
Information Processing Letters 31(1989) 139-144
North-Holland

8 May 1989

John N. TSITSIKLIS

Room 35-214, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139, U.S.A.

Communicated by E.C.R. Hehner
Received 14 November 1988

We consider the asynchronous distributed simulation of a stochastic system using the rollback method and we show that the
simulation can be incorrect, meaning that the sample path generated is not distributed according to the desired statistics,
unless some precautions are taken. In particular, if part of the simulation is performed for a second time, due to a rollback,
one should use the same random numbers that were used the first time.

Keywords: Distributed, asynchronous, simulation, rollback

1. Introduction

Asynchronous simulation via rollback is a rela-
tively recent method for simulating a discrete-event
system, consisting of interconnected subsystems,
using a set of asynchronous processors, each
processor being in charge of simulating a particu-
lar subsystem 163. This melhod has attracted a fair
amount of attention (see e.g. [8] and the references
therein) with a view towards applications in the
simulation of queueing networks and other types
of stochastic systems [7].

The essence of the rollback method is that each
processor simulates its own subsystem as fast as it
can, and communicates to other processors so that
they can appropriately simulate the effects of one
subsystem on the other. If a processor has simu-
lated its own subsystem further in the future than
it should (that is, if it has neglected some interac-
tions from other subsystems) then pzu% of the

* Research supported by the National Science Foundation
under Grant KS-8552419, with matching funds from IBM
Iuc. and DuPont Inc.

simulation is invalidated ard is performed again
(this is called a rollback), properly taking into
account the neglected interactions. In the case of
the simulation of stochastic systems, stochastic
effects are simulated using random number gener-
ators. This raises the following question: when a
rollback occurs and part of the simulation is done
for the second time, should we use the same
random numbers as the first time, or should we
generate new random numbers? While ease of
impiementation might suggest the generation of
new random numbers, we show that tti$ option
leads, in general, to incorrect results. That is, the
sample path generated by the simulation al-
gorithm need not possess the desired satistics.

The remainder of the paper is organized as
follows. In Section 2, we provide a. description of
the simulation algorithm. In §ection 3, we discuss
how the generation of new random numbers leads
to incorrect results. Finally, in Section 4, we pro-

vide an informal argument suggesting that t
of th random numbers to correct re-
sults, iscuss some relate

0020-0190/89/$P.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 139

Volume 31, Number 3 INFORMATION PROCESSING LETTERS 8 May 1989

2.

We provide here a condensed summary of the
rollback method, our main purpose being to
establish the ternG.nology for our subsequent dis-
cussion. For a more detailed and accurate descrip-
tion, the reader could consult [6] or 131. Further-
more, in order to simplify the presentation, it is
assumed that the system being simulated evolves
in discrete time. Nevertheless, the same arguments
GUI be applied to the case of continuous-time
systems.

We refer to the system be&g simulated as the
physical system, as opposed to the computing sys-
tem, which consists of the processors performing
the simulation. The physical system consists of N
subsystems, denoted by csP1, . . . , YN, and operates
for a finite number P’of discrete-time units. We let
t E (0, 1,. . . , T j Se a time variable associated with
the physical system, to be referral to as the physi-
cal time. W&h each subsystem Spi, we associate a
state variable whose value at physical time t is
denoted by xi(t). Each subsystem can generate
interactions which can affect the state of the other
subsystems at subsequent physical times. We let
tii(t) be a variable describing the nature of an
interaction generated at subsystem e at aim,* t,
that will af&t subsystem 9j. We assume that the
interaction variables can take a null u&e, de-
noted by 14, which stands for absence of hterac-
tion. Furthermore, without loss of generality, we
assume that Zij(t) affects directly the state Xj at
time t + 1. We are thus led to the following model
of the physical system:

xi(t)=~(x,Ci-l),(Zji(t-l)I j#i},w,(t),t),

01, (1)

zij(t) =gij(xj(t), V;;(f), I), t >, 0. (2)

Here, the fi’s and the giJ9s are functions de-
scrhing the dynamics of the subsystems and the
mechanisms that generate interactions. The v&a-
ble Wi(t > is ZI random variable, meant to capture
the stochastic aspects of the evolution of xi(t). We
assume that the random variables (w ,.(t) 1 i =
1 9 I.. , N; t = 0, I ,-s.9 T} are indepen and with
prescr2w.l distributions. (Ttis ence as-

140

sumption is more or less necessary in practical
implementations in which the random variables
are drawn using random number generators. Even
if a natural description of the system violates such
an independence assumption, the dynamical equa-
tions are usually reformulated and the random
variables redefined so as to enforce the indepen-
dence assumption.) We assume that initial condi-
tions x,(O) are provided for each subsystem and
that they are deterministic (as opposed to random).

We continue with the description of the com-
puting system. We assume that there are N
processors P, 9 . . . 9 PN, each one being responsible
for the simulation of a corresponding subsystem.
Each processor Pi maintains a local clock (often
called local virtual time, or LVT for short); its
value will be denoted by 7i. Each processor simu-
lates its own subsystem as fast as it can and th2
value of 7,. indicates that the values of Xi(O),
x,(l)9 l l l 9 xi(q) have been simulated and have not
been invalidated. A typical simulation step is as
follows. Assume that ~~ = t. Processor Pi draws a
value of the random variable Wi(t + 1) (using a
random number generator) according to the pre-
scribed distribution. It then computes xi(t + 1)
and zij(t + l), using eqs. (1) and (2), transmits the
value of Zij(t + 1) to all processors pj for which
zij(t + 1) # q, and increments Ti to t + I.. Notice
that (1) requires knowledge of the intere&ons
Zji(t) emanating from the other subsystems.
Processor Pj looks into a record of rece;, :d mes-
sages for the values of the Zji(t))S, For any j for
which no such message is found, the null value v
is assumed.

Suppose now that processor Pi receives a mes-
sage with a value of tij(f), where t < ri. This

message invalidates the simulatd values of xi(t +

1)9...9 Xi(T)9 which !IW~ to be simulated anew.
Accordingly, processor Pi assig 1s the value t to its
LVT. Furthermore, processor Pi sends antimes-
sages to cancel any transmitted messages that
were based on the invalidated values. The behav-
ior of any processor that receives an antimessage
canceilizrg an earlier received message is similar:
that is, all, computatioiis that depend on the value
of the cancelled message are invalidated and any
message that was based on the invalidated compu-
tations is cancelled by further antimessages.

Volume 31, Number 3 INFORMATION PROCESSING LETTERS: 8 May 1985,

3. ssibility for incorrect res

As discussed in the previous section, rollbacks
may force a processor to compute a value of Xi(t)
several times, for the same value of t. Let us
assume that each computation of xi(t) makes use
of a different, independently drawn, sample of the
random variable wi(t). We indicate a mechanism
that can lead to an incorrect simulation.

Let us consider an asynchronous simulation for
which we can be certain that a fixed processor Pi
will roll back at most once and, consequently5 the
value of a random variable wi(t) will be sampled
once or twice, depending on whether a rollback
occurs or not. Let us assume that the prescribed
distribution for Wi(t) is such that we have wi(t)

E (0, I), with the two values being equally likely.
Let w be the value a: the first drawing sf wi(t)
and let w’ be the value at the second drawing, if a
rollback occurs. Let x be the indicator function of
the event that a rollback occurs. (That is, x = 1 if
a rollback occurs, and x = 0 otherwise.) Since w
and w ’ are generated according to the prescribed
distribution, we have

Pr(w=O)=&

Pr(w’=QlX=l, w=j)=$, VjE (0,l).

The value u finally used in the simulation of w i (t)
is equal to w if x=0, and equal to w’ if x=1.
Our simulation will be correct, meaning that the
finally accepted value u of the random variable
wi(t) has the prescribed distribution if and only if
Pr(u = 0) = Pr(u = 1) = i. We have

Pr(u=l)=Pr(w=l, x=O)+Pr(w’=l, x=1)

= Pr(w = 1) l iPr(x = 0 1 w = 1)

+Pr(w’=l]x=l)~Pr(x=f)

= l(Pr(x = 0 1 w = 1) + Pr(x = 1))

= 4(1- pr(x = 11 w = 1) + Pr(x = 1)).

We therePore see that Pr(u = 1) is equal to the
desired value of 4 if and only if Pr(x = 1 I w = 1)
= Pr(x = l), or equivalently, if and only if the
value w obtained at the first drawing does n6;t
affect the probability of having a rollback. One
may envisage, however, complex sequences of

events whereby the value w of wi(t) at the fbst

drawing determines whether certain messages wfi
be sent by processor Pi, thus affecting the traffic

conditions & the interconnection network of the
computing system, and directly influencing the
probability that a rollback necessitates the regen-
eration of Wi(t). We provide below a detailed
example which establishes our claim that the simu-
&ion has not correctness guarantees. Further-
more, our example shows that the above described
pathological behavior can occur even if it is as-
sumed that messages and antimessages travelhng
from the same origin to the same destination are
received in the order that they are sent.

Example. Wc consider a physical system con-
sisting of three subsystems and which is to be
simulated over the time interval (0, 1, 2, 3). To
avoid a cumbersome presentation, we do not pro-
vide explicit formulae for the functions h and gij
but we only describe their properties. It is left to
the reader to verify that these functions can be
easily chosen to have the properties that follow:

(i) Th.e function g,, is such that 2i2(0) # IT.
(ii) The function fi is such that x2(1) is equal

to 0 if ~~~(0) - r, and x2(1) = 1 if ~~~(0) # ?T.
(iii) The function g,, is such that z,,(l) = vr if

and only if ~~(1) = 1. As a consequence, we see
that the interaction ~23(l) is nonnull if and only if
the interaction zi2(0) is null.

(iv) There is a random variable ~~(2) that takes
the values 0 and 1 with equal probabilities, and
that determines whether the interaction 232(Z) is
null or not. In particular, z32(2) = v if and only if
~~(2) = 0 or Z23(l) Z T.

We assume that the above-mentioned interac-
tions are the only ones that can have nonnull
values. The structure of these interactions is il-
lustrated in Fig. 1.

In a correct simulation, we have ~~~(0) f V,
x2(1) = 1, ~~~(1) = m, the random variable ~~(2)
is drawn, and its value determines whether z&2)
is null or not. In an asynchronous simulation there
is a possibility of a rollback at processor f’3 that
can lead to a redrawing of the random variable
~~(2). Let us consider the asynchronous simula-
tion under two scenarios, corresponding to differ-
ent outcomes in the first drawing of ~~(2).

141

Volume 31, Number 3 INFORMATION PROCESSING LETl’ERS 8 May 1989

0

0
D

1 2 s

Physico I time

F;g. 1. The physical system being simulated. The interaction
~~(1) is null if and only if ~~~(0) is nonnull. The interaction

~~~(2) is nonnull if and only if ~~(2) = 1 and z,,(l) is null. 

In the first scenario, shown in Fig 2, processor 
P3 draws the value w,(2) = 0. Accordingly, ~~(2) 
= w and no message is sent from -p2 to P3. Fur- 
thermore, a message a is sent from PI to P2 with 
the value of ~~~(0). This message reaches .P2 just 
before the variables ~~(1) and ~~(1) are simu- 
lated by P2. Therefore, +(l) is simuiated based 
on correct information, the value z@) = 7r is 
obtained, and no message with the value of z&l) 
is sent. 

In the second scenario, shown in Fig. 3, 
processor P3 draws the value w,(2) = 1. Accord- 
ingly, t&2) # q and a message p is sent from p3 
to P2. As in the previous scenario, a message cy is 
also sent from PI to Pz with the value of z&O). 
Suppose that the message /3 reaches processor Fz 
just before message cy. As both of these messages 
have to get into an “input queue” or “input 

buffer” for processor P2, it is reasonable to as- 

sume that the reception of B can delay the recep- 

Red t&e 
Fig. 2. The progress of th2 simulation, in real time, if the 

random sample of w,(2) has the value 0. 

y3(2)= f ,w,(rJ) 

Real 
Fig. 3. The progress of the simulation, in real time, if the first 

random sample of w J( 2) has the value 1. 

tion of (x. This causes the message (Y to be received 
after the variables x2(1) and ~~~(1) are simulated. 
Thus, an incorrect nonnull value for zzj( 1) is 
obtained. A corresponding message y is sent from 
Pz to P3. When the message y is received by P3, a 
rollback occurs and an antimessa.ge /3’ is sent to 
cancel the message p. In the meantime, message ar 
reaches P2, a rollback occurs at Pz, the value of 
z,,(l) is simulated correctly, and an antimessage 
y’ is sent to cancel the message y. Upon reception 
of y’, processor P3 suffers one more rollback and 
draws the value of ~~(2) once more (and for the 
last time). 

It is seen that the final value of ~~(2) is equal 
to 1 if and only if the value 1 is obtained at the 
first drawing and also in the last drawing. We are 
therefore simulating the system as if Pr( w3(2) = 1) 
= $, which is incorrect. The root of the problem is 
that the value of w,(2) at the first drawing affects 
the probability that a rollback occurs and indi- 
rectly affects the probability that this random 
variable is redrawn. In this example, we have used 
an assumption that when there are more than one 
messages travelling towards the same destination, 
each one of these messages has the potential of 
delaying the reception of the others, which seems 
to be realistic from a practical point of view. 

We have seen that if random variables are 
regenerated each time a rollback occurs, the simu- 
lation can generate statistics different than the 

142 



Volume 31, Number 3 INFORMATION PXOCESSING LETTERS 8 May 1989 

desired ones. We note that our arguments pertain 
to other contexts in which rollback and randomi- 
zation are present. For example, rollback can be 
employed as a general purpose “synchronizer”, 
that is, as a protocol for executing synchronous 
algorithms in an inherently asynchronous comput- 
ing system [ 1,2]. In fact, eqs. (1) and (2) can be 
viewed as a general description of a synchronous 
algorithm, and the simulation of (1) and (2) via 
the rollback method can be viewed as a “‘synchro- 
nizer”. If the synchronous algorithm involves 
randomization, the arguments of Section 3 apply 
verbatim. 

What can be done to ensure the generation of 
the correct statistics? It is seems that the only 
alternative is to avoid redrawing new values w i( t) 
after each rollback. This implies that each 
processor must store in its memory the value of 
each wi(t), just in case a rollback is to occur later. 
We argue informally that such a strategy will lead 
to sample paths with the correct statistics. Indeed, 
if the value of each w,(t) is fixed at the value 
obtained at the first and only drawing of that 
random variable, the situation is mathematically 
equivalent to having drawn values for all of the 
random variables Wi( t) before the simulation starts 
and then reading these values from the memory 
whenever they are needed. If the values of the 
variables wi( t) are drawn before the simulation 
starts, we are essentially dealing with the case of a 
deterministic simulation which employs some ex- 
ogenous variables wi( t ). Given that the rollback 
algorithm is correct for the simulation of de- 
terministic system, the trajectory being simulated 
will obey (1) and (2), with the values of wi(t) 
having been sampled according to the desired 
st.atistics, which is our objective. 

Unfortunately, the approach described above 
has certain drawbacks because of a potentially 
large increase in the memory requirements of the 
algorithm. Some partial remedies are the follow- 
ing: 

(a) While the asynchronous simulation is being 
carried out, one can sometimes guarantee that 
none of the WT’s will ever drop below a certain 
value T. (This can be verified in a distributed 
manner by using the snapshot algorithm of [4]; see 
[5,9] for further discussion of this point.) In such a 

case the processors are allowed to delete from 
their memory the values of w,(t), t -C T, since they 

will never be required in the future. 
(b) Instead of storing the value oi w,(t), a 

processor could store the seed si(t) that was fed to 
a random number generator in order to generate 
wj(t). If the value of w#) is needed again (due to 
a rollback) then a processor only needs to use the 
same seed si( t ). If si( t ) is a simple function of t, 
then processor Pi does not need to store the value 
of Si( t ) but can compute it on demand. 

We now comment on the simulatiox of con- 
tinuous-time discrete-event systems, whxh is the 
one that is of most interest in practice [7]. Since 
discrete-time systems can be viewed as special 
cases of continuous-time systems, the problems 
identified in Section 3 persist. On the other hand, 
the physical times at which events are to occur are 
not known in advance and the remedy we de- 
scribed earlier is not applicable. We have, how- 
ever, the following option. Suppose that the dy- 
namics of the physical system have been for- 
mulated so that the statistics of the random vari- 
able wi ( t ) corresponding to the k- th event at 
subsystem Yi has a prescribed distribution de- 
pending only on i and k. We can then generate 
random variables w:, wf,. . . ,and the value wf 
will be the one to be used for the simulation of the 
k th event at subsystem Yi, no matter how many 
times the k th event has to be simulated (due to 
rollbacks) and even if different simulations of the 
kth event correspond to different physical times. 

A closing remark, if (1) and (2) have a special 
structure, or if something more is known about 
the way that the asynchronous simulation is im- 
plemented, it is conceivable that the simulation is 
guaranteed to produce sample paths with the cor- 
rect slatistics even if no precautions are taken. 
This is issue is currently under study. 

eferences 

B. Awerbuch, Complexity of network synchronization, J. 
ACM 32 (1985) 804-823. 
B. Awerbuch and M. Sipser, Dynamic networks are as fast 
as static networks, Wprint, 1988. 

143 



Volume 31, Number 3 INFORMATION PROCESSING LETTERS 8 May 1989 

PI 

PI 

153 

161 

D.P. Bertsekas rend J.N. Tsitsiklis, Parallel and Distributed 
Computation: Numerical Methods (Prentice-Hall, En- 
glewood Cliffs, NJ, 1989). 

y and L. Lamport, Distributed snapshots: 
obal states of distributed systems, ACA4 
systems 3 (1985) 63-75. 

rspectives on distributed network protocols: 
a case for building blocks, In: Proc. MEXV’I36, 
Monterey, California, 1986. 

[91 

D. Jefferson, Virtual time, ACM Trans. Programming km- 
guages and Systems 7 (1985) 404-425. 

J. Misra, Distributed discrete-event simulation, Cornput, 
Surveys 18 (1985) 39-65. 
V. Madisetti, 9. Walrand and D. Messerschmidt, Wolf: a 
rollback algorithm for optimistic distributed simulation 
systems, In: Proc. Winter Sizxdation Co@, San Diego, CA, 
1988. 
B. Samadi, Distributed Simulation: Algorithms and Perfor- 
mance Analysis, Ph.D. Thesis, Computer Science Dept., 
Univ. of California at Los Angeles, 1985. 

144 


