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We consider the asynchronous distributed simulation of a stochastic system using the rollback method and we show that the 
simulation can be incorrect, meaning that the sample path generated is not distributed according to the desired statistics, 
unless some precautions are taken. In particular, if part of the simulation is performed for a second time, due to a rollback, 
one should use the same random numbers that were used the first time. 
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1. Introduction 

Asynchronous simulation via rollback is a rela- 
tively recent method for simulating a discrete-event 
system, consisting of interconnected subsystems, 
using a set of asynchronous processors, each 
processor being in charge of simulating a particu- 
lar subsystem 163. This melhod has attracted a fair 
amount of attention (see e.g. [8] and the references 
therein) with a view towards applications in the 
simulation of queueing networks and other types 
of stochastic systems [7]. 

The essence of the rollback method is that each 
processor simulates its own subsystem as fast as it 
can, and communicates to other processors so that 
they can appropriately simulate the effects of one 
subsystem on the other. If a processor has simu- 
lated its own subsystem further in the future than 
it should (that is, if it has neglected some interac- 
tions from other subsystems) then pzu% of the 
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simulation is invalidated ard is performed again 
(this is called a rollback), properly taking into 
account the neglected interactions. In the case of 
the simulation of stochastic systems, stochastic 
effects are simulated using random number gener- 
ators. This raises the following question: when a 
rollback occurs and part of the simulation is done 
for the second time, should we use the same 
random numbers as the first time, or should we 
generate new random numbers? While ease of 
impiementation might suggest the generation of 
new random numbers, we show that tti$ option 
leads, in general, to incorrect results. That is, the 
sample path generated by the simulation al- 
gorithm need not possess the desired satistics. 

The remainder of the paper is organized as 
follows. In Section 2, we provide a. description of 
the simulation algorithm. In §ection 3, we discuss 
how the generation of new random numbers leads 
to incorrect results. Finally, in Section 4, we pro- 

vide an informal argument suggesting that t 
of th random numbers to correct re- 
sults, iscuss some relate 
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2. 

We provide here a condensed summary of the 
rollback method, our main purpose being to 
establish the ternG.nology for our subsequent dis- 
cussion. For a more detailed and accurate descrip- 
tion, the reader could consult [6] or 131. Further- 
more, in order to simplify the presentation, it is 
assumed that the system being simulated evolves 
in discrete time. Nevertheless, the same arguments 
GUI be applied to the case of continuous-time 
systems. 

We refer to the system be&g simulated as the 
physical system, as opposed to the computing sys- 
tem, which consists of the processors performing 
the simulation. The physical system consists of N 
subsystems, denoted by csP1, . . . , YN, and operates 
for a finite number P’of discrete-time units. We let 
t E (0, 1,. . . , T j Se a time variable associated with 
the physical system, to be referral to as the physi- 
cal time. W&h each subsystem Spi, we associate a 
state variable whose value at physical time t is 
denoted by xi(t). Each subsystem can generate 
interactions which can affect the state of the other 
subsystems at subsequent physical times. We let 
tii(t) be a variable describing the nature of an 
interaction generated at subsystem e at aim,* t, 
that will af&t subsystem 9j. We assume that the 
interaction variables can take a null u&e, de- 
noted by 14, which stands for absence of hterac- 
tion. Furthermore, without loss of generality, we 
assume that Zij(t) affects directly the state Xj at 
time t + 1. We are thus led to the following model 
of the physical system: 

xi(t)=~(x,Ci-l),(Zji(t-l)I j#i},w,(t),t), 

01, (1) 

zij(t) =gij(xj(t), V;;(f), I), t >, 0. (2) 

Here, the fi’s and the giJ9s are functions de- 
scrhing the dynamics of the subsystems and the 
mechanisms that generate interactions. The v&a- 
ble Wi( t > is ZI random variable, meant to capture 
the stochastic aspects of the evolution of xi( t ). We 
assume that the random variables ( w ,.( t ) 1 i = 
1 9 I.. , N; t = 0, I ,-s.9 T} are indepen and with 
prescr2w.l distributions. (Ttis ence as- 
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sumption is more or less necessary in practical 
implementations in which the random variables 
are drawn using random number generators. Even 
if a natural description of the system violates such 
an independence assumption, the dynamical equa- 
tions are usually reformulated and the random 
variables redefined so as to enforce the indepen- 
dence assumption.) We assume that initial condi- 
tions x,(O) are provided for each subsystem and 
that they are deterministic (as opposed to random). 

We continue with the description of the com- 
puting system. We assume that there are N 
processors P, 9 . . . 9 PN, each one being responsible 
for the simulation of a corresponding subsystem. 
Each processor Pi maintains a local clock (often 
called local virtual time, or LVT for short); its 
value will be denoted by 7i. Each processor simu- 
lates its own subsystem as fast as it can and th2 
value of 7,. indicates that the values of Xi(O), 
x,(l)9 l l l 9 xi(q) have been simulated and have not 
been invalidated. A typical simulation step is as 
follows. Assume that ~~ = t. Processor Pi draws a 
value of the random variable Wi( t + 1) (using a 
random number generator) according to the pre- 
scribed distribution. It then computes xi( t + 1) 
and zij(t + l), using eqs. (1) and (2), transmits the 
value of Zij( t + 1) to all processors pj for which 
zij( t + 1) # q, and increments Ti to t + I.. Notice 
that (1) requires knowledge of the intere&ons 
Zji(t) emanating from the other subsystems. 
Processor Pj looks into a record of rece;, :d mes- 
sages for the values of the Zji( t ))S, For any j for 
which no such message is found, the null value v 
is assumed. 

Suppose now that processor Pi receives a mes- 
sage with a value of tij( f ), where t < ri. This 

message invalidates the simulatd values of xi( t + 

1)9...9 Xi( T )9 which !IW~ to be simulated anew. 
Accordingly, processor Pi assig 1s the value t to its 
LVT. Furthermore, processor Pi sends antimes- 
sages to cancel any transmitted messages that 
were based on the invalidated values. The behav- 
ior of any processor that receives an antimessage 
canceilizrg an earlier received message is similar: 
that is, all, computatioiis that depend on the value 
of the cancelled message are invalidated and any 
message that was based on the invalidated compu- 
tations is cancelled by further antimessages. 
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3. ssibility for incorrect res 

As discussed in the previous section, rollbacks 
may force a processor to compute a value of Xi( t ) 
several times, for the same value of t. Let us 
assume that each computation of xi( t ) makes use 
of a different, independently drawn, sample of the 
random variable wi( t ). We indicate a mechanism 
that can lead to an incorrect simulation. 

Let us consider an asynchronous simulation for 
which we can be certain that a fixed processor Pi 
will roll back at most once and, consequently5 the 
value of a random variable wi( t ) will be sampled 
once or twice, depending on whether a rollback 
occurs or not. Let us assume that the prescribed 
distribution for Wi(t ) is such that we have wi(t ) 

E (0, I), with the two values being equally likely. 
Let w be the value a: the first drawing sf wi( t ) 
and let w’ be the value at the second drawing, if a 
rollback occurs. Let x be the indicator function of 
the event that a rollback occurs. (That is, x = 1 if 
a rollback occurs, and x = 0 otherwise.) Since w 
and w ’ are generated according to the prescribed 
distribution, we have 

Pr(w=O)=& 

Pr(w’=QlX=l, w=j)=$, VjE (0,l). 

The value u finally used in the simulation of w i ( t ) 
is equal to w if x=0, and equal to w’ if x=1. 
Our simulation will be correct, meaning that the 
finally accepted value u of the random variable 
wi(t) has the prescribed distribution if and only if 
Pr( u = 0) = Pr( u = 1) = i. We have 

Pr(u=l)=Pr(w=l, x=O)+Pr(w’=l, x=1) 

= Pr( w = 1) l iPr(x = 0 1 w = 1) 

+Pr(w’=l]x=l)~Pr(x=f) 

= l(Pr(x = 0 1 w = 1) + Pr(x = 1)) 

= 4(1- pr(x = 11 w = 1) + Pr(x = 1)). 

We therePore see that Pr(u = 1) is equal to the 
desired value of 4 if and only if Pr(x = 1 I w = 1) 
= Pr(x = l), or equivalently, if and only if the 
value w obtained at the first drawing does n6;t 
affect the probability of having a rollback. One 
may envisage, however, complex sequences of 

events whereby the value w of wi(t) at the fbst 

drawing determines whether certain messages wfi 
be sent by processor Pi, thus affecting the traffic 

conditions & the interconnection network of the 
computing system, and directly influencing the 
probability that a rollback necessitates the regen- 
eration of Wi(t). We provide below a detailed 
example which establishes our claim that the simu- 
&ion has not correctness guarantees. Further- 
more, our example shows that the above described 
pathological behavior can occur even if it is as- 
sumed that messages and antimessages travelhng 
from the same origin to the same destination are 
received in the order that they are sent. 

Example. Wc consider a physical system con- 
sisting of three subsystems and which is to be 
simulated over the time interval (0, 1, 2, 3). To 
avoid a cumbersome presentation, we do not pro- 
vide explicit formulae for the functions h and gij 
but we only describe their properties. It is left to 
the reader to verify that these functions can be 
easily chosen to have the properties that follow: 

(i) Th.e function g,, is such that 2i2(0) # IT. 
(ii) The function fi is such that x2(1) is equal 

to 0 if ~~~(0) - r, and x2(1) = 1 if ~~~(0) # ?T. 
(iii) The function g,, is such that z,,(l) = vr if 

and only if ~~(1) = 1. As a consequence, we see 
that the interaction ~23(l) is nonnull if and only if 
the interaction zi2(0) is null. 

(iv) There is a random variable ~~(2) that takes 
the values 0 and 1 with equal probabilities, and 
that determines whether the interaction 232(Z) is 
null or not. In particular, z32(2) = v if and only if 
~~(2) = 0 or Z23(l) Z T. 

We assume that the above-mentioned interac- 
tions are the only ones that can have nonnull 
values. The structure of these interactions is il- 
lustrated in Fig. 1. 

In a correct simulation, we have ~~~(0) f V, 
x2(1) = 1, ~~~(1) = m, the random variable ~~(2) 
is drawn, and its value determines whether z&2) 
is null or not. In an asynchronous simulation there 
is a possibility of a rollback at processor f’3 that 
can lead to a redrawing of the random variable 
~~(2). Let us consider the asynchronous simula- 
tion under two scenarios, corresponding to differ- 
ent outcomes in the first drawing of ~~(2). 
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F;g. 1. The physical system being simulated. The interaction 
~~(1) is null if and only if ~~~(0) is nonnull. The interaction 

~~~(2) is nonnull if and only if ~~(2) = 1 and z,,(l) is null. 

In the first scenario, shown in Fig 2, processor 
P3 draws the value w,(2) = 0. Accordingly, ~~(2) 
= w and no message is sent from -p2 to P3. Fur- 
thermore, a message a is sent from PI to P2 with 
the value of ~~~(0). This message reaches .P2 just 
before the variables ~~(1) and ~~(1) are simu- 
lated by P2. Therefore, +(l) is simuiated based 
on correct information, the value z@) = 7r is 
obtained, and no message with the value of z&l) 
is sent. 

In the second scenario, shown in Fig. 3, 
processor P3 draws the value w,(2) = 1. Accord- 
ingly, t&2) # q and a message p is sent from p3 
to P2. As in the previous scenario, a message cy is 
also sent from PI to Pz with the value of z&O). 
Suppose that the message /3 reaches processor Fz 
just before message cy. As both of these messages 
have to get into an “input queue” or “input 

buffer” for processor P2, it is reasonable to as- 

sume that the reception of B can delay the recep- 

Red t&e 
Fig. 2. The progress of th2 simulation, in real time, if the 

random sample of w,(2) has the value 0. 

y3(2)= f ,w,(rJ) 

Real 
Fig. 3. The progress of the simulation, in real time, if the first 

random sample of w J( 2) has the value 1. 

tion of (x. This causes the message (Y to be received 
after the variables x2(1) and ~~~(1) are simulated. 
Thus, an incorrect nonnull value for zzj( 1) is 
obtained. A corresponding message y is sent from 
Pz to P3. When the message y is received by P3, a 
rollback occurs and an antimessa.ge /3’ is sent to 
cancel the message p. In the meantime, message ar 
reaches P2, a rollback occurs at Pz, the value of 
z,,(l) is simulated correctly, and an antimessage 
y’ is sent to cancel the message y. Upon reception 
of y’, processor P3 suffers one more rollback and 
draws the value of ~~(2) once more (and for the 
last time). 

It is seen that the final value of ~~(2) is equal 
to 1 if and only if the value 1 is obtained at the 
first drawing and also in the last drawing. We are 
therefore simulating the system as if Pr( w3(2) = 1) 
= $, which is incorrect. The root of the problem is 
that the value of w,(2) at the first drawing affects 
the probability that a rollback occurs and indi- 
rectly affects the probability that this random 
variable is redrawn. In this example, we have used 
an assumption that when there are more than one 
messages travelling towards the same destination, 
each one of these messages has the potential of 
delaying the reception of the others, which seems 
to be realistic from a practical point of view. 

We have seen that if random variables are 
regenerated each time a rollback occurs, the simu- 
lation can generate statistics different than the 
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desired ones. We note that our arguments pertain 
to other contexts in which rollback and randomi- 
zation are present. For example, rollback can be 
employed as a general purpose “synchronizer”, 
that is, as a protocol for executing synchronous 
algorithms in an inherently asynchronous comput- 
ing system [ 1,2]. In fact, eqs. (1) and (2) can be 
viewed as a general description of a synchronous 
algorithm, and the simulation of (1) and (2) via 
the rollback method can be viewed as a “‘synchro- 
nizer”. If the synchronous algorithm involves 
randomization, the arguments of Section 3 apply 
verbatim. 

What can be done to ensure the generation of 
the correct statistics? It is seems that the only 
alternative is to avoid redrawing new values w i( t) 
after each rollback. This implies that each 
processor must store in its memory the value of 
each wi(t), just in case a rollback is to occur later. 
We argue informally that such a strategy will lead 
to sample paths with the correct statistics. Indeed, 
if the value of each w,(t) is fixed at the value 
obtained at the first and only drawing of that 
random variable, the situation is mathematically 
equivalent to having drawn values for all of the 
random variables Wi( t) before the simulation starts 
and then reading these values from the memory 
whenever they are needed. If the values of the 
variables wi( t) are drawn before the simulation 
starts, we are essentially dealing with the case of a 
deterministic simulation which employs some ex- 
ogenous variables wi( t ). Given that the rollback 
algorithm is correct for the simulation of de- 
terministic system, the trajectory being simulated 
will obey (1) and (2), with the values of wi(t) 
having been sampled according to the desired 
st.atistics, which is our objective. 

Unfortunately, the approach described above 
has certain drawbacks because of a potentially 
large increase in the memory requirements of the 
algorithm. Some partial remedies are the follow- 
ing: 

(a) While the asynchronous simulation is being 
carried out, one can sometimes guarantee that 
none of the WT’s will ever drop below a certain 
value T. (This can be verified in a distributed 
manner by using the snapshot algorithm of [4]; see 
[5,9] for further discussion of this point.) In such a 

case the processors are allowed to delete from 
their memory the values of w,(t), t -C T, since they 

will never be required in the future. 
(b) Instead of storing the value oi w,(t), a 

processor could store the seed si(t) that was fed to 
a random number generator in order to generate 
wj(t). If the value of w#) is needed again (due to 
a rollback) then a processor only needs to use the 
same seed si( t ). If si( t ) is a simple function of t, 
then processor Pi does not need to store the value 
of Si( t ) but can compute it on demand. 

We now comment on the simulatiox of con- 
tinuous-time discrete-event systems, whxh is the 
one that is of most interest in practice [7]. Since 
discrete-time systems can be viewed as special 
cases of continuous-time systems, the problems 
identified in Section 3 persist. On the other hand, 
the physical times at which events are to occur are 
not known in advance and the remedy we de- 
scribed earlier is not applicable. We have, how- 
ever, the following option. Suppose that the dy- 
namics of the physical system have been for- 
mulated so that the statistics of the random vari- 
able wi ( t ) corresponding to the k- th event at 
subsystem Yi has a prescribed distribution de- 
pending only on i and k. We can then generate 
random variables w:, wf,. . . ,and the value wf 
will be the one to be used for the simulation of the 
k th event at subsystem Yi, no matter how many 
times the k th event has to be simulated (due to 
rollbacks) and even if different simulations of the 
kth event correspond to different physical times. 

A closing remark, if (1) and (2) have a special 
structure, or if something more is known about 
the way that the asynchronous simulation is im- 
plemented, it is conceivable that the simulation is 
guaranteed to produce sample paths with the cor- 
rect slatistics even if no precautions are taken. 
This is issue is currently under study. 
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