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Distributed Asynchronous Deterministic and 
Stochastic Gradient Optimization Algorithms 

Abstract-We present a model  for  asynchronous distributed computa- 
tion and then proceed to analyze the convergence of natural asynchron- 
ous distributed versions of a large class of deterministic and stochastic 
gradient-like algorithms. We show that such algorithms retain the 
desirable convergence properties of their centralized counterparts, pro- 
vided that the time between consecutive interprocessor communications 
and the communication  delays are not too large. 

I. INTRODUCTION 

ANY deterministic and stochastic iterative algorithms admit 
a natural distributed implementation [l], [3]-[5], [7] 

whereby several processors perform computations and exchange 
messages with  the end-goal of minimizing a certain cost function. 
If  all processors communicate to each other their partial results at 
each instance of time and perform computations synchronously, 
the distributed algorithm is mathematically equivalent to a single 
processor (serial) algorithm and its convergence may be studied 
by conventional means. Synchronous algorithms may have, 
however, certain drawbacks, which have been discussed in [9]. 

In this paper we study asynchronous distributed iterative 
optimization algorithms in which each processor does not  need to 
communicate to each other processor at each time instance; also, 
processors may keep performing computations without having to 
wait  until  they receive the messages that have been transmitted to 
them; processors are allowed to remain idle some of the time; 
finally, some processors may perform computations faster than 
others. Such algorithms can alleviate communication overloads 
and they are not excessively slowed down by neither communica- 
tion delays, nor by differences in  the  time it takes processors to 
perform one computation. 

In Section I1 we present the model of distributed Computation to 
be employed. In this model, there is a number of processors who 
perform certain computations and update some of the components 
of a vector stored in their memory. In the meanwhile, they 
exchange messages, thus informing each other about the results of 
their latest computations. Processors who receive messages use 
them either to update directly some of the components of the 
vector in their memory, or they may combine the message with 
the outcome of their own computations, by forming a convex 
combjnation. Weak assumptions are made about the relative 
timing and frequency of computations or message transmissions 
by the processors. 

In Section I11 we employ this model  of computation and also 
assume that the (possibly random) updates of each processor are 
gradient-like; that is, they are expected to be in a descent 
direction. when conditioned on the  past history of the algorithm. 

paper is based  on a prior submission of  February 18, 1984. Paper 
Manuscript  received December  19.  1984; revised  October 25, 1985. This 

recommended by Past  Associate Editor, J. Walrand. This work  was  supported 
by the  Office of Naval  Research  under Grants NOOO14-77-C-0532 and 
N00014-84-K-0519  (NR 649403) and by the National  Science  Foundation 
under  Grant  ECS-82  17668. 

Department of Electrical  Engineering  and Computer Science, Massachusetts 
The authors are with  the  Laboratory for Information  and  Decision  Systems, 

Institute of Technology, Cambridge, MA 02139. 
IEEE Log Number 8609873. 

Our main results show that, under certain assumptions, asyn- 
chronous distributed algorithms have similar convergence proper- 
ties as their centralized counterparts, provided that the time 
between consecutive communications between processors plus 
communication delays are not too large. We distinguish two 
cases: a) constant step-size algorithms (e.g., deterministic gradi- 
ent-type algorithms) in which the time between consecutive 
communications has to be  bounded for convergence to be 
guaranteed and; b) decreasing step-size algorithms (e.g., stochas- 
tic approximation-type algorithms) for which convergence is 
proved even if the time between consecutive communications 
increases without bound as the algorithm proceeds. Sections II 
and III are developed in parallel with a variety of examples which 
are used to motivate and explain the formal assumptions that are 
being introduced. 

Finally, Section IV suggests some extensions and possible 
applications. The Appendix contains the proofs of our main 
results. 

11. A MODEL OF DISTRIBUTED COMPUTATION 

We present here the model  of distributed computation em- 
ployed in this paper. We also define the notation  and conventions 
to be followed. Related models of distributed computation have 
been  used in [3]-[5], [7], in  which each processor specialized in 
updating a different component of some vector. The model 
developed here is more general, in  that it allows different 
processors to update the same component of some vector. If their 
individual updates are different, their disagreement is (asymptoti- 
cally) eliminated through a process of communicating and 
combining their individual updates. In such a case, we will  say 
that there is overlap between processors. Another minor differ- 
ence is that [3] and [7] assumed a shared memory model, whereas 
we assume that each processor has its own local memory. 

Let H I ,  H2, . . . , HL be finite-dimensional real vector spaces I 

and let H = H I  X Hz X . . . X H L ,  which we endow with the 
Euclidean norm. If x = ( X I ,  x2, * * * , xL),  x/ E H I ,  we will refer 
to x/ as the lth component of x. 

L e t  { 1, * * e ,  M )  be the set of processors that participate in the 
distributed computation. As a general rule concerning notation, 
we  use subscripts to indicate a component of an element of H ,  
superscripts to indicate an associated processor; we indicate time 
by an argument that follows. 

The algorithms to be considered evolve in discrete time. Even if 
a distributed algorithm is asynchronous and communication 
delays are real (i.e., not integer) variables, the events of interest 
(an update by some processor, transmission or reception of a 
message) may  be indexed by a discrete variable; so, the restriction 
to discrete time entails no loss of generality. 

It  is important here to draw a distinction between “global” and 
“local” time. The time variable we have just referred to 
corresponds to a global clock. Such a global clock is needed only 

modifications  whatsoever are needed  in  the  assumptions or the  proofs except 
I All of our results generalize to the  case  where H, is a Banach space. No 

that  matrices  should be now  called  linear operators and  that  expressions  like 

H.  
VJ(x) should  be  interpreted  as  elements oi  the  dual of H rather than  vectors  in 
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for analysis purposes. On the other hand,  the processors may be 
working without having access to a global clock. They may have 
access to a local clock or to no clock at  all. 

We assume that each processor has a buffer in its memory in 
which  it  keeps some element of H. The value stored by the ith 
processor at time n (global) is denoted by x'(n). At time n, each 
processor may receive some exogenous measurements and/or 
perform some computations. This allows it to compute a "step" 
s'(n) E H ,  to be used in evaluating the new vector xi(n + 1). 
Besides their own measurements and computations, processors 
may also receive messages from other processors, which  will be 
taken into account in evaluating their next vector. The process of 
communications is assumed to be as follows. 

At any  time n, processor i may transmit some (possibly all)  of 
the components of x'(n) to some (possibly all or none) of the other 
processors. (In a physical implementation, messages do not  need 
to go directly from their origin to their destination; they may go 
through some intermediate nodes. Of course, this does not change 
the mathematical model presented here.)  We assume that com- 
munication delays are bounded. For convenience, we also assume 
that for any pair (i, j ) of processors, for any component x, and any 
time n, processor i may receive at most one message originating 
from processorj and containing an element of HI. This leads to no 
significant loss of generality: for example, a processor that 
receives two messages simultaneously could keep only the one 
which was most recently sent; if messages do not carry time- 
stamps, there could be some other arbitration mechanism. Physi- 
cally, of course, simultaneous receptions are impossible; so, a 
processor may always identify and keep the most recently 
received message, even if all messages arrived at the same 
discrete time n. 

If a message from processor j ,  containing an element of H,,  is 
received by processor i (i f j )  at time n, let ty(n) denote the time 
that this message was sent. Therefore, the content of such a 
message is precisely x:(ty(n)). Naturally, we assume that tY(n) 5 
n. For notational convemence, we also let t;'(n) = n, for all i, I, 
n. We will be assuming that the algorithm starts at  time 1; 
accordingly, we assume that tY(n) z 1. Finally, we denote by TY 
the set of all times that processor i receives a message from 
processorj, containing an element of H I .  To simplify matters we 
will assume that, for any i, j ,  I, the set TY is either empty or 
infinite. 

Once processor i has received the messages arriving at time n 
and has also evaluated si@), it evaluates its new vector x'(n + 1) 
E H by forming (componentwise) a convex combination of its 
old vector and the values in the messages it has  just received, as 
follows: 

M 

x$n + 1) = ay(n)xj(tf(n)) + Ti(n)s$n), n 2 1 (2.1) 
j =  1 

where sf(n) is  the  Ith component of si(n) and the coefficients 
a?@) are scalars satisfying 

i) aj i (n) rO v i ,  j ,  [, n, (2.2) 

M 
ii) x ay(n)= I ,  v i, I ,  n, (2.3) 

j = 1  

iii) ay(n)=O, V n Ty, i#j. (2.4) 

Remarks: 
1) Note that ty(n) has been defined only for those times n that 

processor i receives a message of a particular type, i.e., for n E 
TY. However, whenever ty(n) is undefined, we have assumed 
above that = 0, so that (2.1) has an unambiguous meaning. 

2) When we refer to a processor performing a "computa- 
tion,'' we  mean  the evaluation and addition of the term yi(n)sXn) 

in (2.1). With this terminology, forming the convex combination 
in (2.1) is not called a computation. We denote by Ti the set of all 
times that processor i performs a computation involving the Ith 
component. Whenever n 6 Ti, it is understood that s;(n) in (2.1) 
equals zero. We assume again that for any i, I the set T; is either 
infinite or empty. Accordingly, processor i will be called 
computing, or noncomputing, for Component 1. 

3) The quantities y'(n) in (2.1)  are nonnegative scalar step- 
sizes. These step sizes may be constant (e.g., y'(n) = yo, vn), or 
time-varying, e.g., -&I) = l/fL, where t: is the number of times 
that processor i has performed a computatlon up to time n. Notice 
that with the latter choice each processor may evaluate its step size 
using only a local counter rather than a global clock. 

Examples 

We now introduce a collection of simple examples representing 
various classes of algorithms we are interested in, so as to 
illustrate the nature of the assumptions to be introduced later. 
Throughout, we assume that communication delays are bounded. 
We actually start with a broad classification and then proced to 
more special cases. In these examples, we  model the message 
receptions and transmissions [Le., the sets TY and the variables 
tY(n)], the times at which computations are performed (i.e., the 
sets T;) and the combining coefficients a?@) as deterministic. 
(This does not mean, however, that  they have to be a priori 
known by the processors.) 

Specialization: This is the case considered in [4]: [SI where 
each processor updates a particular component of the x-vector 
specifically assigned to it and relies on messages from the other 
processors for the remaining components. Formally 

i) M = L .  (There are as many processors as  there  are 
components.) 

ii) s$n) = 0, VI # i, V n .  (A processor may update only its own 
component; Ti = 4 ,  vi # 1.) 

iii) Processorj only sends messages containing elements of Hi; 
if processor i receives such a message, it uses it to update x; by 
setting x; equal to the value received. Equivalently, 

a) If i # j and j # I, then TY = 4 and a$n) = 0, Vn. 
b)  If processor i receives a message from processor j at time n, 

i.e., if n E I";, then = 1. Otherwise, ay(n) = 0, anday@) 
= 1. 

Overlap; Here L = 1 (we do not distinguish components of 
elements of H ) ,  messages contain elements of H (not just 
components) and each processor may update any component of x. 
(For this case subscripts are redundant and will be omitted.) 

We now assume that J H  + [0, 03) is a continuously 
differentiable nonnegative cost function with a Lipschitz continu- 
ous derivative. 

ExampIe I-Deterministic Gradient Algorithm;  Specializa- 
tion: Let y'(n) = yo > 0, Vn, i. At each time n E Tj that 
processor i updates x$ it computes sj(n) = - aJ/ax,{x'(n)) and 
lets s$n) = 0, for J # i. We assume that each processor i 
communicates its components xj to every other processor at least 
once every B, time units, for some constant B1.  Other than this 
restriction, we allow the transmission and reception times to be 
arbitrary. (A related stochastic algorithm could be obtained by 
letting si(,) = - aJ/dx,(x'(n))(l + wj(n)), where wj(n) is unit 
variance white noise, independent for different i ' s . )  

Example 11-Newton's Method; Overlap: For simplicity we 
assume that there are only two processors (M = 2). Let yi(n) = 
yo > 0, vn. We also assume that J is twice continuously 
differentiable, strictly convex and its Hessian matrix, denoted by 
G(x), satisfies 0 < &I 5 G(x) 5 &I, b'x E H. At each time n E 
Ti, processor i computes s'(n) = - G-I(xi(n))dJ/dx(x'(n)). For 
n B Ti,  si@) = 0. If at time n processor 1 (respectively, 2) 
receives a message x2(t'2(n)) [respectively, x1(t2'(n))], it  updates 
itsvectorbyxI(n + 1) = allxl(n) + alzx2(tI2(n)) + y'(n)sl(n), 
[respectively, x2(n + 1) = a21xL(t2L(n)) + aux2(n) + 
y2(n)s2(n)]. Here we assume that 0 < aij < 1 and that all + a12 
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= + aZ2 = 1. For other times n the same formula is used  with 
alz  = 0 (azl = 0). We make the same assumptions on 
transmission and reception times as in Example 1. 

Example 111-Distributed Stochastic Approximation; Spe- 
cialization: Let  y'(n) be such that, for some positive constants 
A I ,   A ? ,   A l / n  I $(n) I A2/n,  V n .  Notice that the implementa- 
tion of such a step size only requires a local clock that rum in the 
same time scale (i.e., within a constant factor) as the global clock. 
For n E Ti, let sj(n) = - aJ//axi(x'(n)) + wj(n). Also, s$n) = 
0, for i # j and for all n. We assume that wj(n), conditioned on 
the past history of the algorithm has zero mean and that 
E[ ( 1  wj(n) 11 * Ix'(n)] I K( 11 VJ(x'(n)) 11 * + l),  for some constant K .  
We assume that for some B1 2 0, /3 2, 1 and for all n, each 
processor communicates its component x: to every other proces- 
sor at least once during the time interval [B,nB,  Bl(n + 1)q. 
Other than the above restriction, we allow transmission and 
reception times to be arbitrary. Notice that the above assumptions 
allow the time between consecutive communications to grow 
without bound. 

Example IV-Distributed Stochastic Approximation: Over- 
lap: Let $(n) be as in Example III and let M = 2. For n € Ti,  let 
s'(n) = -aJ//ax(xi(n)) + w'(n), where w'(n) is as in Example 
III. We make the same assumptions on transmission and reception 
times as in Example III. Whenever a message is received, a 
processor combines its vector with the content of that message 
using the combining rules of Example 11. 

Example  V: This example is rather academic but  will serve to 
illustrate some of the ideas to be introduced later. Consider the 
case of overlap, assume that H is one-dimensional, and let y'(n) 
= 1, Vn. Assume that, at each time n, either all processors 
communicate to each other, or no processor sends any message. 
Let the communication delays be zero (so, tiJ(n) = n, whenever 
t'j(n) is defined) and assume that &(n) = a'' (constant) at those 
times n that messages are exchanged. We define vectors x(n) = 
(x'(n), * ,  xAW(n)) and s(n) = (s'(n), e ,  sM(n)). Then, the 
algorithm (2.1) may be written as 

x ( n + l ) = A ( n ) x ( n ) + s ( n ) .  (2.5) 

For each time n, either A(n) = I (no communications) or A(n) = 
A ,  the matrix consisting of the coefficients a''. The latter is a 
"stochastic" matrix: it has nonnegative entries and each TOW 
sums to 1. We assume that each a'j is positive. It follows that A = 
limn+- A" exists and has identical rows with positive elements. 
We assume that the time between consecutive communications is 
bounded  but otherwise arbitrary. Clearly then, limn+- II;= 
A(m) = A ,  for all k .  It  is interesting to compare (2.5) with the 
generic equation 

x(n + 1) = x ( n )  +s(n)  

which arises in centralized algorithms. 
All of our examples refer to either specialization or overlap. 

However, we may also conceive of situations in which some of the 
components are updated  by a single processor, while some others 
are updated  by  many processors simultaneously (partial overlap). 

Assumptions on the Communications and the Combining 
Coefficients 

We now consider a set of assumptions on the nature of the 
communication and combining process, so that the preceding 
examples appear as special cases. 

For each component I E { 1, . * -, L } we introduce a directed 
graph G1 = ( V ,  E,) with nodes V = { 1,  e ,  M )  corresponding 
to  the set of processors. An edge ( j ,  i ) belongs to  E/ if and only if 
Ty is infinite, that is, if and only if processor j sends (in the long 
run) an infinite number of messages to processor i with a value of 
the Ith component xj. 

Assumption 2. I :  For each component I E { 1 ,  * a ,  L }, the 
following hold. 

a) There is at least one computing processor for component 1. 
b) There is a directed path in GI, from every computing 

processor (for component I ) to every other processor (computing 
or not). 

c) There is some a > 0 such that: 
i)  If processor i receives a message from processorj at time n 

ii) For every computing processor i ,  ay(n) 2 a,  Vn. 
iii) If processor i is noncomputing and has in-degree2 (in GI) 

larger than or equal to 2, then a:(n) 2 a, vn. 
Parts b) and c) of Assumption 2.1 guarantee that any update by 

any computing processor has a lasting effect on the states of 
computation of all other processors. Next, we introduce two 
alternative assumptions on the frequency of communications. 

Assumption 2.2: The time between consecutive transmissions 
of component xj from processor j to processor i is bounded by 
some BI 2 0, for all ( j ,  i )  E E/. 

Assumption 2.3: There are constants B1 > 0, p 2 1 such that, 
for any ( j ,  i )  E E/,  and for any n ,  at least one message xj is sent 
from processor j to processor i during the time interval [BlnB, 
Bl(n + 1)5]. Moreover, the total number of messages transmitted 
and/or received during any such interval is bounded. 

Note that Assumption 2.2 is a special case of 2.3, with /3 = 1 .  
Assumption 2.4: Communication delays are bounded by some 

Bo 2 0, i.e., for all i ,  j ,  I and n E Ty we have n - ty(n) I BO. 
Assumptions 2.1 and 2.4 hold for all the examples introduced 

above. Assumption 2.2 holds for Examples I, 11, and V; 
Assumption 2.3 holds for Examples I11 and IV, except for its last 
part which has to be explicitly introduced. 

Equation (2.1) which defines the structure of the algorithm is a 
linear system driven by the steps sj(n). In the special case where 
communication delays are zero, we have t;'(n) = n, and (2.1) 
becomes a linear system with state vector (xl(n),  . e ,  xM(n)). 
Equation (2.5) of Example V best illustrates this situation. In 
general, however, the presence of communication delays necessi- 
tates an augmented state if a state space representation is desired. 
Exploiting linearity, we conclude that there exist scalars @y(nIk), 
for n 2 k,  such that 

(i.e., if n E TY), then ay(n) 2 a. 

M " - 1  M 

(2.6) 

The coefficients @y (nlk) are determined by the sequence of 
transmission and reception times and the combining Coefficients. 
Consequently, they are unknown, in general. Nevertheless, they 
have the following qualitative properties. 

Lemma 2.1: 

i) O s @ y ( n l k ) ,  v i, j ,  I, n r k ,  (2.7) 

M 

@ Y ( n I k ) s l ,  v i ,  I ,  nrk. (2.8) 
j =  I 

ii) Under Assumptions 2.1 and 2.4 and either Assumption 2.2 
or 2.3,  limn+- @Y(nIk) exists,  for any i ,  j ,  k ,  1. The limit is 
independent of i and will be denoted by 9j(k).  Moreover, there is 
a constant 7 > 0 such that, if j is a computing processor for 
component I, then 

@{(k)?q ,  V k.  (2.9) 

pointing to node i. 
The indegree of a  processor  (node) i (in G/)  is the number of edges in E/ 

transmitted  but  not  yet received.  Since we are  assuming  bounded  communica- 
Such an augmented  state should incorporate all messages that have  been 

tion  delays, there  can  only be a  bounded  number of such  messages and the 
augmented  system may be  chosen finite dimensional. 
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The constant q ,  depends only on the constants introduced in our 
assumptions (i.e., Bo, B I ,  0, a). 

iii) Under Assumptions 2.1,  2.2, and 2.4, there exist d E [0, 
I ) ,  B 2 0 (depending only  on Bo, B 1 ,  a) such that 

max)@~(nlk)-@j(k)llBdn-k, V I ,  n r k .  (2.10) 

iv) Under Assumptions 2.1,  2.3, and 2.4, there exist d E [0, 
l), 6 E (0, 11, B 2 0 (depending only on Bo. B I ,  0, a)  such that 

max I @ ~ ( n I k ) - ~ . j ( k ) 1 1 B d n b - k 6  , v I, n z k .  (2.11) 

The proof of Lemma 2.1 is omitted and may  be found  in [IS], 
Apart from part i) [which is proved by a straightforward induction 
based on (2. l)] the main idea of the proof,  for the case of zero 
transmission delays, is the following: proving convergence of 
+(nlk) is equivalent to proving convergence of a sequence of 
products of stochastic matrices. These stochastic matrices have a 
"scrambling" property and  the desired conclusions follow from 
well-known results on  weak ergodicity of nonstationary Markov 
chains [ 151. The general case may be reduced to the zero delay 
case by a suitable "state augmentation" procedure. 

In the light of (2.6), Lemma 2.1 admits the following 
interpretation: part ii) states that  if all processors cease updating 
(that is  if  they set si@) = 0) from some time on, they  will 
asymptotically converge to a common limit. Moreover, this 
common limit depends by a nonnegligible factor on all past 
updates of all computing processors. Parts iii) and iv) quantify the 
natural relationship between the frequency of interprocessor 
communications and the speed at which agreement is reached. 

For any pair (i, j ) of processors, we define a linear transforma- 
tion 9'j(nlk):H + H by 

1.1 

1.J 

cP'i(nIk)x=(@'Y(nIk)xl, ..., @Z(nlk)xt) (2.12) 

where x = (x,, * a * ,  xL). Clearly, limn-- iPiJ(n(k) exists, is 
independent of i and will be denoted by W(k) .  

We can now define a vector y(n) E H by 
A4 n -1  M 

Y ( n ) = x  @'(o)xJ(l)+  yj(k)@j(k)s'(k) (2.13) 
j =  I k = l  j = l  

and note that y(n) is recursively generated by 
'44 

y(n + 1) =y(n)  + yJ(n)@j(n)sj(n). (2.14) 
j =  1 

The vector y(n) is the element of H at which all processors would 
asymptotically agree if they were to stop computing (but keep 
communicating and combining) at a time n. It may be viewed as a 
concise global summary of the state of computation at time n, in 
contrast to the vectors x'(n) which are the local states of 
compbtation. Another reason for introducing y(n) is  that (2.14) is 
much simpler than (2.1). The content of the vector y(n) and of the 
@(n)'s is easiest to visualize in two special cases. 

Specialization (e.g., Examples Z and IIZ): Here y(n)  taka 
each component from the processor who specializes in that 
component. That is, y(n) = (x:(n), * * a ,  x$(n)). Accordingly, 
@i.(n) = 0, for i # j ,  and @(n) = 1. 

Example V: Here cP'J(n lk) is the ijth entry of the matrix 
,,,=k+ A(m). It follows that the limit of @'l(n ( k )  is the ijth entry 

of A ,  which by our assumptions depends only on j .  Moreover, 
y(n) equals any component of Ax@). (All components are equal 
by our assumptions.) If  we  multiply  both sides of (2.5) by A and 
npte that i iA(n) = A ,  we obtain y(n + 1) = y(n) + E:, 
Aijsj(n), which is precisely (2.14). 

n n - I  

IU. CONVERGENCE RESULTS 

There is a large number of well-known centralized determinis- 
tic and stochastic optimization algorithms which have been 

analyzed using a variety of analytical tools [2], [lo],  [ll],  [14]. A 
large class of them, the so-called "pseudogradient" algorithms 
[ 141, have the distinguishing feature that  the (expected) direction 
of update (conditioned upon the past history of the algorithm) is a 
descent direction with respect to the cost function to be  mini- 
mized. The Examples of Section I1 certainly have such a property. 
Reference [14] presents a larger list  of examples. In this section 
we present convergence results for the natural distributed asyn- 
chronous versions of pseudogradient algorithms. We adopt the 
model  of computation and the corresponding notation of Section 
11. 

We allow the initialization (x1( I), . . . , x"( I )}  of the algorithm 
to be random, with finite mean and variance. We also allow the 
updates s'(n) of each processor to be random. On the other hand, 
we assume that ~ ' ( n )  is deterministic; we also model the 
combining coefficients a;'@) and the sequence of transmission 
and reception times as being deterministic. This is  not a serious 
restriction because they do not need to be known by the processors 
in advance in order to carry out the algorithm. We assume that all 
random variables of interest are defined on a probability space ( Q ,  
F,  P). We introduce 1 F,,}, an increasing sequence of  u-fields 
contained in F and describing the history of the algorithm up to 
time n. In particular, F,, is defined as the smallest u-field such that 
si(@, k 5 n - 1, andx'(l), i E ( 1, . . . , M }  are F,,-measurable. 

We assume that the objective of  the algorithm is to minimize a 
nonnegative cost function JYi --+ [0, 03). 

Assumption 3.1: J is continuously differentiable and its 
derivative satisfies the Lipschitz condition 

I I V J ( X ) - V J ( ~ ' ) ~ ~ ~ K I ~ X - ~ ' I I ,  V X, X '  E H (3.1) 

where K is some nonnegative constant. 
Assumption 3.2: The updates sj(n) of each processor satisfy 

This assumption states that each component of each processor's 
updates is  in a descent direction, when conditioned on the past 
history of the algorithm and it is satisfied by Examples I-IV. 

The next assumption is easily seen to hold for Examples I and 
II. For stochastic algorithms, it requires that the variance of the 
updates (and, hence, of any noise contained in them) goes to zero, 
as the gradient of the cost function goes to zero. 

Assumption 3.3: For some KO 2 0 and for all i, I ,  n, 

As a matter of verifying Assumption 3.3, one would typically 
check the validity  of the slightly stronger condition 

= - K&[V J(x'(n))@'(n)s'(n)] (3.3) 

where = K,/q 2 0. 
Our first convergence result states that the algorithm converges 

in a suitable sense, provided that the step sizes employed by each 
processor are small enough and that the  time  between consecutive 

' In (3.2), if H, has  dimension  larger than 1, aJ/dx, should  be  interpreted as 
a Ton' vector. In general, the  appropriate  interpretation  should be clear from 
the context. 
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communications is bounded, and applies to Examples I and 11. It 
should be noted, however, that Theorem 3.1 (as well as Theorem 
3.2 later) does not  yet prove convergence to a minimum or a 
stationary point of J. In particular, there is  nothing  in our 
assumptions that prohibits having s'(n) = 0, V i ,  n. Optimality is 
obtained later, using a few auxiliary and fairly natural assump- 
tions (see Corollary 3.1). 
Theorem3.1:LetAssumptions2.1,2.2,2.4,3.1,3.2,and3.3 

hold. Suppose also that y'(n) 2 0 and that supi,,, y'(n) = 70 < 03. 
There exists a constant y* > 0 (depending on the constants 
introduced in the Assumptions) such that the inequality 0 < yo 5 
y* implies the following. 

a) J(x'(n)), i = 1, 2, . . . , M ,  as well as J( y(n)),  converge 
almost surely, and to the same limit. 

b) limn+m (x'(n) - x'(n)) = limn-- (x'(n) - y(n)) = 0, vi, j ,  
almost surely and  in  the  mean square. 

c) The expression 
m M  

r'(n)VJ(x'(n))E[sl(n)I F n 1  (3.4) 
n = l  i = l  

is finite, almost surely. Its expectation is also finite. 
Proof: See the Appendix. 

Theorem 3.1 (as well as Theorem 3.2) is a distributed version 
of the convergence results of [ 141 and our proofs follow the same 
general pattern as in [ 141. However, much more technical 
development is  needed to obtain bounds on the effects of 
asynchronism and therefore show that asynchronism cannot 
destroy convergence. 

The main reason why such results are possible is the following. 
The difference between y(n)  and xi@), for any i ,  is  of the order of 
Ayo, where A is proportional to a bound on communication 
delays plus the time between consecutive communications be- 
tween processors. Therefore, as long as yo remains small, 
VJ(xi(n)) is approximately equal to VJ(y(n)); hence s$n) [and 
consequently ai(n)si(n)] is approximately in a descent direction, 
starting from point y(n). Therefore, iteration (2.14) is approxi- 
mately the same as a centralized descent (pseudogradient) 
algorithm which is, in general, convergent [ 141. This line of 
reasoning is actually reflected in our proofs. 

Decreasing Step-Size Algorithms 

We now introduce an alternative set of assumptions. We allow 
the magnitude of the updates si(n) to remain nonzero, even if 
VJ(xi(n)) is zero (Examples I11 and IV). Such situations are 

. common in stochastic approximation algorithms or in system 
identification applications. Since the noise is persistent, the 
algorithm can be made convergent only  by letting the step size 
y'(n) decrease to zero. The choice y'(n) = l/n is  most commonly 
used  in centralized algorithms and  in the sequel we  will assume 
that y'(n) behaves like l/n. 

Since the step size is decreasing, the algorithm becomes 
progressively slower as n --t m. This allows us to let the 
communications process become progressively slower as well, 
provided that it remains fast enough, when compared to the 
natural time scale of the algorithm, the latter being determined by 
the rate of decrease of the step size. Such a possibility  is captured 
by Assumption 2.3. 

The next assumption, intended to replace Assumption 3.3, 
allows the noise to be persistent. It holds for Examples I-IV. As in 
Assumption 3.3, inequality (3.5) could be more naturally stated in 
terms of conditional expectations, but such a stronger version 
turns out to be unnecessary. 

Assumption 3.4: For some K, ,   K2  2 0, and for all i, 1, n ,  

Theorem 3.2: Let Assurlptions 2.1,  2.3, 2.4, 3.1,  3.2, and 

3.4, hold  and assume that for some K3 2 0, y'(n) 5 K d n ,  Vn, i. 
Then, conclusions a), b), c), of Theorem 3.1 remain valid. 

Proof: See the Appendix. 
Theorem 3.2 remains valid if (3.5) is replaced by the weaker 

assumption 

E[lls'(n)ll 2] <KoE[J(x'(n))] - K~E[VJ(x'(n))a'(n)s'((n)l + K z .  

(3.6) 

The proof may be found in [18] and  is significantly more 
complicated. 

We continue with a corollary which shows that, under 
reasonable conditions, convergence to a stationary point or a 
global optimum may be guaranteed. We only  need to assume that 
away from stationary points some processor will  make a positive 
improvement in the cost function. Naturally, we  only require the 
processors to make positive improvements at times when they are 
not idle. 

Corollary 3. I :  Suppose that for some K4 > 0, y'(n) 2 K4/n ,  
vn, i .  Assume that J has compact level sets and that there exist 
continuous functions gf:H -+ [0, m) such that 

aJ  . 
- (x ' (n ) )E[ .~ f (n ) lF , ]~   -g f (x i (n ) ) ,  V n E TI. (3.7) 
ax/ 

We define g:H --* [0, m) by g(x) = C i Z l  g f ( x )  and we 
assume that any point x E H satisfying g(x) = 0 is a stationary 
point  of J. Finally, suppose that the difference between consecu- 
tive elements of T f  is bounded, for any i ,  1 such that Tf # 9. 
Then, 

A4 L 

a) Under the Assumptions of either Theorem 3.1 or 3.2, 

liminf IIVJ(x'(n))ll=O, v i, a s .  (3.8) 

b) Under the Assumptions of Theorem 3.1 and if (for some E > 
n-m 

0) yi(n) 1. E ,  v i ,  n, we have 

lim IIVJ(x'(n))ll=O, v i, a.s. (3.9) 
n-m 

and  any limit point  of {x'(n) 1 is a stationary point  of J. 
c) Under the Assumptions of either Theorem 3.1 or 3.2 and if 

every point satisfying g(x) = 0 is a minimizing point of J (this is 
implicitly assuming that all stationary points of J are minima), 
then 

lim J(x'(n)) = inf J(x) .  
n-m x€ H 

Proof: See the Appendix. 
We  now discuss the above corollary and apply it to our 

examples. Our assumption on T; states that, for each component I, 
the time betwecn successive computations of sf is bounded, for 
any computing processor i for that component. Such a condition 
will  be always met in practice. The assumption yi(n) 2 K4/n  may 
be enforced without the processor having access to a global clock. 
For example, apart from the trivial case of constant step size, we 
may  let y'(n) = l/r;, where t ;  is the number of times, before 
time n, that processor i has performed a computation. 

For Examples I and JJI, (3.7) holds with g'(xj a constant 
multiple of ( a J / d ~ , ) ~ ;  for Examples II and IV, it holds with g'(x) a 
constant multiple of 11 VJ(x) 11 2. We may conclude that Corollary 
3.1 applies and proves convergence for Examples I-IV. 

We close this section by pointing out that our results remain 
valid if  we model the combining coefficients, the transmission and 
reception times as random variables defined on the same 
probability space (Q, F, P), subject to certain restrictions [18]. 
Notice that such a generalization allows the processors to decide 
when and where to transmit based on information related to the 
progress of the algorithm. Finally, Assumptions 2.1-2.4 may be 
dispensed with as long as the conclusion of Lemma 2.1 may be 
somehow independently verified. 
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IV. EXTENSIONS AND APPLICATIONS 

A main direction along which our results may be extended is in 
analyzing the convergence of distributed algorithms with decreas- 
ing step size and with correlated noise, for which the pseudogra- 
dient assumption fails to hold. Such algorithms arise frequently, 
for example, in system identification. Very few global conver- 
gence results are available, even for the centralized case [ 161. 
However, as in the centralized case an ordinary differential 
equation (ODE) may be associated with such algorithms, which 
may be used to prove local convergence subject to an assumption 
that the algorithm returns infinitely often to a bounded region 
[lo], U11, V81. 

Another issue, arising in the case of constant stepsize 
algorithms, concerns the choice of a step size which will 
guarantee convergence. We may trace  the steps in the proof of 
Theorem 3.1 and find some bounds on yo so as to ensure 
convergence, but these bounds will not be particularly tight. For a 
version of a distributed deterministic gradient algorithm, tighter 
bounds have been obtained in [ 181 which quantify the notion that 
the frequency of communications between different processors 
should in some sense reflect the degree of coupling inherent in the 
optimization problem. 

Concerning possible applications, there are three broad areas 
that come to mind. There is first the area of parallel computation, 
where an asynchronous algorithm could avoid several types of 
bottlenecks [9]. Then,  there is the area of data communication 
networks in which there has been much interest for distributed 
algorithms for routing and flow control [6], [8], [ 191. An analysis 
of a gradient projection method for optimal routing has been 
carried out in 1171. Finally, certain common algorithms for 
system identification or adaptive filtering fall into the framework 
of decreasing step-size stochastic algorithms and our approach 
may be used for analyzing the convergence of their distributed 
versions [IS]. Our results may  not be applicable without any 
modifications or refinements to such diverse applications areas. 
Nevertheless, our analysis indicates what  kind of results should be 
expected to hold. 

APPENDIX 

This Appendix contains the proofs of the results of Section III. 
Remark on Notation: In the course of the proofs in this 

section, we  will use the symbol A to denote nonnegative 
constants which are independent of n, yo, yi(n), x'(n), si@), etc., 
but which may depend on the constants introduced in  the various 
assumptions (that is, M, L ,  K ,  KO, Bo, Bl ,  CY, etc.). When A 
appears in different expressions, or even in different sides of the 
same equality (or inequality), it will  not necessarily represent the 
same constant. (With this convention, an inequality of the form A 
+ 1 5 A is meaningful and has to be interpreted as saying that A 
+ 1 ,  where A is some constant, is smaller than some other 
constant, denoted again by A. )  This convention is followed so as 
to avoid the introduction of unnecessarily many symbols. 

Proof of Theorem 3.1: Without loss of generality, we will 
assume that the algorithm is initialized so that xi( 1) = 0, vi .  h the 
general case where x'(1) # 0, we may think of the algorithm as 
having started at time 0, with x'(0) = 0; then, a random update 
~'(0) sets xi(l) to a nonzero value. So, the case in which the 
processors initially disagree may be easily reduced to the case 
where they initially agree. 

Note that  we  may define fi(n) = (y'(n)/yo) si@) and view fi(n) 
as the new step with stepsize yo. It is easy to see that Assumptions 
(3.2) and (3.3) also hold for Si(n).  For these reasons, no 
generality is lost if we assume that y'(n) = yo, V n  and this is what 
we will do. 

Let us define 

and note that 
M 

Using (2.6), (2.13) and Lemma 2.1 iii), we obtain 

n- I 

From a Taylor series expansion for J we obtain 

M 
5J(y (n) )+yoVJ(y (n) )  W ( n ) s ' ( n ) + A y p ( n ) .  

i =  I 

('4.3) 

Assumption 3.2 is in terms of VJ(x'(n)), whereas above we have 
VJ( y(n)). To overcome this difficulty, we use the Lipschitz 
continuity of the derivative of J and invoke (A.2) to obtain 

M 

V J ( y ( n ) )  @(n)s'(n) - VJ(x'(n))$'(n)s'(n) 
*I ll i = l  i =  I II 

k =  I i =  I k =  1 

n-I 

5 y o A  d"-k[b2(k)+b2(n)J .  
k =  I 

Let  us define 

G ( n ) = S  G'(n),  
.M 

i= I 

and  note  that Assumption 3.2 implies that E[G(n)] 2 0. We now 
rewrite inequality (A.3) using (A.4) to replace the derivative 
term, to obtain 
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Assumption 3.3  implies that [cf. inequality (3.3)] 

E [ b 2 ( k ) ]   s A E [ G ( k ) l .  (A. 8) 

Taking expectations in (A.7) and using (A.8) we  obtain 

E [ J ( y ( n  + I ) ) ]  s E [ J ( y ( n ) ) l   - ~ o E [ G ( n ) l  
n 

+ A T ;   d ” - k E [ G ( k ) ] .  (A.9) 
k =  1 

We then sum (A.9) for different values of n, to obtain 

o ~ E [ J ( y ( n + l ) ) ] I E [ J ( y ( l ) ) ] +  1 A -- lFd Y O ]  E [ G ( k ) l .  
k = l  

(A. 10) 

We now let y* = (1 - d)/2A, where A is the constant of 
inequality (A. lo), and assume that 0 < yo 5 y*. Then, inequality 
(A. 10) implies 

and letting n tend to infinity, 

YO E [ G ( ~ ) I < o J .  
m 

(A.  12) 
k =  1 

By Assumption 3.2 ,  E[G(k) I Fk] 2 0,  vk; we  may  apply the 
monotone convergence theorem to (A. 12) and obtain 

L k = l  J k = l  

which implies 

From  (A.14) we obtain 

m 

~,~(x’(n))~[9l(n)sl(n)l F,] > - OJ, a.s.  
n = l  

Now use the fact [Lemma 2.1 ii), inequality (2.9)] that a;(!) L r]  
> 0, for any computing processor i for component 1. This implies 
that 

~ , ~ ( x ’ ( n ) ) ~ [ s ! ( n ) l ~ , l >  - 01, a s .  
m 

k =  I 

and establishes part c) of the theorem. 
Lemma A.1: Let X(n), Z(n)  be nonnegative stochastic 

processes (with finite expectation) adapted  to { Fn}  and  such  that 

E I X ( n + l ) l F n ] ~ X ( n ) + Z ( n ) ,  (A.15) 

Then X@)  converges almost surely,  as n + a. 
Proof of Lemma A.1: By the monotone convergence 

[S 809 

theorem and (A.16) it follows that 2, < 03, almost surely. 
Then, Lemma  A. 1 becomes the same as Lemma 4.C. 1 in [12, p. 
4531, which  in turn is a consequence of the supermartingale 
convergence theorem [ 131. 0 

Now let A be the constant in the right-hand side of (A.7) and let 

Z ( n ) = A y ; E  [SI dn-kb2  (A. 17) 

Then, Z(n) 2 0 and by (A. 8) 

n 

E [ Z ( n ) l s A   d n - k E I G ( k ) l .  (A. 18)  
k =  I 

Therefore, 
m n  

n = l  n = l  k = l  

. m  

(A. 19) 

where the last inequality follows from (A.12). Therefore, Z(n) 
satisfies (A.16). We take the conditional expectation of (A.7), 
given F,. Note that J( y(n)) is F,-measurable and that E[G(n) I Fn] 
z 0. Therefore Lemma A. l  applies and J(y(n)) converges 
almost surely. 

Using Assumption 3.3 once more, together with (A.12), 

L k = l  J k = l  

which implies that b(k) converges to zero, almost surely. Recall 
(A.2) to conclude that y(n)  - x‘(n) converges to zero, almost 
surely. Also, by squaring (A.2), taking expectations and using the 
fact that E[ b2(k)] converges to zero we conclude that E[ Ily(n) - 
xi(n)ll*] also converges to zero, and this proves part b) of the 
Theorem. 

Now, let us use Assumption 3.1 and a second-order expansion 
of J to obtain, for any a E R 

O I J ( X - U V J ( ~ ) ) ~ J ( ~ ) - ~ A I I I V J ( ~ ) ~ ~ ’ + ~ ~ A ~ I I V J ( ~ ) ~ ~ ~  (A.21) 

where A l ,  A2  are positive constants not depending on a. 
Assuming that a was chosen small enough, we  may use (A.21) 
and the nonnegativity of J to conclude 

IIVJ(x)l l2sAJ(x) ,  v x E H .  (A.22) 

Since J( y(n)) converges, it  is bounded; hence VJ( y(n)) is also 
bounded, by (A.22). We  then  use the fact that y(n) - x’(n) 
converges to zero, to conclude that J(x’(n)) - J(y(n)) also 
converges to zero. This proves part a) and concludes the proof of 
the theorem. 

In the following lemma we  bound certain infinite series by 
corresponding infinite integrals. This is justified as long as the 
integrand cannot change by more than a constant factor between 
any two consecutive integer points. For notational convenience, 
we use c(nlk) to denote d n d - @ .  where d and 6 are as in Lemma 
2.1 iv). 

Lemma A.2:  The following hold: 

(A.23) 

(A. 24) 
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m ,  

(A.25) 

Proof of Lemma A.2: Let t6  = y ;  then, t = Y " ~  and dt = 
(l/ti)yI'*-l  dy. Therefore, 

(A.26) 

where A does not depend on s. Equation (A.25) follows. Since 
(l/s) A/s6 is an integrable function of s, (A.23) follows as well. 

The left-hand side of (A.24) is  bounded by 

m6 
= A m  y-(l/6)-l dm6-Y dysAm-6 s,= I 

which converges to zero. The middle term in (A.24) is certainly 
smaller and converges to zero as well. 0 

Proof of Theorem 3.2: Using the same arguments as in the 
proof of Theorem 3.1, we  may assume, without loss of generality, 
that ~ ' ( 1 )  = 0 and that -$(TI) = l / n ,  Vi, n. (Otherwise, we could 
define s'(n) = n-y'(n)s'(n).) 

We still use c(nIk) to denote dn6-lP. We define again b(n), 
G'(n),  G(n) by (A. l),  (A.3,   (A.6) ,  respectively, as in the proof 
of Theorem 3.1. Also, let 

i -+ - -c(nIm),  n = k ,  
1 n - L  1 1 

n z  n m  
1 1  

m = l  

d(nlk)= --x ~ ( n l k ) ,   n > k ,  (A.27) 

0, n<k.  

By replicating the steps leading to inequality (A.7) in the proof of 
Theorem 3.1 and using Lemma 2.1 iv) and (A.27) we obtain, for 
some A 2 0, 

n 

J ( Y ( n + 1 ) ) s J ( Y ( n ) ) - ;  G ( n ) + A  4(nlk)b2(k) ,  V n. 
1 

k =  1 
(A.28) 

Taking expectations in (A.28), we have 

E [ J ( y ( n  + 1))1 I E [ J ( Y ( n ) ) l -  ; E[G(n)l  
1 

+ A  f; 4(nlk)E[b2(k)] ,  v n (A.29) 
k =  1 

and using Assumption 3.4, 

+ A  d(n(k)(E[G(k)]  + 1).  (A.30) 
k =  1 

We  then sum (A.30), for different values of n, to obtain 

The definitions (A.27) and (A.23) imply that the middle term on 
the right-hand side of (A.31) is bounded. Moreover, using (A.27), 

which converges to zero, as m -+ 03, by (A.24) and (A.25). 
Therefore, for large enough m, E;=, +(klm) - l / m  5 - 11 
2m. It follows that E[J( y(n))]  is bounded. Inequality (A.31) and 
the above also imply that C f = (1 /m)E[ G(m)l < 03 and part C) 
of the Theorem follows, as in the proof of Theorem 3.1. 

We  now define 

and note  that 

s A + A  2: i E [ G ( k ) ] < c o .  
k = l  

Taking conditional expectations in (A.28) (with respect to F,) and 
using Lemma A. 1 ,  we conclude that J( y(n)) converges, almost 
surely. 

We  now turn to the proof  of part b). Using (3.5) and (A.22), we 
have 

E[lls'(n)ll2]5E  2AVJ(x'(n)) - s'(n)) + A  [ 2 l .  1 
s4A2E[IIVJ(X'(n))l12]+4  E[lls'(n)llZ]+A 

5AE[J(x' (n) ) l  +z E[llsi(n)l121+A, 

1 

1 (A.32) 

which finally implies that 

E[lls'(n)112]sAE[J(x'(n))l+A. (A.33) 

Now, using (A.22) once more, 

J(x'(n)) - J (  Y ( n ) ) s  IlVJ( y(n)ll * IIx'(n) -y(n)ll 

+ A  IIx'(n)-y(n)l12 

'5 IlvJ(Y(n))l12+Allx'(n)-Y(n)llz 
1 

sAJ(~(n))+AI Ix ' (n)-~(n) l l~ .  (A. 3 4 )  

Inequalities (A.33),  (A.34) and  the boundedness of E[J(y(n))]  
yield 

E [ b 2 ( n ) ] 5 A   + A E [ l l ~ ' ( n ) - y ( n ) l ( ~ ] .  (A.35) 

Similarly with (A.2), we have 

llY(n)-x'(n)Il c(nlk)b(k) 
n - 1  1 

(A.36) 
P =  I 

and 

(A.37) 



TSITSIKLIS ef al.: DETERMINISTIC AND STOCHASTIC GRADIENT ALGORITHMS 81 1 

Therefore, 

EIllu(n)-x’(n)l121~P(n) rnax E[bz (k ) l ,  (A.38) 
I s k < n  

where P(n) = A n  E::; c(n l k ) /k2  converges to zero, by (A.24). 
Using (A.35), 

E[llu(n)-x’(n)l121~AP(n)(l+max ~ [ l l ~ ( k ) - x ’ ( k ) l 1 2 1 )  
k < n  

and since P(n) converges to zero, it follows that E[ Ily(n) - 
x’(n)II 2] converges to zero  as well. We also conclude from (A.35) 
that sup, E[b2(n)]  < 00. 

Let 

Dk= b(i), k r l .  (A.39) 
1 

. k 1 / * s f < ( k + l ) ’ / *  

Using the fact that there exists an A such that ( k  + 1)IIh - kl/6 
5 A k ( ’ / * ) - l ,   v k ,  we obtain from (A.39) 

(A.40) 

It follows that D :  converges to  zero, almost surely. Consequently, 
so does Dk and I dn- kDk as well. Let us fix some n, let N 
denote the largest Integer such that N 5 n* and use (A.36) to 
obtain 

(A.41) 

As n converges to infinity, so does N and, by the above 
discussion, x’(n) - y(n) converges to zero, as n -+ 00. 
Consequently, x’(n) - xj(n) also converges to zero, for any i ,  j ,  
completing the  proof  of part b). 

Finally, since J( y(n)) converges and x’(n) - y(n) converges to 
zero, part a) of the theorem follows, as in the proof of Theorem 
3.1. 

Proof of Corollary 3. I :  From part c) of either Theorem 3.1 
or 3.2 and (3.7) we obtain 

Because of our assumption on the sets Ti, it follows that if Tj # 
4, then there exists a positive integer c such that, for any i ,  f, m, 
the interval { cm + 1, cm + 2, * * , dm + 1) } contains at least 
one element of T;. Let us choose sequences of such elements 

denoted by  By (A.42), we have 

M I .  m 

a.s. (A.43) 
i = l  l = I  m = l  

Now notice that, for  some constant K5 > 0,  

K4 K4 K5 
t;,,, c(m+ 1) m 

r‘(tj,m) r - L ~ 2- , V i, I, m .  (A.44) 

Hence, (A.43) yields 

Let us assume, without any loss of generality that Tf # 4. 
From either Theorem 3.1  or 3.2 and its proof we obtain limn+- 
(xi@) - y(n)) = limn+- ( y (n  + 1) - y(n)) = 0 which implies 
that 

lim (xi( t f , , ) -y( t ; , , ) )=O,  v i, I .  (A.46) 

Since J has compact level sets and J(y(n)) converges, the 
sequence ( y ( n ) }  is bounded. We therefore need to consider the 
functions g; only on a compact set on which they are uniformly 
continuous. Therefore, 

m-m 

m-m 
lirn (gj(x’(tj,,))-gj(y(tt,,)))=O, V i, 2. (A.47) 

By combining (A.45) and (A.47) we obtain 

M I  

(A.48) 

a) By (A.48), there must be some subsequence of { t&,} along 
which g( y(t  J )  converges to zero. Let y* be a limit pomt  of the 
corresponding subsequence of { y ( t f , , ) } .  By continuity, g( y*) = 
0 and, by assumption, y* must be a stationary point of J, so 
VJ(y*)  = 0. Moreover, x’(fl m) also converges to y* along the 
same subsequence. By continuity of V J ,  (3.8) follows. 

b)  In this case, (A.43) implies 

M L  

and the rest of the proof is the same as for part a), except that we 
do not  need to restrict ourselves to a convergent subsequence. 

c) From part a) we conclude that some subsequence of 
{ y ( t f , , ) }  converges to some y* for which g( y*) = 0. Conse- 
quently, y* minimizes J.  Using the continuity of J, 

lirninf J ( y ( n ) ) ~  liminf J(y( t t , , ) ) sJ (y*)= inf J ( x ) .  
n-m n-m X E H  

On the other hand, J( y(n)) converges (part a)  of either Theorem 
3.1 or 3.2) which shows that (3.10) holds. E 
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