
Complex Systems 5 (1991) 525-539

On the Predictability of Coupled Automata:
An Allegory about Chaos

Samuel R. Buss
Christos H. Papadimitriou

Department of Computer Science and Engineering,
University of California at San Diego, La Jolla, CA 92093, USA

John N. Tsitsiklis
Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. We show a sharp dichotomy between systems of identical
automata with a symmetric global control whose behavior is easy to
predict, and those whose behavior is hard to predict. The division
pertains to whether the global control rule is invariant with respect to
permutations of the states of the automaton. On the other hand, we
show that testing whether the global control rule has this invariance
property is an undecidable problem.

1. Introduction and motivation

Consider an array of five automata identical to the-one in figure 1. The
automata operate in unison, and at each time step they all have identical
inputs. The input is determined from the states of the automata in terms of
the following global control rule:

Global input is 1 if at least one of the n automata is in state ql,
and no more than two automata are in the same state; otherwise,
it is 0.

Suppose that the system starts at the state (q2, 93, q11, 2, q3) (or (qi, q2, q2,
q3 , q3), since the rule does not depend on the identities of the automata). The
global input is equal to 0 for the first step; the next state is (q4, qj, q2, q4, q1).
What is the state of the system after ten moves? A thousand moves?

This is an instance of the state prediction problem studied in this paper.
We are given n identical automata, a global control rule, an initial state n-
vector, and an integer T, and we are asked to compute the state vector after
T steps. The global control rule is given in terms of a first-order sentence.
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Figure 1: Automaton M.

For example, the rule in the example above can be written (N(ql) > 1) A
Vx(N(z) < 2), where N(x) stands for the number of automata at state x.
We refer to N(x) as the multiplicity of state x. As in this example, we will
consider global control rules that depend only on the multiplicities of the
different states; that is, the control rule is independent of the identities of the
automata.

We wish to study how the complexity of this problem (intuitively. the
predictability of the system) depends on the nature of the global control
rule. We consider a system predictable if the answer to the above question
can be obtained in time polynomial in the number of states, the number of
automata, and the logarithm of T. In contrast, if the prediction problem is
PSPACE-complete. this would mean essentially that the system is not easily
predictable, and that there seems to be no prediction method better than
simulation.

In this paper we draw a sharp boundary between rules in our language
that are polynomial-time predictable and those that are PSPACE-complete.
We show that all constant-free rules (that is, rules that do not involve state
constants such as qg in our example) are polynomial-time predictable, while
all rules that inherently use constant symbols lead to PSPACE-complete
prediction problems. Our polynomial algorithin uses a simple monotonocity
property of constant-free rules, which is explained in section 2. Our lower
bound uses an increasingly accurate characterization of non-constant-free
rules to essentially reduce any such rule to a rule of the form N(ql) = nl,
where nj is an integer constant. We then show that a rule of the latter form
leads to a PSPACE-complete prediction problem. These results are presented
in section 3. Finally, in section 4, we show that testing for constant-freeness
is an undecidable problem.

Motivation

The model studied in this paper was developed in an attempt to increase our
understanding of complex behavior in dynamical systems. It is well known
that dynamical systems differ dramatically in several important aspects of
their behavior, such as periodicity, predictability, stability, dependence on
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initial conditions. and so forth. Systems that are "nasty" in these respects
(in a fairly well-defined sense) are called "chaotic" [1. 21. There are many im-
portant, and sometimes deep, facts known about chaotic dynamical systems.
Unfortunately, there seems to be no clear characterization of the circum-
stances that give rise to chaos, and systems that appear very similar have
very different properties in this respect. We wish to shed some light on
this problem by studying some discrete computational analogs of chaos. Of
course, under the usual definitions of chaos, discrete and finite systems of the
type studied in this paper cannot exhibit chaotic behavior. Rather, the most
complex behavior that a discrete system can exhibit is computational un-
predictability. Such unpredictability is somewhat similar to the property of
"sensitive dependence on initial conditions" that appears in the definition of
chaos; however, this similarity is somewhat loose and not completely under-
stood. Thus, our results do not have any concrete consequences for the theory
of continuous-variable dynamical systems and chaos, but can be viewed as a
not too distant allegory that might provide some insights on how to proceed
in order to establish a closer correspondence. Our direction and our precise
model have been influenced by several precursors and considerations, briefly
explained below.

There have been interesting attempts to use discrete, computational ana-
logs to understand chaos. Most notably, Wolfram 14] has used cellular arrays
of automata (generalizations of the Game of Life), and observed similar be-
havior: Some arrays are easy and predictable, while some others are difficult
to figure out and predict, just as in chaotic dynamical systems. There is
rather informed and competent discussion in [4] of important computational
issues (including randomness and PSPACE-completeness) in relation to this
paradigm. However, what is lacking from the analysis of [4] is a reasonably
sharp dichotomy between cellular automata that exhibit chaotic behavior
and those that do not. Such a result would have ;nade the analogy much
more valuable. The difficulty in proving such a result isnot hard to under-
stand: Cellular arrays have essentially a single parameter (the automaton),
and it is very unlikely that finite automata show a sharp division between
those that can simulate space-bounded computation and those that exhibit
a periodic, predictable behavior.

Roughly speaking. chaotic behavior seems to appear in systems of very
few degrees of freedom (e.g., the Lorenz oscillator) in which nonlinearities
have-subtle effects, as well as in systems with a very large number of degrees
of freedom. Natural discrete analogs of the first class would be complex
centralized models of computation such as Turing machines, but of course
such models do not yield themselves to syntactic characterizations. (We do
discuss below, however, how our model can be thought of as akin to discrete-
time dynamical systems with one degree of freedom.). Seeking a discrete
analog of the second class, we decided that a large number of degrees of
freedom is best reflected in a large number of interacting automata. In fact,
such systems are characterized by two parameters (the automaton and the
interaction rule), therefore making a sharp dichotomy more likely.

J'
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Chaos often arises in coupled oscillators f1]. It is not unreasonable to view
a finite automaton as the discrete analog of an oscillator since, when oper-
ating in isolation, it is guaranteed to be eventually periodic. In general, the
coupling of oscillators can be of two different types: local coupling between
nearest neighbors, or of a more global nature. The first type of coupling is
captured by cellular arrays (as in [4]), whereas our formulation captures the
second type. As an example of the second type, one could imagine that a set
of otherwise decoupled oscillators (automata) generates a "mean field" that
in turn affects the behavior of each automaton. Our identity-independence
assumption can be viewed as an assumption that the "mean-field" is spa-
tially homogeneous and is independent of the spatial configuration of the
oscillators that generate it. Our results imply that such a system would be
inherently unpredictable.

Finally, the model considered here can be tied to problems of supervisory
control of discrete-event dynamical systems [3]. Suppose that the automata
are identical machines operating in a cyclical fashion (following the 1 arrows)
except that, whenever any machine enters a special state, some corrective
action has to be taken (e.g., temporarily cut the power supply) that causes
an abnormal transition at all machines. Our results show that the long-run
effects of such supervisory control can be very hard to predict by methods
other than simulation. To go even further in this direction, imagine that
we wish to study the effect of government decisions on a certain population.
We may wish to model each individual as being in one of a set of states
(happy, risk-prone, conservative, subversive, etc.). Decisions will be based
on opinion polls of the population (the N(q,)'s). Unless we know the nature of
the state space and the transitions, the only rules that will lead to predictable
behavior seem to be ones that do not distinguish between different moods of
the population!

An intriguing aspect of our results is that on the one hand we derive
a fairly simple property characterizing those global control rules that lead
to unpredictable behavior; on the other hand. verifying this property is an
undecidable problem. This seems to suggest that it ibuld be impossible to
derive effective criteria for deciding whether a aynamical system is chaotic,
and it would be quite interesting to derive some results of this type.

2. Polynomial predictability

We have an array of n automata, each identical to M = (K, {0, 1}. 6), where
K = {q, .... - qKj| } is a finite set of states; the input alphabet is. for simplicity,
always {0, 1}; andb5 : K x {0, 1} k-4 K is the transition function of M.

The automata are controlled by a global control rule R. R is a sentence in
a first-order language defined next. Our language has constants qj, q2, q3 ...

and variables x,y, z,...; both range over K. the set of states of M. Terms
are of the form N(s), where s is a constant or a variable and N is a special
symbol. (The meaning of N(s) is "the number of automata in state s.")
Atomic formulas are linear equations and inequalities of terms, such as
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N(x) + 2 - N(q3 ) - 3 - N(y) _ 5 or N(x) = N(ql). Formulas then are
formed from atomic ones by Boolean connectives and quantifiers of the form
Vx and 3y. A rule is a formula without free variables (standard definition).
Examples of rules are the following:

R= "N(qi) = 0";

R2 = "Vx(2 -N(x) < N(q3 ))";

R3= "Vzx3y((N(x) + N(y) > 3) V (N(x) = 0))";

R4 = "V'(N(x) = N(q))".

Suppose that M is an automaton and R is a rule. We say that M is ap-
propriate for R if all constants mentioned in R occur as states of M. A
global state of a system consisting of n copies of M is an element of K'. A
global state S gives rise to its poll N(S) = (N(ql),..-, N(q 1Kl)), a sequence
of jKJ nonnegative integers adding up to n, where N(qi) is the number of
occurrences of state qj in S (the multiplicity of qi). Such a poll is said to be
appropriate for R if it is obtained from an automaton M that is appropriate
for R. If N is a poll appropriate to R, we write N - R if the multiplicities
N(qi) of the states of M satisfy sentence R (the standard inductive definition
of satisfaction). We say that two rules R and R' are equivalent if for all N
appropriate to both R and R' we have N 1= R iff N -- R'.

Notice that R1 and R2 above explicitly mention constants, whereas R3
does not. R4 does mention a constant, but this is not inherent; R4 is equiv-
alent to R' = "VxVy(N(x) = N(y))". We call a rule constant-free if it is
equivalent to a rule that does not contain constants in its text.

The operation of the system is the following: The global state S(t'
(sl(t), ... , s,(t)) determines its poll N(S(t)), which in turn determine- t',
global input I(t); in particular, I(t) = 1 if N(S(t)) 1= R, and J(t) = 0
otherwise. I(t) then determines the next state si(t + 1) = 6(si(t), I(t)) in
each automaton, and so on. We thus arrive at the following computational
problem.

STATE PREDICTION-R. We are given a positive integer n, an automaton
M = (K, {O, 1},6), an initial state vector S(0) = (sl(0),...,s"(0)) E K",
and an integer T > 0. We are asked to determine S(T).

Theorem 1. If R is constant-free, STATE PREDICTION-R can be solved
in polynomial time.

Proof. Suppose that S = (sl,..., s,,) is a global state. The type of S, T(S),
is the sorted poll of S. That is, the type of S captures the multiplicities
of states in S, but without identifying each multiplicity with a state. For
example, if K = (a, b, c} and S = (a, a, b, a, b), then the type of S is {0, 2, 3}.
We say that S' is a degradation of S if the type of S' can be obtained from
that of S by replacing some groups of non-zero numbers by their respective
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sums, and with sufficient Os to make IKI numbers. For example, {0,0,0, 1, 5}
is a degradation of {0, 1, 1, 1, 3}. If R is constant-free, then it is easy to see
that whether N(S) ý= R depends only on r(S).

Suppose that we know S(t), the global state at time t. We then know
whether N(S(t)) -- R, and thus we know I(t), and it is easy to compute
S(t + 1). It is easy to see that, since all automata are identical and they
obtain the same input, the next state in each is uniquely determined by the
current one. Hence, either the type of S(t + 1) is the same as that of S(t) (if
I(t) happens to map all states present at S(t) in a one-to-one fashion to new
states), or S(t + 1) is a degradation of S(t). If we encounter a degradation,
we pause (the current stage is finished). Otherwise, we continue simulating
the system for IKI moves, with the same input (since the type remains the
same).

At this point (that is, after JKI moves), each automaton has entered a
loop, since there are only JKJ states. All these loops are disjoint, and therefore
there will never be a change in the type of the global state (and hence in the
global input). Each automaton has become periodic, with period at most K,
and we can solve the state prediction problem very easily.

Suppose now that we have a degradation. We repeat the same method,
simulating the system either for IKj moves or until a degradation occurs.
This must end after IKI such stages since each degradation introduces a new
zero in the type of S(t). Therefore, we can predict the state after simulating
the system for at most K|12 moves. I

Example. Consider the automaton:

The global input is 1 iff every state is occupied by at least one
automaton or at least one state is occupied by three or more
automata.

The rule is constant-free since R = Vx(N(x) > 0)v3x(N(x) > 2) contains no
constants. Suppose the initial global state is (ql, q2, q3, q4); to solve the state
prediction problem the system is simulated until, after two degradations, it
begins looping with a period of three:
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Global State Type Global Input R
(q,q2, q3 ,q 4 ) {1, 11, 1} 1

(q2, q3. q4 q2) {0,1,1,2} 0
(q, 9q4 93, q1) {0,1,1,2} 0
(q4 , q3 , q4 , q4 ) {0,0,1,3} 1

(q2, q4.q2,q2) {0,01,3} 1
(q3, q2 . qaq 3 ) {0, 0, 1, 3} 1
(q 4 ,q3,q 4,q 4 ) {00,01,3} 1

On the subject of polynomial algorithms, it is easy to show the following.

Proposition 1. If there is a constant k such that the number of states of
M is at most k or the number of copies of M is at most k, then STATE
PREDICTION-R is polynomially solvable for all R.

Thus, our constructions of PSPACE-completeness in the next section will
necessarily employ an unbounded number of copies of large automata.

3. PSPACE-completeness

We shall show that all non-constant-free rules in some sense reduce to non-
constant-free rules of a very simple form. We must first understand the
"model theory" of non-constant-free rules.

Definition. The range of a poll N is the set {N(q1 ),..., N(qk)} of state
multiplicities. Two polls are said to be compatible if they have the same
range. If N is a poll on states {q, ..- , qk} then N' is an extension of N iff N'
is a poll on states {q, -... , ,} with k < m and N(q,) = N'(q,) for all ý < k.

The notation R(q,, ... , q,,) is used for a rule R with free variables among
q,, .... q,,; this notation will be used only when no other variables appear free
in R. Thus, for instance, 3Bzx.. 3xkR(z,..... x·) is constant-free. However,
the notation does not require that q, ..... q, be distinct.

Lemma 1. Suppose N and N' are compatible polls, R(q,, ... , q,) is a rule,
and jl,...,jk are such that N(q,) = N'(q3_ ) for all 1 < n < k. Then
N = R(q ,,,..... q, ) iff N' • R(q,,.,q,,).

Proof. By induction on the number of logical connectives in R. For R
atomic, Lemma 1 is obvious since atomic formulas are linear combinations of
N(q,)'s. For the case where the outermost connective in R is a propositional
connective, the result is immediate from the induction hypothesis. If R is
3xS(x, q,,, ... , q,), then

N R eR N S(qo, q ... ,q%,) for some to

e N' S(q,,,q ,,..., q,) for some jo
- Ng' R(q,,.. ,q,)
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where the middle equivalence follows from the compatibility of N and N'
and from the induction hypothesis. The case R = VzS is handled by noting
that R is equivalent to --'x-S. I

Lemma 2. If R(q1,... ,qk) is a rule, N is a poll of length > k, and N' is a
compatible extension of N, then N - R iff N' ý R.

Proof. Lemma 2 is an immediate corollary of Lemma 1. 1

Definition. A rule R is preserved by permutations iff, for any polls N and
N' with N' a permutation of N,

N ,-R = N'= R.

More generally, R is preserved by compatible polls iff, for all compatible N
and N',

N R -= N'= R.

Lemma 3. Let R = R(ql,..., q9). The following are equivalent:

(a) R is constant-free.

(b) R is preserved by permutations.

(c) R is preserved by compatible polls.

(d) R(ql,..., qk) and Vxl -. VXkR(x , ... ,Xk) and 3xz1 --. 3xR(xl,...,xk)
are equivalent rules.

Proof. The implication (d)=(a) is obvious. To show (a)-=(b), suppos-'
that R is constant-free and that N and N' are compatible pollk. Sir; '
constant free, there is a rule S containing no constants, which is equivalenm
to R. By Lemma 1, N ý S if and only if N' - S; that is, N k R if and
only if N' ý= R. Thus R is preserved by compatible polls.

Next we show (b)=*(c). Suppose R is preserved by permutations. Let N
and N' be compatible polls that we can express as N = (G) and N' = (G')
where G and G' are sequences of state multiplicities. Then

(G) C R 4 (G,G') R byLemma2
S (G', G) j~ R by preservation by permutations
= (G') = R by Lemma 2.

Thus N J R if and only if N' I= R.
To show (c)=>(d), we shall first assume that (c) holds and that N is a

poll such that N F= 3:R(£), and then show that N 1= VER(x). Because
N = 3:R(S), there are (not necessarily distinct) states q2 ,. ... , q, such that
N R(qi, -..- -., qi). Letting qj ,..., qj, be arbitrary states, we need to show
that N H= R(qj,,..., qj,). For this purpose, find an extension N' of N such
that there are distinct indices mi,..., m, so that N'(q,) = N(q,) for all
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1 < n < k, and find a poll N" compatible with N' so that N"(q,,) = N(qj3)
for all n. (Note that the sole reason for introducing N' was because of the
non-distinctness of the i,'s; the definition of N" is possible only since the
m,'s are distinct.) Now,

N ý R(q,,...q,) - N' • R(qm.. .q,k) by Lemma 1

-=> N" ̀ R(q,,... qm, ) by preservation by

compatible polls

,V N - R(qJ1,... qj) by Lemma 1.

(For the middle equivalence above we know that R(qm,,,... q,,) is preserved
by compatible pools since R(qi,... qk) is preserved, and since the property
of being preserved by compatible polls is preserved by renaming of states.)
Thus we have established that if (c) holds then 3BhR() implies V9R(9);
hence, the following chain of implications holds for every poll:

VzlX.--.. VXR(zl ... ,xk) - R(qP,-...qk)
3x 3l -. ZXkR(Zxj. XZk)

SVzXI ... VxkR(,I ... k).

So the three rules are equivalent. I

Lemma 4. If R is not constant free, then there are polls N = (G, nj, G')
and N' = (G. n2, G') such that N - R and N' V= R, and such that n1 and
n2 both occur in G'.

Proof. By Lemma 3, R is not preserved by permutations. Since permuta-
tions are generated by 2-cycles, there are polls

N = (Gi, n, G 2, n 2, G 3)

and

N2 = (Gi, n2, G2, nl, Ga)

such that N 1 =- R and N2 L R. Thus, by Lemma 2,

(Gi, ni, G 2z, n2 G 3 ni, n2) - R

and

(Gi, n2, G2, ni0 G3, ni, n2) • R.

Now consider the poll (G1, nj, G2, n i, G 3,n, n, 2). If this poll makes R true
then the lemma holds with G equal to G 1 and G' equal to (G2, ni, G3, , , n2).
On the other hand, if the poll makes R false, then the lemma holds with G
equal to (G 1, ni, G 2) and G' equal to (G3, n1i n2) (and the roles of nl and n2
interchanged). I
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For notational convenience, we can assume that the two polls of Lemma
4 are of the form (nt, N) and (n2 ,N), where N = (, ,. .. ,,o) denotes the
remaining poll. (This can always be achieved by renaming of the states.) In
the proof that follows, we will construct a system of automata whose poll at
any time will be of the form (nt, N, N') or (n 2 , N, N'). The segment N of
the poll will never change, and will stay equal to (n2, - - - ,o D). The entries
of N' will change with time but they will be taking values only in the set

{n1 , n2}. Since both nt and n2 occur in N (Lemma 4), at any time we will
be dealing with an extension of (n1 . N) or (n 2, N). By Lemma 2, it follows
that R will be satisfied at exactly those times when the system's poll is of
the form (nj, N, N').

Theorem 2. Let R be a non-constant-free rule. Then STATE PREDIC-
TION-R is PSPACE-complete.

Proof. Let M be a Turing machine that operates on a circular tape wifh 1B
tape squares. Let A be the alphabet size, and let the alphabet elements be
0, 1,..., A - 1. Let Q be the number of states of M. We assume that each
transition of M moves the tape head to the right by one square. Finally, we
assume that the Turing machine has a special "halting" configuration; once
the tape and machine get to that configuration the machine state and the
tape contents never change. It is easily shown that the problem of deter-
mining whether the above described Turing machine ever reaches the halting
configuration is PSPACE-complete.

The transitions of M can be described in terms of P = AQ many tran-
sition rules of the form "if M is in state m and the tape symbol is a, then
a gets overwritten by a' and the new state of M is m'." Thus, at any step
the machine tries each one of the transition rules until it finds one that ap-
plies ("fires"), and then makes a transition. Notice that the identity of the
transition rule r to be fired determines completely the value of m and a.
Furthermore, the transition rule r' to be fired at the next transition is com-
pletely determined by the transition rule r being fired now and the value in
the tape square that is to the right of the tape head. (This is because r
uniquely determines the state of M right after r is fired.) We assume that
the transition rules have been numbered from 0 to P - 1.

We now construct an instance of STATE PREDICTION-R that will en-
code and simulate the computation of M on the B tape squares. Our instance
consists of a number (to be specified later) of identical finite state automata
(FSAs), which we now construct.

There are certain states qz, q3, ... , qD that "do not move." (If an FSA
starts at one of thlse states, it always stays there.) The initial multiplicities
of these states are exactly the numbers fi that correspond to N, where N was
defined in the discussion following Lemma 3. For all of the remaining states,
the state multiplicities will be initialized at either n1 or n2. Furthermore,
the transitions of the FSAs will be specified so that the multiplicity at any
one of these remaining states is always nj or n2 . It is useful to think of the
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states with multiplicity nl as "carrying a token." Thus, our transition rule
R can be interpreted as "R is true if and only if there is a token at state ql."

We now specify the remaining states of the FSAs. We will have:

(i) States of the form (a,p, r), where a corresponds to a tape symbol (0 <
a < A), p corresponds to a tape square (1 < p < B). and r corresponds
to a transition rule (0 < r < P). State (a,p, r) is interpreted as follows.
If R is true (i.e., if there is a token at ql), then the presence of a token at
state (a, p, r) (i.e., a multiplicity of nl) indicates that there is a symbol
"a" that is p squares to the right of the tape head and that transition
rule r is about to be fired.

(ii) A special state (-1, -1, -1), which will be needed later in order to
apply the Chinese Remainder Theorem.

(iii) States of the form (s), where 0 < s < S = P(AP + 1)2. These states
are used for "synchronization." The state (0) is identified with the
special state qj. (That is, R is true if and only if (0) has multipi'city
ni, namely when it has a token.) The transition rules of the automata
will be defined so that exactly one of these states has a token, and a
transition of the Turing machine will be simulated each time this token
gets to state (0) and global control rule R becomes true.

We initialize the FSAs so that state (0) has multiplicity nl, and all states
(s) with s 0 0 have multiplicity n2. Given an initial configuration of the
Turing machine, we encode this configuration as follows. Let r* be the first
transition rule to be applied. Then a state (a, p, r) will have multiplicity nl
if and only if r = r* and the symbol that is p squares to the right of the
tape head is a. All other states of the form (a,p, r), as well as m.h, -'tate
(-1, -1, -1), have multiplicity n 2. Note that there is no set - .
to encode the contents of the tape square under the head; this informatiuoi
is already given by the transition rule r*.

We now describe the transition rules for the FSAs.

1. If R is not satisfied (state (0) has multiplicity n 2):

(a) (a,p,r) --4 (a,p, r + 1 mod P), if 1 5 p < B - 1, -,alled "incre-
menting r mod P."

(b) (a, B - 1, r) - (a, B - 1, r+1), if r +1< P.

(c) (a, B - 1, P - 1) --- (a + 1, B - 1, 0), if a < A - 1.

(d) (A - 1, B - 1, P - 1) - (-1, -1, -1).

(e) (-1, -1, -1) -- + (0, B - 1, 0).

(f) (s) ---- (s - 1 mod S).

According to rules l(b), 1(c), 1(d), and 1(e), when p = B - 1, the automa-
ton cycles through all states of the form (a, B - 1, r), together with state
(-1, -1, -1). The number of states in the cycle is AP + 1 and we refer to
these four rules as "incrementing mod AP + i."
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2. If R is satisfied (state (0) has multiplicity nl):

(a) (a,p, r) ---* (a,p - 1, r) if p 9 1. This captures the movement of
the tape head to the right since the symbol a that was p squares
to the right of the tape head is now p - 1 squares to the right.

(b) (0) - (0, B - 1, 0).

(c) (a, 1, r) --- (N,,,).

(d) (N,,) - (a, B - 1, r) if (a, r) # (0, 0).

(e) (No,o) -- (0).

(f) (s) -- + (s) if s # 0 and s is not of the form (N,,).

In rules 2(c), 2(d), 2(e), and 2(f), the numbers N.,, where a = 0,1,..., A - 1
and r = 0,..., P - 1, are distinct positive integers that are chosen so as to
have the following properties. Suppose that when transition rule r (of the
Turing machine) is fired, it writes a' in the tape square under the head.
Furthermore, assuming that a is the tape symbol immediately to the ribht ,f
the tape head, let r' be the transition rule to be fired at the next step. (As
argued earlier, r' is uniquely determined by r and a.) Then:

(i) N,, = (r' - r) mod P. (So incrementing any (a, p, r) mod P a total of
Na, times gives (a,p, r').

(ii) Incrementing (0, B - 1, 0) mod AP + 1 a total of N.,, times yields
(a', B - 1, r').

Numbers N,, with the above mentioned properties exist by the Chinese
Remainder Theorem because AP + 1 and P are relatively prime.

We now explain how the FSAs simulate the Turing machine. Firs,:
easily verified that all states (other than q2,..., qD) have multiplicities nm or
n2 at all times. Consider a time when (0) has multiplicity nl. Then there are
tokens at states (a,p, r) encoding the symbols in the tape squares (except
for the symbol under the tape head), and also indicating that transition rule
r of the Turing machine is being fired. Rule R is satisfied and the FSA
transition rules 2(a) through 2(f) are used. Right after that, the states (s)
have all multiplicity n 2 except for one state (N.,,), which receives a token
from state (a, 1, r), where a is the symbol one position to the right of the
tape head at the time that r is fired. The next time that R will be satisfied
will be when that token reaches state (0). Until then, the FSA transition
rules 1(a) through 1(f) are followed; due to rule 1(f), it takes N,, steps for
the token to reach state (0). Because of rule 1(a), a token at (a,p, r), for
p < B - 1, gets incremented by (r' - r) mod P leading to state (a,p, r'), as
desired. Regarding the set of states of the form (a, B - 1, r), when r was
fired, the FSA transition rule 2(b) sent a token to state (0, B - 1, 0). After
N., steps, this token has moved to state (a', B - 1,r'), which correctly gives
the status of the tape cell left behind by the tape head, as well as of the next
transition rule to be fired.
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We conclude that the FSAs correctly simulate the Turing machine. In
particular, each time the global control rule R is satisfied (at least once
every P(AP + 1)2 time steps) a new configuration of the Turing machine
is generated. Let T be a large enough time so that, if the Turing machine
ever reaches the halting state, it does so earlier than time T. To determine
whether this will be so, it suffices to determine the global state of the FSAs
at time P(AP + 1)2T. Note that T can be chosen so that logT is bounded
by a polynomial in A, P, and B. PSPACE-completeness of the STATE
PREDICTION-R problem follows. 1

4. Undecidability of validity and constant-freeness

Recall that a rule R is said to be "constant-free" if and only if it is equivalent
to a formula in which no constants appear. In the above, we showed that
the state prediction problem is PSPACE-complete for non-constant-free rules
and is polynomial time for constant-free rules. In this section we show that
it is undecidable if a given rule is constant-free; thus, it is undecidable i;•
given rule has a state prediction problem that is polynomial time computable
(if PSPACE and PTIME are distinct). We shall prove this undecidability
by showing that the recognition of constant-free rules is equivalent to the
recognition of valid rules ("valid" means true for all polls). Then we show
that the set of satisfiable rules (true for some poll) is undecidable.

Lemma 5. The problem of recognizing constant-free rules is equivalent to
the problem of recognizing valid rules (under many-one polynomial-time re-
ductions).

Proof. By Lemma 3, R(q, ... ,q,) is constant-free if and only if

3x ... 3z,R(zl,... z,) * Vx, z ... Vx,R(x .... z,)
is valid. On the other hand, R is valid if and only if (1) (VzVy.N(x) =
N(y)) - R is valid and (2) R V N(qk+1) = N(qk+2) is constant-free, where
qk+l and qk+2 are not mentioned in R. Note that (1) is easily seen to be
decidable in polynomial time because it is readily reduced to a Boolean com-
bination of inequalities of the form pN < q in the variable N. I

Theorem 3. The set of constant-free rules is undecidable.

Proof. By Lemma 5, it suffices to show that the set of satisfiable rules is un-
decidable (since a rule is valid iff its negation is not satisfiable). By the Mati-
jasevi6-Davis-Putnam-Robinson theorem, it is undecidable if a diophantine
equation has a solution. Using the fact that multiplication can be expressed
in terms of squaring since z -V = z if and only if 2 - z + x2 + yV = (x + y) 2

and the fact that squaring can be defined in terms of least common multiple
since x2 + x = LCM(x, z + 1), we have that the satisfiability of purely exis-
tential formulas without negations in the language 1, + and LCM(-, -) is
undecidable.
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Thus it is undecidable if a rule of the form 3xl...I3zNS(E) is satisfiable
where S is a conjunction of formulas of the forms N(zx) = 1, N(zi)+N(xj) =
N(xk), and

N(x,) = LCM(N(xj), N(xk)).

If we can replace N(zi) = LCM(N(zi). N(Sk)) by a formula that is satisfiable
if and only if N(xz) is the least common multiple of N(zj) and N(Xk), then
Theorem 3 will be proved. We first define DIV(N(z(), N(xj)) to be a formula
that is satisfiable if and only if N(xi) divides N(xz) by

DIV(N(xi), N(xz)) 4 ByBz[N(z) - N(y) = N(x,) A

Vw(N(y) < N(w) 5 N(z) --. {(3v(N(y) < N(v) = N(w) - N(sx)).)

A (N(w) # N(z) - 3v(N(w) + N(xi) = N(v) < N(z)))})).

Let CodesMults(N(zx). N(y), N(z)) be the subformula of DIV of the form
Vw(--..) this expresses the fact that the range N(y) to N(z) contains pre-
cisely those values N(w) such that N(w) - N(y) is a multiple of N(ax). Let
NDIV(N(xi), N(xj)) be the following formula, which is satisfiable if and only
if N(xi) does not divide N(x,):

3y3z[N(z) < N(xj) < N(z) + N(xi) A CodesMults(N(xi), N(y), N(z))].

Now LCM(N(xi), N(xj), N(xk)) can be defined by

DIV(N(zj), N(xx))

A3y3z[CodesMults(N(zk), N(y), N(z)) A N(z) = N(y) + Ar(x,)

A Vu(N(y) < N(u) < N(z) -- NDIV(N(xk), N(y)))].

By construction, LCM(N( 2x), N(xj), N(xs)) will be satisfiable in some
extension (of any poll) if and only if N(xi) is the least common multiple of
N(xi) and N(Zk). I

Acknowledgments

This research was supported by the NSF under Grant ECS-8552419, with
matching funds from Bellcore Inc. and Du Pont Inc., by the NSF under
Grant DMS-8902480, and by the ARO under Grant DAAL03-86-K-0171. A
preliminary version of this paper was presented at the 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, Missouri. October
1990. Part of the second author's research was performed while visiting the
Center for Intelligent Control Systems at M.I.T.



On the Predictability of Coupled Automata 539

References

[1] P. Berge, Y. Pomeau, and C. Vidal, Order Within Chaos (New York, Wiley,
1984).

[2] R. L. Devaney, An Introduction to Chaotic Dynamical Systems (Menlo Park,
Benjamin/Cummings, 1986).

13] P. J. Ramadge and W. M. Wonham, "Supervisory Control of a Class of Dis-
crete Event Processes," SIAM Journal of Control and Optimization, 25 (1987)
206-230.

[4] S. Wolfram, editor, Theory and Applications of Cellular Automata (Singapore,
World Scientific, 1986).


