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Abstract. We show that some basic linear control design problems are NP-hard, implying that,
unless P=NP, they cannot be solved by polynomial time algorithms. The problems that we consider
include simultaneous stabilization by output feedback, stabilization by state or output feedback in
the presence of bounds on the elements of the gain matrix, and decentralized control. These results
are obtained by first showing that checking the existence of a stable matrix in an interval family of
matrices is NP-hard.
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1. Introduction. Consider the following three problems; the first was men-
tioned as a “major open problem in systems and control theory” in a recent survey
[5] of experts in the systems and control field, and the other two were mentioned
indirectly.

Stabilization by static output feedback. This is perhaps the most basic problem in
control theory. We are given a linear system

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

and we consider a static feedback control law of the form

u(t) = Ky(t).

The resulting closed loop system is

ẋ(t) = (A+BKC)x(t).

The problem is to find necessary and sufficient conditions on the triplet of real matrices
(A,B,C) under which there exists a feedback gain matrix K such that A+ BKC is
stable. In the case of state feedback (C = I), a necessary and sufficient stabilizability
condition is given by the stabilizability of the pair (A,B) [17]. However, if C is not
invertible, no general necessary and sufficient conditions are known.

Simultaneous stabilization by static output or state feedback. (This problem should
not be confused with what is usually referred to as the “simultaneous stabilization
problem” [16, 4], in which dynamic—instead of static—compensation is sought.) Our
second problem is a generalization of the static output feedback problem. Suppose
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that for each i = 1, . . . , k we are given a linear system

ẋ(t) = Aix(t) +Biu(t),

y(t) = Cix(t).

Under the feedback control law,

u(t) = Ky(t),

the ith closed loop system is

ẋ(t) = (Ai +BiKCi)x(t).

The problem is to find conditions on the triplets of real matrices (Ai, Bi, Ci), i =
1, . . . , k, under which there exists a matrix K such that Ai+BiKCi is stable for each
i. This problem is unsolved, even if Ci = I for all i (simultaneous stabilization by
state feedback).

Stabilization by decentralized static output feedback. We now impose some struc-
ture on the feedback gains. Consider a linear system of the form

ẋ(t) = Ax(t) +
k∑
i=1

Biui(t),

yi(t) = Cix(t), i = 1, . . . , k,

and suppose that we are interested in a static decentralized controller of the form

ui(t) = Kiyi(t), i = 1, . . . , k.

The closed loop system is

ẋ(t) =

(
A+

k∑
i=1

BiKiCi

)
x(t),

which is of the same form as in stabilization by static output feedback, except that
several of the entries of K are forced to zero. This leads us to the problem of finding
conditions on the triplet of real matrices (A,B,C) under which there exists a matrix
K with a given structure such that A+BKC is stable. The problem can be further
constrained by requiring the matrix structure to be block diagonal, the blocks to
have a bounded norm, or the blocks to be identical (we discuss all of these cases
later).

The reader is referred to [3, p. 420], where the above three problems are presented
and motivated and where references can be found. A common feature of these three
problems is that, although they are easy to state, neither closed form nor efficient
algorithmic solutions are known. It is rather improbable that closed form solutions
to these problems are possible. On the other hand, algorithmic solutions do exist, as
we now argue.

All of the problems that we have described are finitely parametrized. They all
involve the search for a controller—the (possibly partitioned) matrix K—which can
be specified in terms of finitely many real parameters. In theory, it is thus possible
to apply the following methodology: (a) parametrize the gain matrix K in terms of
finitely many real coefficients; (b) express the matrix stability condition(s) in terms
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of the coefficients of the system(s) and of the controller; (c) use the Routh–Hurwitz
test on the resulting characteristic polynomial(s). One is then left with a (large) set
of multivariable polynomial inequalities that have to be simultaneously satisfied for
some choice of the controller coefficients. As explained in [1], checking the existence
of controller coefficients that satisfy this system of multivariable inequalities can be
performed using the Tarski–Seidenberg elimination theory. The Tarski–Seidenberg
elimination method leads, after a finite number of rational operations, to a yes-no
answer regarding the existence of a solution. The method is systematic and amenable
to computer implementation. Thus, all three problems described above are algorith-
mically solvable.

The advantage of the Tarski–Seidenberg method is its generality; its drawback
is the fact that its computational complexity increases at least exponentially. The
examples that can be worked on paper are very small (the example given in [1] involves
only two parameters), and computer algorithms cannot digest more than five or six
parameters in reasonable time.

In this paper we show that some of the above problems and their variations are
very unlikely to allow for efficient algorithmic solutions. We adhere to the general
consensus in computer science that identifies algorithmic efficiency with polynomial
time computability. We then show that some of the above problems are NP-hard
[8, 13], meaning that every problem in NP can be reduced to them. Thus, unless
P=NP, these problems are not polynomial time solvable.

Our results are as follows (see later for precise definitions):
1. The static output feedback stabilization problem is NP-hard if one constrains

the coefficients of the controller K to lie in prespecified intervals. The same
is true in the case of static state feedback (C = I). We have not been able to
establish the complexity of the problem in the absence of constraints on K,
but we conjecture that it is also NP-hard.

2. Simultaneous stabilization by output feedback is NP-hard.
3. Stabilization by decentralized static output feedback is NP-hard if one im-

poses a bound on the norm of the controller or if the blocks are constrained
to be identical.

These results will be proved as corollaries of the following main theorem: testing
for the presence of a stable matrix in a family of matrices whose members have entries
that are either fixed to some given real number or vary in the closed unit interval
[−1, 1] is an NP-hard problem. This latter result complements a recent theorem of
Nemirovskii [11], who showed that testing for the stability of all elements of such a
family of matrices is an NP-hard problem. Our proof is in fact inspired from his.
This general research direction was initiated by Poljak and Rohn, who showed that
checking nonsingularity of an interval family of matrices is NP-hard [14]. In other
related research, NP-hardness of the computation of the structured singular value µ
was shown by Braatz et al. [6] for the case where some perturbations are complex.
(NP-completeness for the case of real perturbations was a corollary of the results of
Poljak and Rohn.) Also, Coxson and DeMarco show that approximating the minimal
perturbation scaling to achieve instability in an interval matrix is MAX-SNP-hard
[7]. See also [15] for a review of other complexity results for problems in control
theory.

In the next section, we prove the main result and derive some general corollar-
ies. In the last section we link these results with the linear control design problems
mentioned in this introduction.
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2. Checking the existence of a stable matrix in an interval family of
matrices is NP-hard. In this section we show that checking the existence of a stable
matrix in a unit interval family of matrices is an NP-hard problem (a unit interval
family of matrices is a family of matrices whose members have entries that are either
fixed to some given real number or vary in the closed unit interval [−1, 1]). We prove
this result by means of a polynomial time reduction from the following problem, which
is already known to be NP-complete [10, 8].
PARTITION
Instance: A positive integer l, a set of l integers ai ∈ Z.
Question: Do there exist t1, . . . , tl ∈ {−1,+1} such that

∑l
i=1 aiti = 0?

We now formally define the problem of interest.
STABLE MATRIX IN UNIT INTERVAL FAMILY
Instance: A positive integer n, a partition of I = {(i, j) : 1 ≤ i, j ≤ n} into disjoint
sets I1 and I2, rational numbers a∗ij for (i, j) ∈ I1.
Question: Does the set A of n× n matrices defined by

A = {A = (aij) : aij = a∗ij for (i, j) ∈ I1, aij ∈ [−1, 1] for (i, j) ∈ I2}

contain a stable matrix?
Remark. Throughout this paper, when writing “stable” we actually mean “asymp-

totically stable,” i.e., “all eigenvalues have a negative real part.” A slightly different
problem is obtained if we are interested in marginal stability (“all eigenvalues have a
nonpositive real part”). We call this second problem MARGINALLY STABLE MATRIX
IN UNIT INTERVAL FAMILY.

The main result of this paper is as follows.
THEOREM 1. STABLE MATRIX IN UNIT INTERVAL FAMILY and MARGINALLY STA-

BLE MATRIX IN UNIT INTERVAL FAMILY are NP-hard.
Proof. We prove NP-hardness of STABLE MATRIX IN UNIT INTERVAL FAMILY. NP-

hardness of MARGINALLY STABLE MATRIX IN UNIT INTERVAL FAMILY can be shown
in a similar way; we make a comment on this at the end of the proof.

Since PARTITION is NP-complete, it suffices to show that any instance of PARTI-
TION can be transformed in polynomial time into an equivalent instance of STABLE
MATRIX IN UNIT INTERVAL FAMILY.

Let ai ∈ Z (i = 1, . . . , l) be an instance of PARTITION. We construct a unit interval
matrix as follows. Let m be a positive integer such that l < m = k2 for some positive
integer k, and define the m-dimensional vector a by aT = (a1, a2, . . . , al, 0, . . . , 0) ∈
Zm (the superscript T denotes matrix transposition). Let γ = aTa, β = 1−1/(2m(1+
γ)), and

A(x, y) =
( −k(Im + aaT ) y

xT kβ

)
,(1)

with Im the identity matrix of size m and x, y ∈ <m (note that γ > 0 and 0 < β < 1).
The set of matrices

A = {A(x, y) : x, y ∈ [−1, 1]m}(2)

forms an instance of STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed
in polynomial time from the initial instance of PARTITION. It remains thus to show
that A contains a stable matrix if and only if there exist ti ∈ {−1,+1} such that∑l
i=1 aiti = 0. We prove this in two steps.
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Assume first that ti ∈ {−1,+1} satisfy
∑l
i=1 aiti = 0. Define xT0 = (t1, t2, . . . , tl,

1, . . . , 1) ∈ Zm, y0 = −x0, and note that aTx0 = xT0 a = 0. We claim that the matrix
A0 = A(x0, y0) ∈ A is stable. Indeed, A0 can be decomposed as

A0 = A1 +A2 +A3(3)

= −kIm+1 +
(
−kaaT 0

0 0

)
+
(

0 −x0
xT0 k(1 + β)

)
.(4)

The spectrum of A0 is the spectrum of A2 + A3 shifted to the left by k. The matrix
A0 will thus be stable, provided that the real part of every eigenvalue of A2 + A3 is
strictly less than k.

The matrix A2 has rank one; it has one eigenvalue at −kγ and m eigenvalues at
the origin. The characteristic polynomial of the matrix A3 is

sm−1(s2 − k(1 + β)s+ k2),(5)

whose roots are either at the origin or have a real part equal to k(1 + β)/2 which is
always strictly less than k, since we have already observed that 0 < β < 1.

Due to the fact that aTx0 = xT0 a = 0, we have A2A3 = A3A2 = 0. Let λ and w be
an eigenvalue and an eigenvector, respectively, of A2 +A3. Thus, (A2 +A3)w = λw.
Multiplying by A2, we obtain A2

2w = λA2w. If A2w 6= 0, then λ is an eigenvalue of
A2. If A2w = 0, then λ is an eigenvalue of A3. Consequently, every eigenvalue of
A2 + A3 is either an eigenvalue of A2 or of A3. These eigenvalues have a real part
which is smaller than k, and by our earlier comment, the matrix A0 ∈ A is stable.

For the reverse implication, assume that A contains a stable matrix and let
x0, y0 ∈ [−1, 1]m be such that A0 = A(x0, y0) ∈ A is stable. Consider then the
parametrized family of matrices

B(θ) = A(θx0, θy0)/k.(6)

We now study the dependence of the stability of B(θ) on the variable θ ∈ [0, 1]. When
θ = 0, we have

B(0) =
(
−(Im + aaT ) 0

0 β

)
.(7)

The matrix −(Im+aaT ) is negative definite, hence stable, and thus B(0) has a single
unstable eigenvalue (at β > 0). When θ = 1, we have B(1) = A0/k, and so B(1) is
stable since A0 is.

The eigenvalues of B(θ) are symmetric with respect to the real axis (complex
conjugate), and they vary continuously with θ. When moving from θ = 0 to θ = 1,
we move from a configuration where there is exactly one unstable eigenvalue to a con-
figuration with no unstable eigenvalues. When a conjugate pair of eigenvalues crosses
the jω axis, the number of unstable eigenvalues changes by an even number. Thus,
for the number of unstable eigenvalues to change from one to zero, some eigenvalue
must cross the jω axis at the origin. Therefore, there exists some θ0 ∈ (0, 1) for
which B(θ0) has an eigenvalue at the origin and B(θ0) is singular. Elementary matrix
manipulations show that the singularity condition for B(θ0) is equivalent to

θ2
0x
T
0 (Im + aaT )−1y0 = −k2β.(8)

A standard inversion formula [9, p. 19] gives

θ2
0x
T
0 (Im − aaT /(1 + γ))z0 = k2β,(9)
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where we have defined z0 = −y0 and used the definition γ = aTa. Remembering that
m = k2 and θ0 ∈ (0, 1), we finally obtain

xT0 (Im − aaT /(1 + γ))z0 > mβ.(10)

The matrix (Im−aaT /(1 + γ)) is symmetric and positive definite. Using also the
fact that the maximum of a convex function over a bounded polyhedron is attained
at an extreme point, we obtain

max
x,y∈[−1,1]m

xT (Im − aaT /(1 + γ))y = max
x∈[−1,1]m

xT (Im − aaT /(1 + γ))x(11)

= max
x∈{−1,1}m

xT (Im − aaT /(1 + γ))x(12)

= m− min
x∈{−1,1}m

(xTa)2/(1 + γ).(13)

In particular, this shows that

m− min
x∈{−1,1}m

(xTa)2/(1 + γ) ≥ xT0 (I − aaT /(1 + γ))z0.(14)

Combining inequalities (10) and (14), we obtain

m− min
x∈{−1,1}m

(xTa)2/(1 + γ) > mβ.(15)

Using the definition of β, we finally arrive at

min
x∈{−1,1}m

(xTa)2 < 1/2.(16)

The left-hand side in this inequality is a nonnegative integer; we are thus forced to
the conclusion

min
x∈{−1,1}m

(xTa)2 = 0.(17)

Assume that the minimum in (17) is obtained for xT = (x1, x2, . . . , xl, . . . , xm);
we conclude the proof by setting ti = xi for i = 1, . . . , l.

Let us now briefly comment on the case where we are interested in marginal
stability. NP-hardness for this case can be obtained by a small adaptation of the
preceding proof. Let, as before, ai ∈ Z (i = 1, . . . , l) be an instance of partition.
We construct an interval matrix as follows. Let m be a positive integer such that
l < m = k2 for some positive integer k and define the m-dimensional vector a by
aT = (a1, a2, . . . , al, 0, . . . , 0) ∈ Zm and

A(x, y) =
(
−k(Im + aaT ) y

xT k

)
.(18)

The set of matrices A = {A(x, y) : x, y ∈ [−1, 1]m} forms an instance of MARGIN-
ALLY STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed in polynomial
time from the initial instance of PARTITION. Moreover, by the same argument as
above, it is clear that A contains a marginally stable matrix if and only if there exist
ti ∈ {−1,+1} such that

∑l
i=1 aiti = 0. This shows the equivalence between the

instances and hence proves the second part of the theorem.
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Suppose now that we change the problem by including the additional requirement
that the matrix A must be symmetric. Consider the problem of minimizing λ subject
to λI −A being a positive semidefinite symmetric matrix and subject to the interval
constraints on A. This is a semidefinite programming problem and can be solved,
within any desired accuracy ε, in time which is polynomial in the size of the problem
and the “size” log(1/ε) of ε. Furthermore, the optimal cost in this minimization
problem is less than or equal to zero (respectively, negative) if and only if there exists
a marginally stable (respectively, stable) matrix A in the family. This argument,
brought to our attention by M. Overton [12], comes close but does not quite establish
polynomiality of the problem STABLE MATRIX IN UNIT INTERVAL FAMILY for the
symmetric case; that would require an exact (as opposed to approximate) polynomial
time solution of the semidefinite programming problem. If the symmetric problem is
indeed polynomial time solvable, this would be in contrast to the results of Nemirovskii
[11], who showed that deciding the stability of all elements of the interval family is
NP-hard even if one restricts to symmetric matrices.

As a direct application of our main theorem, we introduce a few matrix and
polynomial stability problems and show that they are NP-hard.
STABLE MATRIX IN INTERVAL FAMILY
Instance: A positive integer n, rational numbers aij , aij for 1 ≤ i, j ≤ n.
Question: Does there exist a stable matrix A = (aij) with aij ≤ aij ≤ aij?
STABLE MATRIX IN RANK ONE PERTURBED MATRIX
Instance: Positive integers n, k, and k + 1 real n × n matrices A0, A1, . . . , Ak with
rational entries, all of which have rank one, with the exception of A0.
Question: Do there exist real values q∗i ∈ [−1, 1] such that A = A0 +q∗1A1 + · · ·+q∗kAk
is stable?
STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMIALS
Instance: A positive integer r, a multivariable polynomial p(x, q1, . . . , qr) with rational
coefficients whose dependence on the real variables qi is bilinear.
Question: Do there exist real values q∗i ∈ [−1, 1] for which the polynomial p(x, q∗1 , . . . , q

∗
r )

is stable?
COROLLARY 1. The above three problems are all NP-hard.
Proof. STABLE MATRIX IN INTERVAL FAMILY is NP-hard because it is a general-

ization of STABLE MATRIX IN UNIT INTERVAL FAMILY.
A matrix A in the unit interval family defined by I1 and a∗ij , (i, j) ∈ I1, can be

written in the form

A = A0 +
∑

(i,j)/∈I1

qijAij ,

where A0 has entries

a0
ij = a∗ij if (i, j) ∈ I1,

= 0 if (i, j) /∈ I1.

Aij is a matrix with all entries equal to zero except for the (i, j)th entry, which is equal
to 1, and qij ∈ [−1, 1]; note that Aij has rank one. This reduces STABLE MATRIX IN
UNIT INTERVAL FAMILY to STABLE MATRIX IN RANK ONE PERTURBED MATRIX and
shows that the latter problem is NP-hard.

In order to prove that STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMI-
ALS is NP-hard, we argue as in the proof of Theorem 1. Let ai ∈ Z (i = 1, . . . , l) be
an instance of PARTITION. Let m be a positive integer such that l < m = k2 for some
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positive integer k and define β = 1− 1/(2m(1 +
∑l
i=1 a

2
i )) and

A(q1, . . . , qk, qk+1, . . . , q2k) =
( −k(Im + aaT ) (qk+1, . . . , q2k)T

(q1, . . . , qk) kβ

)
.

From the proof of Theorem 1, we know that the set of matricesA = {A(q1, . . . , qk, qk+1,
. . . , q2k) : qi ∈ [−1, 1]} contains a stable matrix if and only if there exist ti ∈ {−1,+1}
such that

∑l
i=1 aiti = 0. The set of matrices A contains a stable matrix if and only if

the multivariable polynomial p(x, q1, . . . , q2k) = det(xI2k −A(q1, . . . , qk, qk+1, . . . , q2k))
is stable for some choice of qi ∈ [−1, 1]. The latter polynomial is bilinear in the
variables qi. We therefore have an instance of STABLE POLYNOMIAL IN FAMILY
OF BILINEAR POLYNOMIALS which is equivalent to the original instance of
PARTITION.

Remarks.
1. All three problems addressed by Corollary 1 remain NP-hard if “stability” is

replaced by “marginal stability”; the proof is similar.
2. By a similar proof, both Theorem 1 and Corollary 1 remain valid if the interval

constraints aij ∈ [−1, 1] are replaced by the open interval constraints aij ∈ (−1, 1).
3. The decision problem for the existential theory of the reals is solvable in

sk+1dO(k) arithmetic operations where k denotes the number of variables, s is the
number of polynomial (in)equalities, and d is the highest polynomial degree [2]. This
shows that for fixed k, a polynomial time algorithm is possible. In particular, STABLE
MATRIX IN INTERVAL FAMILY becomes polynomial time solvable if an a priori bound
is given on the size of the matrix. The problems discussed in Corollary 1 also become
polynomial time solvable when suitably constrained.

3. Application to linear control design problems. As explained in the in-
troduction, our initial motivation for this work was to address the computational
complexity of linear control design problems. We now introduce some such problems
and show that they are NP-hard.
STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER
Instance: A positive integer n, n × n matrices A and B with rational coefficients,
rational numbers kij , kij for 1 ≤ i, j ≤ n.
Question: Does there exist a real matrix K = (kij) satisfying kij ≤ kij ≤ kij and
such that A+BK is stable?
SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK
Instance: Positive integers n,m, p, k, a collection of k triplets of matrices (Ai, Bi, Ci)
with rational coefficients of respective sizes n× n, n×m, p× n.
Question: Does there exist a real m× p matrix K such that Ai +BiKCi is stable for
all i = 1, . . . , k?
DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER
Instance: Positive integers n and k with n ≥ k, n × n matrices A,B and C with
rational coefficients. A partition of n into k positive integers n = n1 + n2 + · · ·+ nk.
Question: Does there exist a n × n block-diagonal matrix K with blocks Ki of suc-
cessive sizes ni × ni and ||Ki|| < 1 such that A+BKC is stable?
DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS
Instance: Positive integers n1, n2, three (n1n2) × (n1n2) matrices A,B and C with
rational coefficients.
Question: Does there exist a n1 × n1 matrix M such that the (n1n2 × n1n2) block
diagonal matrix K constructed with n2 identical blocks M is such that A + BKC
is stable?
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COROLLARY 2. The above four problems are all NP-hard.
Proof. (a) STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER: Let

n and aij , aij , for 1 ≤ i, j ≤ n be an instance of STABLE MATRIX IN INTERVAL
FAMILY. An equivalent instance of STATE FEEDBACK STABILIZATION BY BOUNDED
CONTROLLER is given by n, A = 0, B = In, kij = aij , and kij = aij for 1 ≤ i, j ≤ n.

(b) SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK:
We prove NP-hardness for the case of marginal stability. Let n and akl, akl (1 ≤

i, j ≤ n) be an instance of STABLE MATRIX IN INTERVAL FAMILY. Define the n × n
matrices A+

ij , A
−
ij , Bi, and Cj by

A+
ij = (akl) with

akl = −aij if (k, l) = (1, 1),

= 0 otherwise;

A−ij = (akl) with

akl = aij if (k, l) = (1, 1),

= 0 otherwise;

Bi = (bkl) with

bkl = 1 if (k, l) = (1, i),

= 0 otherwise;

and Cj = (ckl) with

ckl = 1 if (k, l) = (j, 1),

= 0 otherwise.

It is immediate to see that (A+
ij +BiKCj) is marginally stable if and only if kij ≤

aij , and similarly, (A−ij +BiKCj) is marginally stable if and only if kij ≥ aij . Thus, if
we require the simultaneous stabilization of the 2n2 + 1 triplets (0, I, I), (A+

ij , Bi, Cj),
and (A−ij , Bi, Cj) for 1 ≤ i, j ≤ n, we have constructed an equivalent instance of
SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK.

(c) DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED
CONTROLLER: We prove that the problem is NP-hard even for the special case where
all blocks are of size 1×1, in which case A+BKC can be written as A+

∑n
i=1 kibic

T
i ,

where bi is the ith column of B, cTi is the ith row of C, and ki is the ith diagonal entry
of K. Given that an arbitrary rank one matrix can be expressed in the form bcT for
some vectors b and c, it follows that every instance of STABLE MATRIX IN RANK ONE
PERTURBED MATRIX can be expressed as an instance of DECENTRALIZED OUTPUT
FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER

(d) DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS: We prove
NP-hardness for the case of marginal stability. Consider k triplets of n × n matri-
ces (Ai, Bi, Ci) that form an instance of SIMULTANEOUS STABILIZATION BY OUTPUT
FEEDBACK. We define an equivalent instance of DECENTRALIZED STABILIZATION
WITH IDENTICAL CONTROLLERS by letting n1 = n, n2 = k,A = A1 ⊕ A2 ⊕ · · · ⊕
Ak, B = B1⊕B2⊕ · · ·⊕Bk and C = C1⊕C2⊕ · · ·⊕Ck, where ⊕ denotes direct sum
of matrices.
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Remarks.
1. For some of the problems, we provided the proof for the case of stability; for

others, we dealt with marginal stability. With little work and using the remarks at
the end of the preceding section, it is easily shown that all problems are NP-hard for
the case of either stability or marginal stability.

2. STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER is easily shown
to remain NP-hard even if the bounds kij , kij are constrained to be either 0 or 1.
We have assumed that we are dealing with square systems; the more general case of
rectangular systems is at least as hard and is therefore also NP-hard. Finally, the
problem of output feedback stabilization by a bounded controller is at least as hard
as that of state feedback and is thus also NP-hard.

3. Our proof shows that SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK
remains NP-hard even if all the matrices involved are of the same size (n = m = p).
The degenerate case m = p = 1 corresponds to simultaneous stabilization of single-
input, single-output systems by proportional feedback and can be solved in polynomial
time. (An argument for this follows from footnote 1 on p. 54 of [1].) For a priori fixed
n, m, and p, the problem can also be solved in polynomial time (see Remark 3 in
section 2). We do not know whether the state feedback formulation of this problem
is NP-hard.
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