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Distributed Asynchronous Optimal Routing in Data 
Networks 

Abstract-In this paper we study the performance of B class of 
distributed optimal routing algorithms of the gradient projection type 
under weaker and more realistic assumptions than those considered thus 
far. In particular, we show convergence to an optimal routing without 
assuming synchronization of computation  at all nodes and measurement 
of link lengths at all links, while taking into  account the possibility of link 
flow transients caused by routing updates. This demonstrates the 
robustness of these algorithms in a realistic distributed operating 
environment. 

I. JKTRODUCTION 

T HE most popular formulation of the optimal  distributed 
routing problem in a data. network is based on a 

multicommodity flow optimization whereby a separable objective 
function of the  form 

is minimized with respect  to  the flow variables F'J subject to 
multicommodity  flow constraints [ 11-[3] ,1121. Here ( i ,  j )  denotes 
a generic  directed network link, and D'J is a  strictly convex 
differentiable?  increasing  function of F'j which represents in turn 
the  total traffic  arrival  rate on link (i, j )  measured, for example. in 
packets or bits per second. 

We want to  find a routing  that minimizes this objective. By a 
routing  we mean a  set of  active paths for each origin-destination 
(OD) pair  (set  of  paths carrying  some  traffic of  that OD pair), 
together with  the fraction of  total  traffic  of  the OD pair  routed 
along each active path. 

A  typical example of adaptive distributed  routing, patterned 
after  the  ARPANET algorithm [4], operates roughly as  follows. 

The total  link arrival  rates F'J are measured by time averaging 
over a period of time.  and  are communicated to all network nodes. 
Upon reception of these measured rates each node  updates  the part 
of the  routing dealing with  traffic originating  at that node. The 
updating  method is based on some rule, e.g., a  shortest  path 
method [2], [4]. or an  iterative optimization algorithm [ 11, [5] .  
161. 

There  are a number of variations  of this  idea: for example, 
some  relevant  function  of F'J may be measured in place of F'J 
[such as average delay per packet crossing link (i, j)]. or a 
somewhat different type of routing  policy  may  be used, but  these 
will  not concern us for the time being. The preceding algorithm is 
used  in  this paper as  an example which  is  interesting  in  its own 
right  but also involves  ideas  that are common  to  other types of 
routing algorithms. 

Most of the existing  analysis of distributed routing algorithms 
such as thc one above is predicated on several assumptions that are 
to  some  extent violated  in practice.  These are  as follows. 
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1) The quasi-static assumption, i.e., the external traffic 
arrival process for each OD pair is stationary  over  time.  This 
assumption is approximately valid when there is a large number of 
user-pair conversations associated with each OD pair, and each of 
these conversations has an arrival  rate that is small  relative to the 
total arrival  rate for the OD pair  (i.e.. a  "many  small  users" 
assumption). An asymptotic analysis of the  effect of  violation  of 
this assumption on the  stationary character of  the external traffic 
arrival rates  is given in [ 7 ] .  

2) The fast settling time assumption, i.e., transients in the 
flows F'J due to changes in routing are negligible. In  other  words, 
once the routing is updated, the flows F'J settle  to  their new values 
within  time  which is very small relative to the time between 
routing  updates. This assumption is typically  valid  in datagram 
networks but less so in  virtual circuit networks where, existing 
virtual circuits may  not be rerouted after a  routing  update. When 
this assumption is  violated, link flow measurements F'J reflect  a 
dependence not just  on the current routing but also on possibly 
several past  routings. A seemingly good model is to  represent 
each F'j as a convex combination of the  rates of arrival  at (i, j )  
corresponding to two or more past  routing updates. 

3) The synchronous update assumption, i.e., all link rates 
F'j are measured simultaneously, and are received  simultaneously 
at all network nodes who  in  turn simultaneously carry  out a 
routing update. However. there may be technical reasons (such  as 
software complexity) that  argue against enforcing a synchronous 
update protocol. For example,  the  distributed routing algorithm of 
the ARPANET [4] is not operated synchronously. Furthermore, 
in an asynchronous updating environment, the rates F'J are 
typically measured as time averages that  reflect dependence on 
more than one  update. 

In this paper we study gradient  projection methods, which are 
one of  the  most interesting  classes of algorithms for distributed 
optimal routing. A typical  iteration in a gradient method  consists 
of  making  a  small  update  in  a  direction  which improves the value 
of  the cost  function, e.g., opposite to  the  direction of  the gradient. 
A gradient projection  method is a  modification of this  idea, so that 
constrained optimization problems (such as the  multicommodity 
flow problem of  this paper) may be handled as well: namely, 
whenever an update leads  to a  point outside  the  feasible set  (which 
is determined by the  constraints of  the problem), feasibility is 
enforced by projecting that point back into  the feasible  set. The 
first application of this type of gradient projection  method in data 
communication routing is due  to Gallager [I] as explained  later  in 
[ 141. Gallager's method operates in a space of  link  flow fractions. 
Related gradient  projection methods which operate in  the space of 
path flows are given in [3], [5]. [ 151. and [ 161. This latter  class  of 
methods is the  starting point for  the  analysis of  the  present paper. 
We conjecture, however. that  qualitatively similar results  hold for 
Gallager's method a5 well as for its second derivative version [6]. 

Our main  result states that gradient projection methods for 
optimal routing are valid even if  the settling time and synchronous 
update assumption are violated to a considerable extent. Even 
though  we  retain the quasi-static assumption in our analysis, we 
conjecture that  the  result of this paper can be  generalized along the 
lines of another related study [7] where it is shown that  a  routing 
algorithm based on a shortest path rule converges to a  neighbor- 
hood of the optimum.  The  size of  this neighborhood depends on 
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the  extent of violation of the quasi-static assumption. A similar 
deviation  from  optimality  can be caused by errors in the 
measurement of F'J. In our analysis,  these errors are  neglected. 

A practical routing  algorithm that  nearly falls within  the 
framework of  the present  paper is the  one  implemented in the 
CODEX  network 1181. There  destination  nodes of OD pairs 
asynchronously  assign and reroute virtual circuits to shortest paths 
with respect to link lengths that relate to first derivatives of link 
costs. Only one virtual circuit can be rerouted at a  time. but 
several virtual circuits can be rerouted  before new measurements 
are  received.  More  precisely,  a  destination node assigns  (or 
reroutes)  a virtual circuit to a path for which the  assignment 
(rerouting) results in minimum cost. This is equivalent to 
assignment  (rerouting) on a  shortest path  with respect to link 
lengths  which  are first derivatives of link costs  evaluated at a flow 
that lies between  the  current flow and the  flow  resulting  once  the 
assignment  (rerouting) is effected.  Another  difference is that, in 
the  CODEX  network,  each virtual circuit may carry flow that is a 
substantial portion of a link's capacity.  This may  place a  lower 
bound  on  the amount of flow that can be diverted to a  shortest path 
at each iteration. 

In the next section we provide  some  background on distributed 
asynchronous  algorithms and discuss  the relation of the result of 
the  present  paper with earlier analyses. In Section ZII we 
formulate our class of distributed  asynchronous  routing  al- 
gorithms and present our main results. In  Section IV we  study a 
related algorithm.  The  proofs of our results may  be  found  in  the 
Appendix. 

11. ASYNCHRONOUS  OPTIMIZATION  ALGORITHMS 

We provide  here  a  brief  discussion of the  currently  available 
theory and tools of analysis of asynchronous  distributed al- 
gorithms. An extensive  survey may be be found  in [17]. In a 
typical such  algorithm  (aimed at solving an optimization  problem) 
each  processor i has in its memory  a  vector xi which  may be 
interpreted  as  an  estimate of an  optimal solution. Each processor 
obtains  measurements.  performs  computations, and updates  some 
of  the components of  its vector.  Concerning  the  other  compo- 
nents. it relies entirely on messages  received  from  other  proces- 
sors. We are mainly interested in the  case where  minimal 
assumptions are placed  on the  orderliness of  message exchanges. 

There  are  two distinct approaches  for  analyzing  algorithmic 
convergence.  The first approach is essentially a  generalization of 
the  Lyapunov  function method for  proving  convergence of 
centralized iterative processes.  The idea here is that, no  matter 
what the  precise  sequence of message  exchange is. each update by 
any processor  brings its vector xi  closer to the optimum in  some 
sense.  This  approach  applies  primarily to problems  involving 
monotone or contraction  mappings with respect to a "sup-"norm 
(e.g.,  a distributed  shortest path algorithm) [SI, [9]; it is  only 
required that each  processor  communicates to every  other 
processor an infinite number of times. 

The  second  approach is based on the idea  that if the processors 
communicate fast enough relative to the  speed of convergence of 
the  computation,  then  the  evolution of their solution  estimates x' 
may  be (up to first order in the  step-size  used) the same  as if all 
processors  were  communicating to each other at each time 
instance [ 101, [ 111. The latter case is, however,  mathematically 
equivalent to a  centralized  (synchronous)  algorithm  for which 
there is an  abundance of techniques  and results. Notice  that in this 
approach, slightly stronger  assumptions  are  placed  on  the  nature 
of  the communication  process  than in the first one.  This is 
compensated by the fact that the  corresponding method  of analysis 
applies to broader  classes of algorithms. 

The  method  of analysis of the  present  paper is close in spirit to 
the  second  approach  outlined  above.  Unfortunately,  however,  the 
results available  cannot be directly  applied to the routing  problem 
studied in this paper and a new proof is required.  One reason is 
that earlier results concern  algorithms for unconstrained  optimiza- 

tion. In the routing  problem,  the  nonnegativity  and  the  conserva- 
tion  of flow introduce  inequality and equality constraints. While 
equality  constraints  could  be  taken  care of  by eliminating  some of 
the variables,  inequality  constraints must be explicitly taken into 
account.  Another  difference arises because, in the  routing 
algorithm.  optimization is carried  out with respect to path flow 
variables,  whereas  the  messages  being  broadcast  contain  estimates 
of  the  link flows  (see the  next section). In earlier results the 
variables  being  communicated  were  assumed to be the  same  as  the 
variables being optimized.  Finally, the transient  behavior of  the 
network (which results from the fact that we do not make  the fast 
settling time assumption)  adds  a few more particularities to the 
model  and the analysis. 

111. THE ROUTING MODEL 

We present  here our basic assumptions,  our  notation,  and  the 
model by which  the nodes  in a  communication  network may adjust 
the  routing of the  flows  through that network. 

We  are  given  a  network  described by a  directed  graph G = (V ,  
E ) .  (V is the set of nodes, E the set of directed  links.)  For  each 
pair w = ( i ,  j )  of distinct nodes i and j (also called  on  origin- 
destination. or OD pair) we introduce P,,., a set of directed paths 
from i to j ,  containing no loops. (These  are the candidate  paths  for 
carrying  the flour from i to j . )  For each  OD  pair w = ( i ,  j ) .  let r,, 
be  the total arrival rate  at  node i of traffic that  has to be sent  to 
nodej (measured. for example, in packets or bits  per second).  For 
each  path p E P,,., we denote by x,,p the amount of  flow  which  is 
routed  through path p .  Naturally, we have the constraints 

x , 1 . , p 2 0 ,  v P E P,V, v w ,  (3.1) 

x,,.,p = r,,., v w. (3.2) 
PEP".  

Let us define  a  vector x, with components x,,..~, p E P,. Suppose 
that there is a total of A4 OD pairs and  let us index  them so that w 
takes  values in { 1, . . . , M ) .  Then.  the totality  of flows  through 
the network may  be described by a  vector x = (x,, . . e ,  x,%,). 
Naturally, x is subject to the constraint x E G where G = 
GI x Gz x * * . X GIf, and G,,, is  the simplex  defined by (3.1) 
and (3.2). 

For any link ( i ,  j )  in the  network. let Fi' denote  the 
corresponding traffic arrival rate at that link. Clearly, 

'\f 

F'J = (3.3) 
w = l  P E P .  

(1 ,J)EP 

i.e., the total flow  on link (i, j )  is the  sum of path flows of all 
paths traversing (i, j ) .  Alternatively,  (3.3) may  be written  as 

F'I = (eo, y) (3.4) 

where (. , . ) denotes  the  usual  inner  product and eiJ is  an 
appropriate  vector with 0 or 1 entries. 

A cost function,  corresponding to some  measure of congestion 
through  the  network, is introduced. We assume  the  separable 
form 

o= D d ( F i J ) ,  (3.5) 
t i . j )EE 

We assume that for  each link (i, j )  E E,  the  function D i l  is 

practical reasons. however, one may wish to consider a smaller set P , .  While 
I A simple choice is to let P,, be the  set of all directed paths from i to j .  For 

such a restriction may increase the optimal value of  the cost function. there 

paths in P, that carry positive flow will be involved in the calculations of the 
may  be benefits relating to ease of implementation. In any case. only those 

augment P,. with  new paths (see [3]. [SI. and [15]). 
following algorithm.  Funhermore a shortest path algorithm can  be  used to 
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defined on [0, m), is real valued (finite), convex, and continu- 
ously differentiable. We  also  assume that the  derivative of D'J is 
Lipschitz  continuous on any  bounded interval. A  typical  example 
is  when D expresses  average  delay  per  message based  on the 
Kleinrock  independence  assumption [ 121. 

We  are  interested in the  case  where  the nodes  in the  network 
adjust the  path routing  variables so as to minimize  (3.5). 
Since  a set of  path flow  variables ( ~ , , ~ : p  E P,, w E { 1, - * * , 
M ) }  determines uniquely the  link  flow  variables F'J [through 
(3.3)], it is more  convenient to express the cost  function in terms 
of  the  path  flow  variables.  We  are  thus led to the  cost function 

D(x)= D'j(x), (3.6) 
( i , j ) E E  

where 

D O ( x ) = p ( ( & ,  x ) )  

[compare to (3.4) and (3.5)]. Clearly, D'j inherits the convexity 
and  smoothness  properties of D'J. 

Let us  now consider  the situation where  the  flows  change with 
time,  due to rerouting  decisions made by the nodes in the  network. 
Accordingly, the flows at time n are described by a  vector x(n) = 
(xl@), 1 . , x,&~)) E G. Let  us  assume that  the routing  decisions 
for  the  flow  corresponding to a  particular OD pair w = ( i ,  j )  are 
made  by the  origin  node i. In  an ideal situation, node i would have 
access to the  exact  value of x(n) and could  perform the gradient 
projection  update [3], [I51 

- ypw* - aD (x@)) ] + . (3.7) ax, 

Here, y is a  positive  scalar step-size, pH. a  positive  scaling 
constant,  and  [a]  denotes  the  projection on the  simplex G ,  with 
respect to the  Euclidean  norm.  The  vector x,&) can be used to 
obtain the fraction of flow that should  be  directed on each path  of 
the OD pair w between  times n and (n + 1). These  fractions  can 
form  the  basis  for  implementation of the  routing  algorithm. 

For  reasons  related to the  convergence rate of the  algorithm, we 
may also wish  to consider  the  following  generalization of (3.7): 

Here, y is again  a  positive  scalar step-size and M,(n) is a 
symmetric  positive definite matrix  (which is time  varying in 
general).  Finally,  denotes  the  projection  on G, with 
respect to the norm induced by M,(n). More  precisely,  for  a 
given x, the  projection [x] l~dn)  is the  unique  vector which 
minimizes ( ( z  - x) ,  M,(n)(z - x ) )  over all z E G,. (In  the 
special  case  where M J n )  = I ,  [ coincides with the usual 
projection with respect to the  Euclidean  norm.) An equivalent 
formulation is to define x , ( n  + 1) as  the  (unique)  solution of the 
constrained  optimization  problem 

(x(n) ) ,  (x,-x,(n)) 

Typically, M J n )  is taken to be some  estimate of the Hessian 
matrix a2D/axt,. With  such a  choice (3.8) becomes an approxi- 
mation to a  projected  Newton  method. Such methods usually have 
faster convergence, when compared to (3.7),  for roughly the  same 
reasons that Newton methods  for  unconstrained  optimization  are 
better than the  ordinary  gradient  algorithm.  Nevertheless,  since 
convergence rates are not studied in this paper, we do not  need to 
be specific on the choice of M,(n). We will  only assume that there 

exist positive  constants 6, A such that 

O < 6 Z ~ M x , ( n ) S A I ,  V n, PV,' (3.10) 

where I is the identity matrix of suitable dimension. 
The  convergence of  an algorithm  described by (3.7) or  (3.8) 

follows  from  known results [14]. [16]. However, in a  practical 
situation, iteration (3.7) or  (3.8) is  bound  to be unrealistic for 
several  reasons. 

1)  It assumes  perfect  synchronization of the  computation of all 
origin  nodes. 

2) It assumes that x(n) (or, equivalently,  the link flows F'J(n) 
at time n) may be  measured  exactly at time n and  that the 
measured  values are instantly transmitted to every  origin node 
which  needs these  values.  This, in turn  presupposes  a  perfectly 
synchronized  exchange of messages  carrying  these  values. 

3) Even if the  origin node i is able to compute x,,@ + 1) 
exactly through (3.7) or (3.8), the  actual  flows  through  the 
network, at time n + 1, will be different  from  the  computed  ones, 
unless the settling time is negligible. 

The  above  necessitates  the  development of a  more realistic 
model,  which is done  below. 

First,  because of remark  3) we  will differentiate between the 
actual  flows  through  the  network  (denoted by x(n), x&), etc.) 
and the desired flows, as  determined by the computations  of  some 
node;  the latter will  be denoted by an) and f,,.(n). The routing 
decisions of some  node at time n are determined by the  desired 
flows X,(n). However.  due to transients, each  component ~ , , . , ~ ( n )  
of the  actual  flow x(n) will take  some  value between f,,.,Jn) and 
x,& - 1). It is therefore  natural to assume that for  each  time n 
and for  each path p E P,, there exists some (generally  unknown) 
~, , . ,~(n)  between 0 and 1 such that 

x,,p(n) = Qw,P(n)%v,P(n )  + (1  - Q w , p ( n ) ) x w , p ( n  - 1). (3.1 1)  

We will also  assume that for  some a > 0, 

a,,P(n)2cY, v w ,  p ,  n. (3.12) 

The  above  assumptions are motivated  from  a  consideration of 
the way that routing strategies are  implemented in actual  data 
networks  and is  mainly applicable to the case of virtual circuit 
routing. If a  certain path has  more virtual circuits (x,,&)) then 
desired (X,&)), then  no  new virtual circuits will  be assigned to 
it,  whereas  some of the  existing virtual circuits will  be deleted 
when the  corresponding  conversation  terminates.  A  similar 
situation prevails if x,,(n) < x,,Jn). Thus, x,,.& + 1) is 
expected to take  values In the  range  postulated by (3.1 l), (3.12). 
In the  more realistic case,  however,  where arrivals and departures 
of virtual circuits are random, (3.1 l), (3.12) will  only  hold  with 
some  probability which converges to one  as the  violation of the 
quasi-static assumption  becomes  smaller and smaller. 

From  (3.11) and the  requirement that x, belongs to the simplex 
G,, we conclude that the  coefficients a,,,,,@) have to satisfy for 
every w ,  n the  condition 

Q,,,(n>(fw,,(n) -xti.,(n - 1)) = 0. (3.13) 
P 

We next introduce an algorithm  for  updating  desired  flows,  and 
try to  model  the effects of asynchronism.  We  postulate an update 
rule of the  form  [cf.  (3.8)] 

f , ( n + 1 > = 1 x , ( n ) - y ~ ~ l ( n ) ~ , ~ ( n ) l . ~ ~ , : , , n , ,  (3.14) 

Here X,(n) is some  estimate of aD/ax,,.(x(n)) which is, in general, 
inexact  due to asynchronism  and  delays in obtaining  measure- 
ments.  However, it  would be  unnatural to assume that the 
computation  (3.14) is carried out at each  time  instance  for  each 

The notation A 5 B, for matrices A, B,  means that B - A is nonnegative 
definite. 
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OD pair.  We  therefore  define  a set T, of times  for which (3.14) is 
used. For all n T,, we simply let gti(n + 1) = X,,@). We  only 
assume that the  time  between  consecutive updates (equivalently, 
the  difference of consecutive  elements of T,) is bounded,  for each 
w. In particular, we allow  the possibility  that iteration (3.14) is 
executed  for  some OD pairs w several  times  before being 
executed  even  once  for  some  other OD pairs.  This  captures the 
uncoordinated  character of a realistic distributed  environment 
where  the  origin  nodes of OD pairs  carry out a  routing update 
whenever  some new information  becomes  available  without 
regard  as to whether this information has reached  other  nodes. We 
now describe  the  process by which X,,>(n) is formed. 

For  each  link (i, j ) ,  node i estimates  from  time to time  the 
amount of traffic through that link. Practically, these  estimates  do 
not correspond to instantaneous  measurements but to an average 
of a set of measurements  obtained  over  some  period of time. 
Accordingly, at each  time n, node i has  available an estimate 

P'j(n)= c q n ,  rn)F'J(m). (3.15) 
?71=0-Q 

Here, ciJ(n, rn) are  (generally  unknown)  nonnegative  scalars 
summing to one (for fixed n), and Q is a bound  on  the  time over 
which measurements  are  averaged.  These  estimates  are  broadcast 
from time to time  (asynchronously  and possibly  with some 
variable  delay). Let  us assume that the  time between consecutive 
broadcasts  plus  the  communication  delay until  the broadcasted 
messages  reach all nodes  is  bounded  by_some T. It follows that  at 
time n each node k know,s the  value of F'J(mk), for  some r n k  with 
n - T 5 m, s n. Combining this observation with (3.15) we 
conclude that  at time n, each node k knows  an estimate F f ( n )  
satisfying 

E $ ( n ) =  d$(n ,  rn)F"(rn) (3.16) 
nr=n-C 

where C = T + Q and dy(n, rn )  are  (generally unknown) 
nonnegative  coefficients  summing to one,  for  fixed n. 

For each OD pair w ,  the corLesponding origin node  (let  us 
denote it by k )  uses  the  values of F;(n) to form an estimate X,(n) 
of 8D/ax,(x(n))  as  follows. Note  that 

Accordingly,  a  natural  estimate is given (componentwise) by 

(3.18) 

The  development of our model  is  now complete.  To  summa- 
rize, the  basic  equation is (3.14), wher_e,x(n) is determined by 
(3.11), X,@) is determined by (3.18). F;(n) is  given by (3.16). 
and FiJ is related to x by (3.3). 

Our main result states that the  above  described  algorithm 
converges to an optimal  routing. 

Theorem 3.1: With  the algorithm and  the assumptions intro- 
duced above and provided that the step-size y is chosen  small 
enough, D(x(n)) converges to minXEG D(x) and  any  limit  point  of 
(x(n) }  is a  minimizing point. Moreover, x,,.(n) - x,(n) 
converges to zero for all OD pairs w.  . 

Corollary 3. I :  Under  the  Assumptions of Theorem 3.1. if each 
D'J is strictly convex (as a function  of F'J), then  the vector of  link 
flows F''(n) converges to the  unique  minimizing  vector of the  cost 

function ( 3 . 3 ,  over all link flow  vectors of the  form (3.3) with the 
path flow  vector x ranging  over  the set G .  

Let us  point  out here that Theorem 3.1 and  Corollary 3.1 
remain  valid even if our  assumption (3.1 1) is replaced by the 
following  weaker  assumption:  there exist nonnegative coefficients 
a,.,,(n; k )  and some  scalars B 2 0, 0 E [O. 1) such  that 

n 

a,,,(n; k)CrBPn-&, V n, k ,  w, p E P,< 

This  assumption basically requires that  if X(k) is  held constant, say 
equal to X, then the  actual  flows x(n) converge to X with at least a 
geometric rate. 

Our  proof of Theorem 3.1 indicates that convergence is 
guaranteed if the  step size y is chosen  proportional to Q where CY is 
the constant of inequality (3.12). Thus, if the settling time  of the 
network is small (a large), the step size can be also relatively 
large. However, if the  network settles slowly.  a  small  step size is 
used.  This is quite  reasonable  because  there is  no  point in using  a 
rapidly changing  routing  strategy on a  network which  can  only 
change  slowly. 

We close this section with a  remark.  A  distributed  asynchron- 
ous  version of the  Bellman  algorithm  for  shortest  paths  has been 
shown to converge  appropriately [8]. [9] even if the  time  between 
consecutive  broadcasts is unbounded. In our model however, we 
have  assumed  a finite bound T. The  reason is  that otherwise 
convergence is  not guaranteed, as will  be shown  below. Of 
course,  a  boundedness  assumption is always  observed in practice. 

A  simple  example which demonstrates that  without such  a 
bound the  algorithm need  not converge is the  following.  Consider 
the  network of Fig. 1. There  are  three  origin nodes (nodes 1 ,  2, 
and 3), with  input arrival rate equal to 1 at each  one of them,  and  a 
single  destination  node  (node 6). For  each OD pair  there are two 
paths. For each  origin  node i, let X, denote  the flow routed  through 
the path containing node 4. Let Dij(FiJ) = for (i, j )  = (4, 
6) or (5 ,  6) and D'J(FiJ) = 0 for all other links. In terms of the 
variables x l ,   x2 ,  x3, the  cost  becomes 

D ( x ~ ,  XZ, X ~ ) = ( X I + X ~ + X ~ ) ~ + ( ~ - X I - X ~ - X ~ ) * .  (3.19) 

We assume that the settling time is zero, so that we do not need to 
distinguish between actual  and  desired  flows, and  that  each  node i 
(i = 1 ,  2, 3) knows xi exactly  and is able to transmit its value 
instantaneously to the  remaining  origin nodes. Suppose that 
initially xl = x2 = x3 = 1 and that each  origin  node  executes  a 
large number  of gradient  projection iterations with a  small  step 
size before  communicating  the  current  value of x to the  other 
nodes. Then, effectively, node i solves  the  problem 

thereby  obtaining  the  value x; = 0. At that point the  processors 
broadcast their current  values of xi. If this sequence of events is 
repeated,  each x; will  become again  equal to 1. So, (xl, x2, x3)  
oscillates between (0, OI 0)  and ( 1 ,  1, 1)  without ever  converging 
to  qn optimal  routing. The same  behavior is also  observed if the 
cost  function (3.19) is modified by adding  a  term € (X:  + x i  + 
x i ) ,  which  makes it strictly convex  (consistently with the 
assumptions of this paper),  as  long  as 0 < E Q 1. Clearly,  the 
reason for  divergence in this example is  that  the spirit of the 
"second approach"  for  proving  convergence,  discussed in 
Section 11, is violated. 
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Fig. 1. A simple routing problem. 

Iv. AN ALTERNATIVE ALGORITHM 

In this section we consider  the  following  variation of the  basic 
update  equation  (3.14): 

~ w ( n +  l)=[x,(n)-y~,'(n)h,(n)~.~~(n,. (4.1) 

The  main difference is that X& + l), as  obtained  from  (4.1), is a 
small  modification of the actual flow x&) rather than the desired 
flow Z,<(n), as in (3.14). If the settling time in the  network is very 
small or if the  step  size y is very  small, then X,,(n) = x&) and 
(4.1)  coincides with (3.14). It is therefore,  somewhat  surprising 
that (4. I) does  not lead to a  convergent  algorithm in general, as 
we  now explain. 

Suppose that we were  dealing with  an unconstrained  problem 
and  with perfect  synchronization so that X,,,(n) = aD/ax(x(n)). In 
that case, (4.1) could  be  combined with (3.11) to  yield 

x,,.(Tz+ l ) = ~ , ( n ) - ~ A , , ( n +   l ) M ; l ( n )  - ( ~ ( n ) )  (4.2) 
aD 
ax, 

where A&) = diag { a,,,,p(n)} is diagonal  and  positive definite. 
However. A,,@ + 1)M; l(n) need  not be  positive definite and the 
update (4.2) may  be  in a  direction of cost  increase. In the 
unconstrained  case this issue may be  taken  care of  by letting 
M,,.(n) be diagonal, so that A,(n + l )M; ' (n )  > 0. Still, this 
would  not work  for  constrained  problems  because  the  projection 
introduces  a  further  "rotation" of the  updates.  This situation may 
be  remedied,  however, by appropriately  transforming  the  prob- 
lem  of projecting  onto  the  simplex G,, to a  problem of projecting 
onto an orthant.  More  precisely, we consider  the  following 
modification of (4.1). 

At each-time n E T,, X,,,(n + 1) is computed  as  follows. 
1) Let i be  the index of a  shortest path for OD pair w with 

respect to link lengths aDiJ/aFiJ, i.e., 

A,",;(n)shw,p(n), v P E p w 3  

2 )  Let MJn)  be a  diagonal  matrix with 0 in the iih position. 
The remaining  diagonal  entries  are  positive  numbers ,~, , . ,~(n),  
satisfying 

0 < 6 S p , , , ( n ) < A  (4.3) 

where 6, A are  fixed  throughout the algorithm. 
3) Let 

(4.4) 

cumbersome. 
A more precise notation would be ;&), but this urould be unnecessarily 

and 

X w , ; ( n + l ) = r , -  X I,', , (n+l) .  (4.5) 
p t ;  
PE p, 

By our  choice of i7 we have X,,Jn + 1) 5 x,,Jn), vp # 6 
which implies X , J n  + 1) 2 x,,,+?) 2 0. Therefore,  the  vector 

It can  be easily checked that the  vector X& + 1) is the  solution 
+ 1) computed by  (4.41, (4.5) is feasible. 

of the optimization  problem 

x €  G. 
min (h,(n), x -  

(4.6) 

The main difference with the  gradient  projection  updates of the 
kst section is that now Mw(n) is  not positive definite, due to the 
ith diagonal  entry which is zero.  Nevertheless,  the restriction of 
M&) on the linear manifold  containing G,,, is positive definite, so 
that (4.6) has  a  unique solution. 

Theorem 4. I: The  conclusions of Theorem 4.1 (convergence 
to an optimal  routing)  remain valid if (3.14) is replaced by (4.4), 
(4.5). 

V. CONCLUSIONS 

Gradient  projection  algorithms  for  routing in a  data  network 
converge  appropriately  even in the  face of substantial  asynchron- 
ism  and even if the time required  for  the  network to adjust to a 
change in the  routing  policies (settling time) is nonnegligible. 
While  convergence is proved  under  the  assumption that the  input 
arrival rates r, are  constant, it  is expected that the  algorithm will 
be able to adjust  appropriately in the  face of small variations. If 
input variations  become substantial, however, and the quasi-static 
assumption is violated,  a  more  detailed  analysis is required, 
incorporating  stochastic effects. 

Another  idealization in our model arises in the  measurement 
equation  (3.13),  which  assumes that measurements  are noiseless. 
This is a  reasonable  assumption if the  time  average  runs  over  a 
sufficiently long  period but  may be unrealistic otherwise,  necessi- 
tating again  a  more  elaborate  stochastic  model. 

Let us mention an important  related class of distributed 
algorithms. In the  present model the  nodes  measure and broadcast 
messages with their estimates  of  the link flows F'j. Other nodes 
receive  the  broadcasted  messages and use them to compute 
estimates of the  expression dD'J/dF'J(F'J) which is required in 
the  algorithm. An alternative possibility would be to let, say node 
j ,  measure  directly or compute  the  value of aD'j/aF'j(F'j) and 
broadcast that value to the  other  nodes.  For  certain  special  choices 
of the cost  function D'J and  under  certain  assumptions, the partial 
derivative aD'j/aF'J equals  the  average  delay of a  packet 
traveling  through link (i ,  j). In  that case, it is  very natural to 
assume that  this derivative may  be measured directly, without first 
measuring  the flow F'j. Our result may  be easily shown  to  be 
valid for this class of algorithms  as  well. 

We have not presented  any  numerical results on  the  perfonn- 
ance of our algorithms, but a  simulation of  an actual  data  network, 
operating in a realistic environment  should be the next step in 
future  research. 

APPENDIX 

Proof of Theorem 3.1: Let ( e ,  . ), ( 1  )I denote  the  Euclidean 
inner  product  on R n  and the  associated  norm,  respectively.  Let M 
be  a  symmetric  positive definite matrix and define  a new inner 
product { -, by 

(x9 Y)M = (x ,  MY). 
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This  inner  product  induces the norm 11 . lI.$, given by llxll if = ( X ,  
X),$,. With  the notation  introduced in Section 111, [a],:, is the 
projection of Q on the closed convex set G C Rn, with respect to 
the inner  product ( e ,  ):$,. Therefore,  the  projection  theorem [ 13, 
p. 691 implies that 

(U-[a],&, M ( x - [ u ] , : ~ ) ) ~ ~ ,  V X  E G, V U .  (A.l)  

Replacing 4 with x + Q in (A. l )  we obtain 

We define s(n) to  be the  vector with components 

(independent of y or n) 

k =  I r n = n - C  

SA7 8n-klls(k)ll. 
n -  I 

k = l  
(A. 10) 

(A.3) [The  second  inequality  follows from (3.16), the third from (3.3), 
the  fourth is the triangle inequality,  the fifth uses (A.9).] Using 
Lipschitz  continuity  once  more, (A.9) and (A.lO) we finally Hence, 

a,(n+ l )=~w(n)+s,v(n) ,  v n. (A,4) obtain,  for  some A8 2 0 (independent of n, y), 

Using a first-order series expansion  for D, we have 

(A. 12) 

[Here,  the  second  inequality was obtained from (A. 1 1); the third 
from (AS).] Summing (A.12) for  different  values of n and 
rearranging  terms, we obtain 

D ( f ( n  + 1)) 5 D(n(1)) 
k =  1 

(For convenience we are assuming that the  routing  algorithm is 
initialized with x(1) = X(1). The proof  is easily modified if this is 
not the  case.)  Inequality (A.8) shows that for  some A I  2 0 
(independent of y or n) Suppose that y is small  enough so that A lo/y - A /( 1 - 8) > 0. Note  that D is continuous  and that X(n) takes  values in a 

- [ A i o - / 4 1 1  0 i - k  ] lls(k)l12. 64.13) 
k = l  i= k 

n -  I compact  set.  Hence, D(Z(n + 1)) is  bounded below. Let n + 03 

Ilx(n)-b(n)ll5Al 2 8n-kIIs(k)ll. (A.9) in (A.13) to obtain 
k =  I 

m 

Compare now (3.17) to (3.18)  and  use  the  Lipschitz  continuity of Ils(k)ll*<-. 
a@/aFij to conclude that for  some  constants A2, . * -, A7 k =  1 

(A. 14) 
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In particular, s(k) converges to zero,  as k + 09, and using (A.9) 
we obtain  limk-, Ilx(k) - X(k)II = 0. It also  follows  from 
(A.13),  (A.14) that D(f(n)) converges.  as k -+ m. 

Let  us define  for any w and for any positive definite symmetric 
matrix M,,, 

Let x* be a limit point  of { x(n) }. (At least one exists because G is 
compact.)  Since we have assumed that the  difference between 
consecutive  elements of T ,  is bounded,  for any w ,  we conclude 
that x* is also  a limit point of { x(n): n E TI,.) . Notice  also that the 
set of matrices  satisfying (3.10) is compact. It follows that there 
exists a  sequence { nk} c T, such that x(nk) converges to x* and 
M,,.(nk) converges to some M $  satisfying (3.10). Finally, notice 
that (due to (A.10), the  convergence of s(n) to zero and the 
continuity of aD/ax,$ 

aD 
lim X,, , (nk)= lim - (x(nk))=- ( x  ). 
k- ;D k-m ax,, ax,. 

aD * 

Putting  everything  together,  and  comparing (A.15) to (A.3), we 
conclude that 

&(x*, M:,) = lim s,(np) = 0. 

(This  step uses the fact that [a]:, is jointly continuous  as  a  function 
of a, M . )  Consequently,  for each MI there is a  matrix M: 
satisfying (3.10) and such that fw(x*.  M z )  = 0, VW. Using the 
projection  theorem [13] and (A.15), we obtain (y(M:)-'aD/ 
ax,,.,(x*), M;(x,, - x:)) 2 0,  vx,,, E G,*, vw. Summing  over all 
MI'S we obtain (aD/ax(x*), x - x * )  L 0,  Vx E G and,  since D is 
convex. we have D(x) I D(x*) + (aD/ax(x*). x - x * ) ,  Vx E 
G .  Therefore, x* minimizes D over  the set G, thus  proving  part of 
the theorem. 

The  above imply  that minxEc D(x) = D(x*) is a limit point of 
{ D(x(r7)) } . Since { D(x(n)) } is a  convergent  sequence, it con- 
verges to  min,Ec D(x), thus completing  the  proof. 0 

Proof of Corollary 3.1: By Theorem 3.1 any limit point of 
{ x ( n ) }  minimizes D. Hence, any limit point of { F'J(n)}  
minimizes D over the convex set consisting of link flows given by 
(3.4) with x ranging  over G .  However,  due to strict convexity. D 
has  a  unique minimum over this set which proves  the  corollary. c 

Proof of Theorem 4.1: Let s(n), S(n) be vectors with 
components 

s,,,(n)=x,,.(n+ l)-xJn) (A.16) 

S t i ( n ) = f , + ( n +  l)-xti(n), (A.17) 

k - s  

respectively. Using (3.11) we obtain 

s,<(n)= A , v ( ~ +  1)Sw(n),  (A. 18) 

where A&) = diag { We  therefore  have.  for  some A 
I 0 ,  
( U n ) ,  s,(n)i = a ,v . , p (n  + 1)L,p(n)SLv,p(n) 

P E P . .  

= x a,,,(n + l)S,c,p(n)[A,,..p(n) - L.An)I 
P E P :  
p F i  

(A. 19) 

(The first equality  follows  from (A.18), the second from (3.13); 
the first inequality  follows  from (4.4) and a little algebra; the last 
from (3.12).) Also notice that (4.5) implies 

S,,An)= - S , ; p ( n )  
PEP: 
p * i  

which finally yields, for  some AI  2 0, 

(A.20) 

D O ;  

Combining (A. 19) and (A.20) we conclude that, for some A2 2 0 
independent of y or n, we  have 

An argument  similar to (A. 10) yields 

We  then  obtain,  similarly with (A. 12), 

From  here onl the  proof  follows  the lines of the proof  of Theorem 
3.1 and is, therefore,  omitted. We  only  point  out some differ- 
ences.  First, fw(x ,  M,J should not be  defined via (A. 15) but as  the 
(unique)  solution of 

min y - x ,  - x) +- (y-x, M , ( y - x ) ) .  
.v ( :AD. ( ) jT 

Second, when  we choose  a  convergent Subsequence x@,), we 
should  take  a  further  subsequence so that i is the  same at  all times 

0 
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