mathbb{E} \left[\sum_{i,j} \frac{\rho_{i,k}^{\sigma_j^+}}{\lambda_i} Q_{i,k}(t) \right] \geq \frac{\left(\sum_{i \in I_j} \lambda_i \right) \left(\min_{i \in I_j} \frac{\rho_{i,1}^{\sigma_j^+}}{\lambda_i} \right)^2}{4 \left(1 - \rho_{\sigma_j} \right)}.
\]

Similarly, the lower bounds appear in Theorem 3 should be corrected as follows.

\[
\mathbb{P} \left(\sum_{i,j} \frac{\rho_{i,k}^{V^+}}{\lambda_i} Q_{i,k}(t) \geq \frac{1}{2} \left(\min_{i \in V} \frac{\rho_{i,1}^{V^+}}{\lambda_i} \right) m \right) \geq \frac{\left(\frac{1}{2} \left(\sum_{i \in V} \lambda_i \right) \left(\min_{i \in V} \frac{\rho_{i,1}^{V^+}}{\lambda_i} \right) \right)^m}{\left(\frac{\left(1 - \rho_{\sigma_j} \right)}{4} \right)}.
\]

\[
\mathbb{E} \left[\sum_{i,j} \frac{\rho_{i,k}^{V^+}}{\lambda_i} Q_{i,k}(t) \right] \geq \frac{\left(\sum_{i \in V} \lambda_i \right) \left(\min_{i \in V} \frac{\rho_{i,1}^{V^+}}{\lambda_i} \right)^2}{4 \left(K - 1 - \rho(V) \right)}.
\]

Acknowledgements

We are very thankful to Jiayang Gao for pointing out the errors and suggesting corrections to Propositions 2 and 3 and their implications.