
P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

Journal of Heuristics, 3: 245–262 (1997)
c© 1997 Kluwer Academic Publishers

Rollout Algorithms for Combinatorial Optimization ∗

DIMITRI P. BERTSEKAS, JOHN N. TSITSIKLIS AND CYNARA WU
Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA 02139

Abstract

We consider the approximate solution of discrete optimization problems using procedures that are capable of mag-
nifying the effectiveness of any given heuristic algorithm through sequential application. In particular, we embed
the problem within a dynamic programming framework, and we introduce several types of rollout algorithms,
which are related to notions of policy iteration. We provide conditions guaranteeing that the rollout algorithm
improves the performance of the original heuristic algorithm. The method is illustrated in the context of a machine
maintenance and repair problem.

Key Words:

1. Introduction

We discuss the approximate solution of broad classes of combinatorial optimization prob-
lems by embedding them within a Dynamic Programming framework (DP for short).
The key idea is to employ a given heuristic in the construction of an optimal cost-to-go
function approximation, which is then used in the spirit of the Neuro-Dynamic Program-
ming/Reinforcement Learning methodology (NDP for short; see (Barto, Bradtke and Singh
(1995), Bertsekas and Tsitsiklis (1996)) for broad discussions of this methodology).

In the next section, we will introduce a general graph search problem that will serve as
the context of our methodology. To illustrate the ideas involved, however, let us consider
the following type of problem, which includes as special cases problems such as shortest
path, assignment, scheduling, matching, etc. The problem is characterized by a finite setU
of feasible solutions, and by a cost functiong(u). Each solutionu hasN components; that
is, it has the formu = (u1, u2, . . . ,uN), whereN is a positive integer. We want to find a
solutionu ∈ U that minimizesg(u).

We can view the preceding problem as a sequential decision problem, whereby the
componentsu1, . . . ,uN are selected one-at-a-time. Ann-tuple(u1, . . . ,un) consisting of
the firstn components of a solution is called ann-solution. We associaten-solutions with
thenth stage of a DP problem. In particular, forn = 1, . . . , N, the states of thenth stage
are of the form(u1, . . . ,un). The initial state is a dummy (artificial) state. From this state
we may move to any state (u1), with u1 belonging to the set

U1 = {ū1 | there exists a solution of the form(ū1, ū2, . . . , ūN) ∈ U }.
∗Research supported by NSF under Grant DMI-9625489.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

246 BERTSEKAS, TSITSIKLIS AND WU

More generally, from a state of the form

(u1, . . . ,un−1),

we may move to any state of the form

(u1, . . . ,un−1, un),

with un belonging to the set

Un(u1, . . . ,un−1)

= {ūn | there exists a solution of the form(u1, . . . ,un−1, ūn, . . . , ūN) ∈ U }.

The controls available at state(u1, . . . ,un−1) areun ∈ Un(u1, . . . ,un−1). The terminal
states of the problem correspond to theN-solutions(u1, . . . ,uN), and the only nonzero
cost is the terminal costg(u1, . . . ,uN).

Let J∗(u1, . . . ,un) denote the optimal cost starting from then-solution(u1, . . . ,un), that
is, the optimal cost of the problem over solutions whose firstn components are constrained
to be equal toui , i = 1, . . . ,n, respectively. If we knew the optimal cost-to-go function
J∗(u1, . . . ,un), we could construct an optimal solution by a sequence ofN single com-
ponent minimizations. In particular, an optimal solution(u∗1, . . . ,u

∗
N) could be obtained

through the algorithm

u∗i = arg min
ui∈Ui (u∗1,...,u

∗
i−1)

J∗(u∗1, . . . ,u
∗
i−1, ui), i = 1, . . . , N. (1)

Unfortunately, the preceding DP formulation is seldom viable, because of the prohibitive
computation required to obtain the optimal cost-to-go functionJ∗(u1, . . . ,un). In NDP,
this difficulty is dealt with by replacingJ∗(u1, . . . ,un) with approximations

J̃(u1, . . . ,un),

and by obtaining a suboptimal solution(ũ1, . . . , ũN) sequentially, through the algorithm

ũi = arg min
ui∈Ui (ũ1,...,ũi−1)

J̃(ũ1, . . . , ũi−1, ui), i = 1, . . . , N. (2)

The functionJ̃ will be called ascoring functionor approximate cost-to-go function, and
may contain some adjustable parameter vector that can be tuned using special “training”
methods. In this paper, however, we restrict attention to scoring functions that are based on
heuristic algorithms. In particular, we will assume that we have a heuristic algorithm, which
starting from ann-solution(u1, . . . ,un), can produce a completeN-solution(u1, . . . ,uN)

whose cost is denoted byH(u1, . . . ,un). One possibility, studied in this paper, is to ap-
proximate the optimal cost-to-go function with the scoring function

J̃(u1, . . . ,un) = H(u1, . . . ,un). (3)

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 247

A more general possibility is to use multiple heuristic algorithms, which are weighted with
some scalar weights to provide the approximationJ̃(u1, . . . ,un). In this paper, we assume
that the weights are fixed (although they could be adjusted through a separate trial-and-error
process). In a more general NDP approach, the weights could be tunable parameters and
could depend on some features of the given problem. This more general approach will be
the subject of a separate report.

In the next section, we consider a graph search problem that is more general than the
combinatorial problem described above, and we introduce a corresponding DP framework.
We then formulate several sequential methods for constructing solutions, and we illustrate
these methods through some examples.

2. Graph search problems and rollout algorithms

Let us introduce a graph search problem that can serve as a general model for discrete
optimization. We are given a directed graph with node setN and arc setA, and a special
nodes, which we call theorigin. We are also given a subsetN̄ of nodes, calleddestinations,
and a cost functiong(i) on the setN̄ . The destination nodes are terminal in the sense that
they have no outgoing arcs. We allow the node and arc sets,N andA, to contain an infinite
number of elements. We require, however, that the number of destination nodes be finite.
We want to find a directed path that starts at the origins, ends at one of the destination
nodesi ∈ N̄ , and is such that the costg(i) is minimized.

For convenience, and without loss of generality, we will assume that given an or-
dered pair of nodes(i, j), there is at most one arc with start nodei and end nodej ,
which (if it exists) will be denoted by(i, j). In this way, a directed path consisting of
arcs(i1, i2), (i2, i3), . . . , (i n−1, i n) is unambiguously specified as the sequence of nodes
(i1, i2, . . . , i n).

As an example of the preceding formulation, consider the optimization problem discussed
in the preceding section. The origin is an artificial starting state, then-solutions(u1, . . . ,un),
n = 1, . . . , N, can be identified with the remaining nodes, and the (complete)N-solutions
can be identified with the set of destinations.

Similar to the construction used in the preceding section, we can transform the graph
search problem into a DP problem. In particular, the nodes correspond to the states of the
DP problem, the controls available at a given state/node and the corresponding successor
states/nodes are the outgoing arcs from the node and the associated end nodes of the arcs,
respectively. The destination nodesi are terminal states of the DP problem, where the
terminal costg(i) is incurred.

Let us now assume that we have a path construction algorithmH, which given a non-
destination nodei 6∈ N̄ , constructs a directed path(i, i1, . . . , im, ī) starting ati and ending
at one of the destination nodesī . Implicit in this assumption is that for every non-destination
node, there exists at least one path starting at that node and ending at some destination node.
We denote byH(i) the corresponding cost; that is,

H(i) = g(ī), ∀ i 6∈ N̄ . (4)

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

248 BERTSEKAS, TSITSIKLIS AND WU

If i is a destination node, by convention we write

H(i) = g(i), ∀i ∈ N̄ . (5)

Note that while the algorithmH will generally yield a suboptimal solution, the path that
it constructs may involve a fairly sophisticated suboptimization. For example,H may
construct several paths ending at destination nodes according to some heuristics, and then
select the path that yields minimal cost.

One possibility for suboptimal solution of the problem is to start at the origins and
use the algorithmH to obtain a solution of costH(s). We instead propose to useH to
construct a path to a destination node sequentially. At the typical step of the sequence, we
consider all downstream neighborsj of a nodei , we runH starting from each of these
neighbors, and we then move to the neighbor from whichH gives the best result. The
idea of starting with some algorithm, and using it to construct another, hopefully improved,
algorithm is implicit in the policy iteration method of DP and in the use of a rollout policy,
which is a form of policy iteration; see (Bertsekas and Tsitsiklis (1996)) (the name “rollout
policy” was used by Tesauro (Tesauro and Galperin (1996)) in connection with one of his
simulation-based computer backgammon algorithms). This connection will be shown to
be particularly relevant to our context, and for this reason we call the sequential version
of H the rollout algorithm based onH, and we denote it byRH. We note that the idea
of sequential selection of candidates for participation in a solution is implicit in several
combinatorial optimization contexts. For example this idea is embodied in the sequential
fan candidate list strategy as applied in tabu search (see Glover, Taillard and de Werra
(1993)). This idea is also used in a manner similar to the present paper in the sequential
automatic test procedures of Pattipati (see e.g., Pattipati and Alexandridis (1990)).

To formally describe the rollout algorithm, letN(i) denote the set of downstream neigh-
bors of nodei , that is,

N(i) = { j | (i, j) is an arc}. (6)

Note thatN(i) is nonempty for every non-destination nodei , since there exists at least
one path starting ati and ending at a destination. The rollout algorithm starts with the
origin nodes. At the typical step, given a node sequence(s, i1, . . . , im), whereim is not a
destination,RH adds to the sequence a nodeim+1 such that

im+1 = arg min
j∈N(im)

H(j). (7)

If im+1 is a destination node, the path (s, i1, . . . , im, im+1) is taken to be the solution generated
by RH, with corresponding costg(im+1). Otherwise, the process is repeated with the
sequence (s, i1, . . . , im, im+1) replacing (s, i1, . . . , im). OnceRH has terminated with a
path (s, i1, . . . , im, ī), we will have obtained the paths constructed byH starting from each
of the nodesi1, . . . , im. The best of these paths yields a cost

min
k=1,...,m

H(i k).

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 249

We first note that whileH, by definition, has the property that it yields a path terminating
at a destination starting from any node, the rollout algorithmRH need not have this property
in the absence of additional conditions. We will later introduce a variant ofRH that always
terminates. The following example illustrates howRH may fail to terminate.

Example 1 (NonterminatingRH). Assume that there is a single destinationd and that all
other nodes are arranged in a directed cycle. Each non-destination nodei has two outgoing
arcs: one arc that belongs to the cycle, and another arc which is (i, d). Suppose that starting
from a nodei 6= d, the path generated byH consists of two arcs: the first arc is (i, j) where
j is the node subsequent toi on the cycle, and the second arc is (j, d). Then it can be seen
thatRH continually repeats the cycle and never terminates.

We say thatRH is terminating if it is guaranteed to terminate finitely starting from
any node. One important case whereRH is terminating iswhen the graph is acyclic and
the set of nodesN is finite, since then the nodes of the path generated byRH cannot be
repeated and their number is bounded by the number of nodes inN . As a first step towards
developing another case whereRH is terminating, we introduce the following definition.

Definition 1. The algorithmH is said to besequentially consistentif for every nodei ,
wheneverH generates the path (i, i1, . . . , im, i) starting ati , it also generates the path
(i1, . . . , im, ī) starting at the nodei1.

Example 1 above illustrates a situation whereH is not sequentially consistent. On the
other hand, there are many examples of sequentially consistent algorithms that are used
as heuristics in combinatorial optimization. For instance,greedy algorithmsof various
types and other algorithms that inherently have a sequential character often tend to be
sequentially consistent. The following example provides an important context where a
sequentially consistent algorithm arises.

Example 2 (H defined by a heuristic evaluation function). Suppose that we have a real-
valued functionF defined onN , whereF(i) represents an estimate of the optimal cost
starting fromi , that is, the minimal costg(ī) that can be obtained with a path that starts at
i and ends at one of the destination nodesī ∈ N̄ . ThenF can be used to define the path
generating algorithmH as follows:

The algorithmH starts at a nodei with the degenerate path(i). At the typical step, given
a path (i, i1, . . . , im), whereim is not a destination,RH adds to the path a nodeim+1 such
that

im+1 = arg min
j∈N(im)

F(j). (8)

If im+1 is a destination,H terminates with the path (s, i1, . . . , im, im+1). Otherwise, the
process is repeated with the path (s, i1, . . . , im, im+1) replacing (s, i1, . . . , im).

Let us assume thatH terminates starting from every node (this has to be verified inde-
pendently). Let us also assume that whenever there is a tie in the minimization of Eq. (8),
the algorithmH resolves the tie in a manner that is fixed and independent of the starting

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

250 BERTSEKAS, TSITSIKLIS AND WU

nodei of the path, e.g., by resolving the tie in favor of the numerically smallest nodej that
attains the minimum in Eq. (8). Then it can be seen thatH is sequentially consistent.

For a sequentially consistent algorithmH, we will assume a restriction in the way the
algorithmRH resolves ties in selecting the next node on its path via Eq. (7); this restriction
will guarantee thatRH is terminating, and is also needed to ensure thatRH is sequentially
consistent. We will assume that whenever there is a tie in the minimization (7),RH
resolves the tie in a manner that is independent of the starting node of the path (similar to
the preceding example). To elaborate, suppose that at the typical step, where we are given
a node sequence (s, i1, . . . , im), we have

H(im) = min
j∈N(im)

H(j). (9)

In this case, the path (im, i ′m+1, . . . , ī
′) generated by the algorithmH starting atim yields a

costH(im) = g(ī ′) that is equal to the best obtainable from the successor nodesi ∈ N(im),
and the nodei ′m+1 attains the minimum in the preceding equation. We require that if there
are some other nodes, in addition toi ′m+1, attaining this minimum, the next node added
to the current sequence (s, i1, . . . , im) is i ′m+1. Under this convention for tie-breaking, we
show in the following proposition thatRH terminates at a destination and yields a cost that
is no larger than the cost yielded byH.

Proposition 1. Let the algorithmH be sequentially consistent. ThenRH is terminating.
Furthermore, if (i1, . . . , im) is the path generated byRH starting from a non-destination
node i1 and ending at a destination node im we have

H(i1) ≥ H(i2) ≥ · · · ≥ H(im−1) ≥ H(im). (10)

Equivalently, in view of Eq.(7), we have

H(im) = min

{
H(i1), min

j∈N(i1)
H(j), . . . , min

j∈N(im−1)
H(j)

}
. (11)

Proof: Let (i1, i2, . . . , im, . . .) be the path generated byRH starting from a non-desti-
nation nodei1. For eachm = 1, 2, . . . , let (im, i ′m+1, i

′
m+2, . . . , īm) be the path generated

byH starting atim, wherēim is a destination node. Then, sinceH is sequentially consistent,
we have

H(im) = H(i ′m+1) = g(īm). (12)

Furthermore, sincei ′m+1 ∈ N(im), we have using the definition ofRH [cf. Eq. (7)]

H(i ′m+1) ≥ min
j∈N(im)

H(j) = H(im+1).

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 251

Combining the last two relations, we obtain

H(im) ≥ H(im+1), m= 1, 2, . . . (13)

and also, equivalently,

g(īm) ≥ g(īm+1), m= 1, 2, . . . (14)

To show thatRH is terminating, consider two successive nodesim andim+1 generated
byRH. Then, in view of Eq. (13), eitherH(im) > H(im+1), or elseH(im) = H(im+1).
In the latter case, in view of the convention for breaking ties that occur in Eq. (9), the path
generated byH starting fromim+1 is the tail portion of the path generated byH starting from
im, and has one arc less. Thus the number of nodes generated byRH between successive
times that the inequalityH(im) > H(im+1) holds is finite. On the other hand, the inequality
H(im) > H(im+1) can occur only a finite number of times, since the number of destination
nodes is finite, and the destination node of the path generated byH starting fromim cannot
be repeated if the inequalityH(im) > H(im+1) holds. Therefore,RH is terminating.
The relation (13) then implies the desired relations (10) and (11), thus completing the
proof. 2

Proposition 1 shows that in the sequentially consistent case, algorithmRH has an im-
portant “automatic cost sorting” property, whereby it follows the best path generated by
H. In particular, whenRH generates a path (i1, . . . , im), it does so by usingH to generate
a collection of other paths starting from all the successor nodes of the intermediate nodes
i1, . . . , im−1. However,(i1, . . . , im) is guaranteed to be the best among this collection [cf.
Eq. (11)]. Of course this does not guarantee that the path generated byRH will be a
near-optimal path, because the collection of paths generated byHmay be “poor”. Still, the
property wherebyRH at all times follows the best path found so far is intuitively reassuring.

The following example illustrates the preceding concepts.

Example 3 (One-dimensional walk). Consider a person who walks on a straight line and
at each time period takes either a unit step to the left or a unit step to the right. There is a
cost function assigning costg(i) to each integeri . Given an integer starting point on the
line, the person wants to minimize the cost of the point where he will end up after a given
and fixed numberN of steps.

We can formulate this problem as a graph search problem of the type discussed in the
preceding section. In particular, without loss of generality, let us assume that the starting
point is the origin, so that the person’s position aftern steps will be some integer in the
interval [−n, n]. The nodes of the graph are identified with pairs(k,m), wherek is the
number of steps taken so far (k = 1, . . . , N) andm is the person’s position(m ∈ [−k, k]). A
node(k,m)with k < N has two outgoing arcs with end nodes (k+1,m−1) (corresponding
to a left step) and (k+ 1,m+ 1) (corresponding to a right step). The starting state is (0, 0)
and the terminating states are of the form(N,m), wherem is of the form N − 2l and
l ∈ [0, N] is the number of left steps taken.

LetH be defined as the algorithm, which, starting at a node(k,m), takesN− k successive
steps to the right and terminates at the node (N,m+ N − k). Note thatH is sequentially

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

252 BERTSEKAS, TSITSIKLIS AND WU

Figure 1. Illustration of the path generated by the rollout algorithmRH in Example 3.RH keeps moving to the
left up to the time whereH generates two destinations(N, ī) and(N, ī−2)with g(ī) ≤ g(ī−2). Then it continues
to move to the right ending at the destination(N, ī), which corresponds to the local minimum closest toN.

consistent. The algorithmRH, at node(k,m) compares the cost of the destination node
(N,m+ N − k) (corresponding to taking a step to the right and then followingH) and the
cost of the destination node (N,m+ N − k− 2) (corresponding to taking a step to the left
and then followingH). Let us say that an integeri ∈ [−N + 2, N − 2] is a local minimum
if g(i − 2) ≥ g(i) andg(i) ≤ g(i + 2). Let us also say thatN (or−N) is a local minimum
if g(N − 2) > g(N) [or g(−N) ≤ g(−N + 2), respectively]. Then it can be seen, using
Eq. (11), that starting from the origin (0, 0),RH obtains the local minimum that is closest
to N, (see figure 1). This is no worse (and typically better) than the integerN obtained by
H. Note that ifg has a unique local minimum in the set of integers in the range [−N, N],
the minimum must also be global, and it will be found byRH. This example illustrates
howRHmay exhibit “intelligence” that is totally lacking fromH, and is in agreement with
the result of Proposition 1.

3. Interpretation in terms of DP and policy iteration

Let us now interpret the concepts and results presented so far in the context of DP. If we
view the graph search problem of this section as a DP problem in the manner described
earlier, we can see that the algorithmH corresponds to a policyµH , that is, a choice at any
one node of a successor node, which may depend on the choice of initial node/state. In
particular, if a path(i1, . . . , im, im+1) is generated byH starting from nodei1, then for any
i k, k = 1, . . . ,m, the policyµH specifies the successor node choice

µH (i1, i k) = i k+1.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 253

In the terminology of DP, such a policy is calledsemi-Markov. On the other hand, ifH
is sequentially consistent, the choice of the successor node does not depend on the initial
node/state, and in the terminology of DP,µH is called aMarkovor stationarypolicy.

Consider now the rollout algorithmRH, assuming that it is terminating. Then it can be
seen that similar toH, algorithmRH defines a policyµRH that isstationaryregardless of
whetherµH is stationary. Thus, in particular,RH is sequentially consistent (compare also
with Example 2). In fact it can be verified thatµRH is the policy that would be generated by a
single iteration of the classical policy iteration algorithm starting with policyµH . It is well-
known from DP theory that a policy iteration starting from a terminating stationary policy
produces another terminating stationary policy of improved cost. This is in agreement with
the result of Proposition 1, which essentially shows that ifµH is stationary, thenµRH is
stationary and has improved cost.

Let us note that, assumingRH is terminating, we may consider the rollout algorithm
RH, in place ofH. This will generate another algorithm, call itR2H, which in a DP
context will correspond to a policyµR2H . This is the stationary policy obtained fromµRH

via a policy iteration, or equivalently, fromµH via two successive policy iterations.
Finally, let us consider a two-step lookahead rollout algorithm, which we will callR2H.

This algorithm is defined similar toRH with the only difference that at a given nodei , we
consider the setN2(i) of all possibletwo-step successor nodes of i, that is, the set of nodes
j for which there exists an intermediate nodej ′ such thatj ′ ∈ N(i) and j ∈ N(j ′). The
next node generated byR2H is a nodej̄ such that

j̄ = arg min
j∈N2(i)

H(j). (15)

The algorithmR2H bears no clear relation to algorithmsRH andR2H. In particular, no
inference can be drawn regarding the cost functions of these three algorithms, other than
the relation mentioned earlier thatR2H yields no worse cost thanRH starting from any
initial node.

4. Alternative rollout algorithms

We now consider some generalizations of the results and algorithms discussed so far. We
first show that the result of Proposition 1 holds under weaker conditions on the algorithm
H. Let us introduce the following definition:

Definition 2. Suppose that algorithmH generates, starting at each nodei 6∈ N̄ , a path
(i, i1, . . . , im, ī) with the property

H(i) ≥ H(i1). (16)

Then the algorithmH is said to besequentially improving.

It can be seen that a sequentially consistentH is also sequentially improving, with
equality holding in Eq. (16). If we now use Eq. (16) in place of Eq. (12) in the proof of

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

254 BERTSEKAS, TSITSIKLIS AND WU

Proposition 1, we see that this proof carries through verbatim. We thus have the following
generalization of Proposition 1:

Proposition 2. Let the algorithmH be sequentially improving, and suppose thatRH
is terminating. Then, if (i1, . . . , im) is the path generated byRH starting from a non-
destination node i1 and ending at a destination node im, we have

H(im) = min

{
H(i1), min

j∈N(i1)
H(j), . . . , min

j∈N(im−1)
H(j)

}
. (17)

Example 4. Consider the one-dimensional walk problem of Example 3, and letH be
defined as the algorithm that, starting at a node(k,m), compares the costg(m+ N− k)
(corresponding to taking all of the remainingN − k steps to the right) and the costg(m−
N+ k) (corresponding to taking all of the remainingN− k steps to the left), and accordingly
moves to node

(N,m+ N − k) if g(m+ N − k) ≤ g(m− N + k),

or to node

(N,m− N + k) if g(m− N + k) < g(m+ N − k).

It can be seen thatH is not sequentially consistent, but is instead sequentially improving.
Using Eq. (17), it follows that starting from the origin (0, 0),RH obtains the global
minimum of g in the interval [−N, N], while H obtains the better of the two points−N
andN.

4.1. The extended rollout algorithm

We can always modify the problem and the algorithmH so that Proposition 2 applies. In
particular, let us consider theextended version of the problem, whereby the graph(N ,A)
is enlarged by adding for each non-destination nodei an arc(i, d(i)), whered(i) is the
destination at which the path generated byH terminates, starting fromi . (This arc is not
added if it already exists.) ThenH is modified so that starting from each non-destination
nodei for which

min
j∈N(i)

H(j) > H(i) = g(d(i)), (18)

it generates instead the path(i, d(i)). It is seen that the modified version ofH so obtained,
referred to as theextendedH and denoted byHe, is sequentially improving. Thus, Propo-
sition 2 applies to the rollout algorithm based on the extendedH, which is referred to as the
extended rollout algorithmand is denoted byRHe. This algorithm proceeds exactly like
RH up to the first nodei for which Eq. (18) holds, and then terminates with the destination
noded(i).

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 255

4.2. The optimized rollout algorithm

If H is not sequentially improving, it is possible in general thatRH generates a worse
solution than the solutions generated byH from the same starting node. However, it is
always possible to correct this deficiency by a minor modification ofRH. In particular, in
the process of runningRH, one generates several solutions, and upon termination ofRH,
one can choose out of all these solutions, one that has minimal cost. This version of the
rollout algorithm, is referred to as theoptimized rollout algorithmand is denoted byR∗H.
Note that ifH is terminating, thenR∗H is guaranteed to generate a no worse solution than
all of the algorithmsH,RH, andRHe.

4.3. The fortified rollout algorithm

Let us introduce an alternative sequential version ofH. This version is referred to as the
fortified rollout algorithmand is denoted byRH̄. As the notation suggests,RH̄ turns out
to be the rollout algorithm based on a path construction algorithmH̄, which is derived from
H and will be defined shortly. The fortified rollout algorithmRH̄ starts ats, and maintains,
in addition to the current sequence of nodes (s, i1, . . . , im), a path

P(im) = (im, i
′
m+1, . . . , i

′
k), (19)

ending at a destinationi ′k. Initially, P(s) is the path generated byH starting froms. At the
typical step ofRH̄, we have a node sequence (s, i1, . . . , im), whereim 6∈ N̄ , and the path
P(im) = (im, i ′m+1, . . . , i

′
k). Then, if

min
j∈N(im)

H(j) < g(i ′k), (20)

RH̄ adds to the node sequence (s, i1, . . . , im) the node

im+1 = arg min
j∈N(im)

H(j),

and setsP(im+1) to the path generated byH, starting fromim+1. On the other hand, if

min
j∈N(im)

H(j) ≥ g(i ′k), (21)

RH̄ adds to the node sequence (s, i1, . . . , im) the node

im+1 = i ′m+1,

and setsP(im+1) to the path (im+1, i ′m+2, . . . , i
′
k). If im+1 is a destination,RH̄ terminates,

and otherwiseRH̄ starts the next step withm+ 1 replacingm.
The main idea behind the construction ofRH̄ is to follow the pathP(im) unless a path

of lower cost is discovered through Eq. (20). It can be seen thatRH̄may be viewed as the

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

256 BERTSEKAS, TSITSIKLIS AND WU

rollout algorithmRH corresponding to a modified version ofH, called fortifiedH, and
denotedH̄. This algorithm is applied to a slightly modified version of the original problem,
which involves an additional downstream neighbor for each nodeim that is generated in the
course of the algorithmRH̄ and for which the condition (21) holds. For every such node
im, the additional neighbor is a copy ofi ′m+1, and the path generated bȳH starting from
this copy is (i ′m+1, . . . , i

′
k). From every other node, the path generated byH̄ is the same as

the path generated byH. It can be seen that̄H is sequentially improving, so thatRH̄ is
terminating and has the automatic cost sorting property of Propositions 1 and 2; that is,

H(im) = min

{
H(i1), min

j∈N(i1)
H(j), . . . , min

j∈N(im−1)
H(j)

}
.

The above property can also be easily verified directly, using the definition ofRH̄. It
can also be seen that the fortified rollout algorithmRH̄ will always perform at least as
well as the extended rollout algorithmRHe. The potential improvement in performance
is obtained at the expense of the modest additional overhead involved in maintaining the
pathP(im). Note that whenH is sequentially consistent, all three rollout algorithmsRH,
RHe, andRH̄ coincide.

4.4. Using multiple path construction algorithms

We note that one may use multiple path construction algorithms in the preceding framework.
In particular, let us assume that we haveK algorithmsH1, . . . ,HK . The kth of these
algorithms, given a nodei 6∈ N , produces a path (i, i1, . . . , im, ī) that ends at a destination
nodeī , and the corresponding cost is denoted byHk(i) = g(ī). Generalizing our earlier
approach, we can use theK algorithms in an approximation architecture of the form

J̃(i) = min
k=1,...,K

Hk(i), (22)

or of the form

J̃(i, r1, . . . , r K) =
K∑

k=1

rk Hk(i), (23)

whererk are some fixed scalar weights obtained by trial and error. The rollout algorithms
RH,RHe, andRH̄ easily generalize for the case of Eq. (22), by replacingH(i)with J̃(i),
and by defining the path generated starting from a nodei as the path generated by the path
construction algorithm which attains the minimum in Eq. (22). In the case of Eq. (23),
the rollout algorithmRH also generalizes easily by replacingH(i) with J̃(i, r1, . . . , r K),
but in order to generalize the algorithmsRHe, andRH̄, the path generated from a node
i must also be defined. There are several possibilities along this line. A different type of
possibility for the case of Eq. (23), is to use tunable weights, which are obtained by training
using NDP methodology. This is discussed in the recent textbook (Bertsekas and Tsitsiklis
(1996)), and will be the subject of a future report.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 257

4.5. Extension for intermediate transition costs

Finally, let us consider a problem where in addition to the terminal costg(i), there is a
cost c(i, j) for a path to traverse an arc(i, j). Within this context, the cost of a path
(i1, i2, . . . , i n) that starts ati1 and ends at a destination nodei n is redefined to be

g(i n)+
n−1∑
k=1

c(i k, i k+1). (24)

One way to transform this problem into one involving a terminal cost only is to redefine
the graph of the problem so that nodes correspond to sequences of nodes in the original
problem graph. Thus if we have arrived at nodei k using path (i1, . . . , i k), the choice ofi k+1

as the next node is viewed as a transition from state (i1, . . . , i k) to state (i1, . . . , i k, i k+1).
Both states (i1, . . . , i k) and (i1, . . . , i k, i k+1) are viewed as nodes of a redefined graph.
Furthermore, in this redefined graph, a destination node has the form (i1, i2, . . . , i n), where
i n is a destination node of the original graph, and has a cost given by Eq. (24).

After the details are worked out, we see that to recover our earlier algorithms and analysis,
we need to modify the cost of the heuristic algorithmH as follows: If the path (i1, . . . , i n)
is generated byH starting ati1, then

H(i1) = g(i n)+
n−1∑
k=1

c(i k, i k+1).

Furthermore, the rollout algorithmRH at nodeim selects as next nodeim+1 the node

im+ 1 = arg min
j∈N(im)

[c(im, j)+ H(j)];

[cf. Eq. (7)]. The definition of a sequentially consistent algorithm remains unchanged.
Furthermore, Proposition 1 remains unchanged except that Eqs. (10) and (11) are modified
to read

H(i k) ≥ c(i k, i k+1)+ H(i k+1) = min
j∈N(i k)

[c(i k, j)+ H(j)], k = 1, . . . ,m− 1.

A sequentially improving algorithm should now be characterized by the property

H(i k) ≥ c(i k, i k+1)+ H(i k+1)

if i k+1 is the next node on the path generated byH starting fromi k. Furthermore, Proposition
2 remains unchanged except that Eq. (17) is modified to read

H(i k) ≥ min
j∈N(i k)

[c(i k, j)+ H(j)], k = 1, . . . ,m− 1.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

258 BERTSEKAS, TSITSIKLIS AND WU

Finally, the criterion minj∈N(im) H(j) < g(i ′k) [cf. Eq. (20)] used in the fortified roll-
out algorithm, given the sequence (s, i1, . . . , im), whereim 6∈ N̄ , and the pathP(im) =
(im, i ′m+1, . . . , i

′
k), should be replaced by

min
j∈N(im)

[
c(im, j)+ H(j)

]
< g(i ′k)+ c(im, i

′
m+1)+

k−1∑
l=m+1

c(i ′l , i
′
l+1).

5. Some computational experience

We have tested rollout algorithms in a variety of contexts. We have consistently found
that they can be very effective and that they can substantially improve the performance of
the original heuristic. In this section, we provide an example involving a combinatorial
two-stage maintenance and repair problem (in fact a stochastic programming problem).

Consider a repair shop that has a number of spare parts that can be used to maintain a
given collection of machines ofT different types over two stages. A machine that is broken
down at the beginning of a stage can be immediately repaired with the use of one spare
part or it can be discarded, in which case a costCt is incurred. A machine of typet that
is operational (possibly thanks to repair) at the beginning of a stage breaks down during
that stage with probabilitypt , independently of other breakdowns, and may be repaired at
the end of the stage, so that it is operational at the beginning of the next stage. Knowing
the number of available spare parts, number of machines of each type, and the number of
initially broken down machines, the problem is to find the repair policy that minimizes the
expected total cost of the machines that break down and do not get repaired. The essence of
the problem is to trade off repairing the first stage breakdowns with leaving enough spare
parts to repair the most expensive of the second stage breakdowns.

Let s be the number of initially available spare parts, and letm andy be the vectors

m= (m1, . . . ,mT), y = (y1, . . . , yT),

wheremt , t = 1, . . . , T , is the number of machines of typet (all assumed to be initially
working), andyt , t = 1, . . . , T , is the number of breakdowns of machines of typet during
the first stage. The decision to be made is

u = (u1, . . . ,uT),

whereut is the number of spare parts used to repair breakdowns of machines of typet at
the end of the first stage. We note that at the second stage, it is optimal to use the remaining
spare parts to repair the machines that break in the order of their cost (that is, repair the
most expensive broken machines, then if spare parts are left over, consider the next most
expensive broken machines, etc). Thus, if we start the second stage withs̄ spare parts,
andm̄t working machines of typet = 1, . . . , T , and during the second stage,ȳt machines
of type t break,t = 1, . . . , T , the optimal cost of the second stage, which is denoted by

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 259

G(m̄, ȳ, s̄), where

m̄= (m̄1, . . . , m̄T), ȳ = (ȳ1, . . . , ȳT),

can be calculated analytically. We will not give the formula for the functionG, because it
is quite complicated, although it can be easily programmed for computation.

Let us denote byR the expected value, over the second stage breakdowns, of the second
stage cost

R(m̄, s̄) = Eȳ[G(m̄, ȳ, s̄)].

Then in the first stage, and once the first stage breakdowns are known, the problem is to
find u = (u1, . . . ,uT) that solves the problem

minimize
T∑

t=1

Ct (yt − ut)+ R

(
m− y+ u,

T∑
t=1

ut

)

subject to
T∑

t=1

ut ≤ s, 0≤ ut ≤ yt , t = 1, . . . , T.

This is the problem we wish to solve approximately by using a rollout algorithm.
We reformulate this first stage problem as a path construction problem. In the reformu-

lated problem, the nodes of the graph are triplets(m, y, s). Destination nodes are the ones
for which y= 0 and the repair/no repair decision has been made for all the first stage break-
downs. At a non-destination node, the control choices are to select a particular breakdown
type, sayt , with yt > 0, and then select between two options:

(1) Leave the breakdown unrepaired, in which case the triplet(m, y, s) evolves to

(m1, . . . ,mt−1,mt − 1,mt+1, . . . ,mT , y1, . . . , yt−1, yt − 1, yt+1, . . . , yT , s)

and the costCt of permanently losing the corresponding machine is incurred.
(2) Repair the breakdown, in which case the triplet(m, y, s) evolves to

(m1, . . . ,mT , y1, . . . , yt−1, yt − 1, yt+1, . . . , yT , s− 1),

and no cost is incurred.

Once we havey1 = · · · = yT = 0, there is no decision to make, and we simply pay the
optimal cost-to-go of the second stage,R(m̄1, . . . , m̄T , s̄), and terminate.

We consider rollout policies based on heuristic algorithms. We used the following two
heuristics, which given the triplet(m, y, s), produce a first stage solutionu:

(1) Proportional heuristic: In this heuristic, we compute an estimateN̄ of the total number
of second stage breakdowns based on the probabilitiespt of breakdown of individual

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

260 BERTSEKAS, TSITSIKLIS AND WU

machines of typet . In particular, we havēN = ∑T
t=1 pt Nt , whereNt is a heuristic

estimate of the number of working machines of typet at the start of the second stage,
based on the already known vectorsm andy. We form the estimated ratio of first stage
to second stage breakdowns,

f =
∑T

t=1 yt

N̄
.

We then fix the number of spare parts to be used in the first stage to

s1 = a f s,

wherea is a positive parameter. The first stage problem is then solved by allocating the
s1 spare parts to machines of typet in the order of the costsCt (1− pt). (The factor of
1− pt is used to account for the undesirability of repairing machines that are likely to
break again.) The constanta provides a parametrization of this heuristic. In particular,
whena< 1, the heuristic is conservative, allocating more spare parts to the second
stage than the projected ratio of breakdowns suggests, while ifa> 1, the heuristic is
more myopic, giving higher priority to the breakdowns that have already occurred in
the first stage.

(2) Value-based heuristic: In this heuristic, given the state, we assign values ofCt and
Ct (1− pt) to each spare part used to repair a machine of typet in the second stage
and the first stage, respectively. Note that a repair of a machine in the first stage is
valued less than a repair of the same machine in the second stage, since a machine that
is repaired in the first stage may break down in the second stage and require the use
of an extra spare part. We rank-order the valuesCt andCt (1− pt), t = 1, . . . , T ,
and we repair broken down machines in decreasing order of value, using the estimate
pt (mt − yt) for the number of machines to break down in the second stage.

We have tested the four rollout algorithmsRH, R∗H, RHe, andRH̄ based on single
and multiple heuristics, and we have compared their performance with the one of the
corresponding heuristics, as well as with the optimal performance. Table 1 summarizes our
results on a set consisting of 5000 randomly generated test problems. In these problems,
there were 5 machine types, with costs 2, 4, 6, 8, and 10, respectively. The number of
machines of each type was randomly chosen from the range [0, 10], the number of spare
parts was randomly chosen from 0 to the total number of machines, and the breakdown
probability for each machine type was randomly chosen from the range [0, 1]. A uniform
distribution was used in each random choice. The optimal cost, averaged over the test
sample of 5000 problems was calculated (by brute force) to be 33.69.

The proportional heuristic was used with three different values of the parametera (0.5,
1.0, and 1.5), and the corresponding values are indicated in the 1st column of Table 1. Also,
when multiple heuristics were used, they were combined into a single heuristic using the
minimum cost formula (22). Thus for example, the heuristic Value/Prop (a = 0.5), consists
of starting at a given node, running the value heuristic and the proportional heuristic with
a = 0.5, and then out of the two paths generated, choosing the one with minimal cost.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

ROLLOUT ALGORITHMS 261

Table 1. Test results on a set consisting of 5000 randomly generated test problems. Each row corresponds
to a single heuristic algorithm or a combination of heuristic algorithms (this is the algorithmH) as indicated
in the leftmost entry. The second entry of the row gives the average cost over the test set corresponding to
H starting from the initial node of the problem. Entries 3–6 in each row give the average cost over the test
set for the corresponding rollout algorithms. The optimal cost, averaged over the test sample, is 33.69. The
last entry gives the percentage gain in the error from optimality achieved by the best of the rollout algorithms,
relative to the original heuristic [for example the heuristic Prop(a = 0.5) of the 1st row is suboptimal by
49.00− 33.69 = 15.31, and the best rollout algorithm reduces this to 43.06− 33.69 = 9.37, resulting in a
gain of (15.31− 9.37)/15.31 or 38.8%].

Heuristic H RH R∗H RHe RH̄ % Gain

Prop(a = 0.5) 49.00 43.09 43.06 44.13 44.10 38.80

Prop(a = 1.0) 37.23 37.76 35.83 36.14 36.04 39.54

Prop(a = 1.5) 41.28 36.11 34.93 35.04 34.98 83.66

Value 38.75 35.97 35.94 35.98 35.90 56.32

Value/Prop(a = 0.5) 38.74 35.95 35.93 35.95 35.90 56.23

Value/Prop(a = 1.0) 36.55 35.93 35.29 35.42 35.23 46.15

Value/Prop(a = 1.5) 37.39 35.62 34.93 35.01 34.90 67.30

Prop(a = 0.5)/Prop(a = 1.0) 37.03 37.76 35.73 36.14 36.05 38.92

Prop(a = 0.5)/Prop(a = 1.5) 38.98 36.18 35.04 35.14 35.12 74.29

Prop(a = 1.0)/Prop(a = 1.5) 36.61 36.13 34.93 35.13 34.97 57.53

Prop(a = 0.5)/Prop(a = 1.0)/
Prop(a = 1.5) 36.40 36.14 34.94 35.14 34.99 53.87

Value/Prop(a = 1.0)/Prop(a = 1.5) 36.20 35.57 34.85 35.01 34.81 55.38

Value/Prop(a = 0.5)/Prop(a = 1.0) 36.55 35.93 35.29 35.42 35.24 45.80

Value/Prop(a = 0.5)/Prop(a = 1.5) 37.38 35.62 34.93 35.00 34.90 67.21

It can be seen that the rollout algorithms can improve significantly the performance
of the original heuristic algorithmH. In particular, the relative improvement (the per-
centage reduction of the deviation from optimality, given in the last entry in each row of
Table 1) is significant. Furthermore, in agreement with the earlier analysis, it can be seen
that:

(a) All of the algorithmsR∗H,RHe, andRH̄ consistently outperform the original heuristic
algorithmH. On the other hand, becauseH is not guaranteed to be sequentially
improving, the standard rollout algorithmRH may perform worse than the original
heuristicH (see the 2nd and 8th rows of the table).

(b) The optimized rollout algorithmR∗H consistently outperforms the standard and the
extended rollout algorithmsRH andRHe.

(c) The fortified rollout algorithmRH̄ consistently outperforms the standard and the ex-
tended rollout algorithmsRH andRHe. On the other hand there is no clear superiority
relation between the optimized and the fortified algorithms.

P1: SGA

Journal of Heuristics KL514-04-Bert October 22, 1997 15:49

262 BERTSEKAS, TSITSIKLIS AND WU

References

Barto, A.G., S.J. Bradtke, and S.P. Singh. (1995). “Learning to Act Using Real-Time Dynamic Programming.”
Artificial Intelligence72, 81–138.

Barto, A.S. and R. Sutton. (1997).Reinforcement Learning. MIT Press (forthcoming).
Bertsekas, D.P. and J.N. Tsitsiklis. (1996).Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.
Glover, F., E. Taillard, and D. de Werra. (1993). “A User’s Guide to Tabu Search.”Annals of Operations Research

41, 3–28.
Pattipati, K.R. and M.G. Alexandridis. (1990). “Application of Heuristic Search and Information Theory to Se-

quential Fault Diagnosis.”IEEE Transactions on Systems, Man, and Cybernetics20, 872–887.
Tesauro, G. and G.R. Galperin. (1996). “On-Line Policy Improvement Using Monte Carlo Search.” Unpublished

report.

