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A Fast Algorithm for Linear Estimation of 
Two-Dimensional Isotropic Random Fields 

BERNARD C. LEVY, MEMBER, IEEE, AND JOHN N. TSITSIKLIS, MEMBER, IEEE 

Abstrucr-The problem considered involves estimating a two-dimen- 
sional isotropic random field given noisy observations of this field over a 
disk of finite radius. By expanding the field and observations in Fourier 
series, and exploiting the covariance structure of the resulting Fourier 
coefficient processes, recursions are obtained for efficiently constructing 
the linear least-squares estimate of the field as the radius of the observa- 
tion disk increases. These recursions are similar to the Levinson equations 
of one-dimensional linear prediction. In the spectral domain they take the 
form of SchGdinger equations, which are used to give an inverse spectral 
interpretation of our estimation procedure. 

I. INTR~DUOTION 

T HE OBJECTIVE of this paper is to extend the 
Levinson recursions of one-dimensional (1-D) linear 

prediction [l], [2] to the problem of estimating a two-di- 
mensional (2-D) isotropic random field given noisy ob- 
servations of this field over a disk of finite radius. By 
expanding the field and observations in Fourier series and 
by exploiting the covariance structure of the resulting 
coefficient processes, some wavelike equations will be ob- 
tained for solving the filtering problem associated with the 
coefficient processes. These equations will be used to esti- 
mate the field and to compute the optimum filter recur- 
sively as the radius of the observation disk increases. 

The wavelike equations satisfied by the optimum filters 
for the Fourier coefficient processes can be transformed 
into coupled first-order equations that, when discretized, 
require considerably fewer operations than standard nonre- 
cursive methods [3]-[5] for estimating isotropic random 
fields. This is the first fast algorithm to be derived for 
estimating 2-D random fields, and its complexity is the 
same as that of the 1-D Levinson recursions. 

By transforming the estimation problem over a finite 
disk into an equivalent problem in the spectral domain, the 
wave equations that we obtain are transformed into 
Schrodinger equations with a circularly symmetric poten- 
tial. These equations constitute the 2-D counterpart of the 
recursions satisfied by the 1-D Krein polynomials [6], [7]. 
A simple expression for recursively computing the poten- 
tials appearing in these Schrodinger equations is given, and 
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an inverse spectral interpretation of our estimation proce- 
dure is obtained. 

This paper is organized as follows. In Section II the 
observed field is expanded in Fourier series and some 1-D 
filtering problems for the Fourier coefficient processes are 
introduced. These filtering problems are solved by exploit- 
ing the structure of the covariance of the coefficient 
processes, and in Section III this solution is used to esti- 
mate an arbitrary random variable. The wavelike equations 
that we obtain in Section II are transformed into an 
equivalent set of first-order equations in Section IV, and a 
recursive numerical scheme is presented. In Section V, the 
2-D estimation problem is transformed to the spectral 
domain, and the wave equations for the Fourier coefficient 
estimation problem are transformed into Schrodinger 
equations. These are then used to give an inverse spectral 
interpretation of our estimation method. 

II. FOURIER COEFFICIENT PROCESSES 

Let 

y(r) = z(r) + u(r), (2.1) 
with r E R*, be some noisy observations of a real two- 
dimensional isotropic zero-mean Gaussian random field 
z( -) with covariance 

E [z(r)z(s)l = k(l), (2.4 
where I = Ir - s] denotes the length of the vector r - s. 
Here u( .) is a two-dimensional white Gaussian noise field 
with unit intensity, i.e., 

E[u(r)u(s)] = S(r - s) = $6(l), v-3) 

where 6(r) denotes the delta function over R *. We assume 
that z( .) and u(a) are uncorrelated, so that 

E[z(r)u(s)] = 0, 

and that k( .) E L,(R +, Idl), where Iw + denotes the posi- 
tive half-line. In this case z( .) has the spectral density [5], 
F31, 191 

k(A) = Jrn.ro(XZ)k(Z)ZdZ, (2.4) 
0 

where J,( .) denotes the Bessel function of other zero, and 

k(Z) = po(hz)R(A)hdh. (2.5) 
0 
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It will be assumed in this paper that we observe y(r) servation spaces can be decomposed as 
over the disk D, of radius R centered at the origin. Then, 
if a is an arbitrary random variable in the Hilbert space 2 z= g Z” (2.11a) 
spanned by .z(r) for r E R *, the estimation problem that n=--00 
we consider is the one of computing the conditional mean 
E[a]YR], where Y, denotes the Hilbert space spanned by 

Y, = gl Y,. (2.11b) 
n=-CC 

the observations y(r) for 0 I r = Irl I R. The space Z is 
obtained by taking the mean-square limit of linear combi- To interpret (2.11) the elements of Z or Y, must be viewed 

nations of z(r) for r E R *, and elements of YR are of the as the mean-square limit of finite linear combinations of 

form elements of Z” or Yi for different values of il. Using 
(2.11) the conditional mean of z(r, 0) given YR can be 
expressed as 

= JIURj:%(r,B)y(r,B)rdrdB, (2.6) 
E[+,e)lY,] = i? E[z,(r)IY;] ev.W, 

iT=--00 
(2.12) 

where (r, f3) are the polar coordinates of r, d r = r d r d 13 is 
an element of area, and b(r) = b(r, 6) E L2(DR). 

A. Fourier Series Expansion 

Our estimation procedure will rely on the Fourier series 
expansion 

so that our original two-dimensional estimation problem 
requires only the solution of the sequence of one-dimen- 
sional estimation problems for the observation equations 
(2.9). 

y(r, 0) = lE y,(r) expjne 
n=-CC 

M 

(2.7a) 

To solve the estimation problem (2.9), we will exploit the 
covariance structure of the Fourier coefficient signal and 
noise processes zn( .) and u,(e). The covariance of zn( .) is 
given by 

z(r, 0) = C z,(r) expjn8 
n=-CC 

m 

(2.7b) 

u(r,e) = C u,(r)expjd 
n=-CC 

(2.7~) 

of the observation, signal, and noise fields, where the 
Fourier coefficients 

knk 4 = hz(+,*(~)l 
= /mJ,(hr)J,(Xs)k(h)XdT! (2.13) 

0 

(see [9]), where J,,(a) denotes the Bessel function of order 
n; and u,( .) is a white noise process uncorrelated with 
zn( .) and with intensity 

y,(r) = $J2XO) exp (-jne>de (2.8a) 

zn(r) = ~~*;(r,e)exp(-jn8)de (2.8b) 
0 

u,(r) = &J*“u(r,S)exp(-jnS)dS (2.8~) 
0 

are one-dimensional processes, and where 

E [u,(r)u,*(s)] = &a(r - s). (2.14) 

Thus zn( e) and u,(a) are not stationaly. However, the 
expression (2.13) for the covariance kernel k,(. , =) indi- 
cates that zn( .) has as much structure as a stationary 
process. This structure can be characterized as follows. 

Lemma I (Displacement Property of k,): If k( .) is twice 
differentiable, or, equivalently, if the field z(.) is mean- 
square differentiable, we have 

y,(r) = zJr> + u,(r), O<rlR (2.9) 

leads to the usual linear least-squares filtering problem for 
z, given y,. 

The main feature of this expansion is that the Fourier 
coefficient processes of different orders are uncorrelated, 
i.e., 

(i 

a2 1 a n* 
g+;z-- r* 

$+ f:- s k,(r,s) = 0 (2.15) 

az(+iw = JGl(r)uZ(s)l 
= E[z,(r)u;(s)] = 0 (2.10) 

for n # m (see [5, p. 71 and [9]). Consequently, if we 
denote by Z” = H(z,(r), 0 I r I cc) and Y; = H( y,( r), 
0 I r I R) the Hilbert spaces spanned by the nth Fourier 
coefficient sienals and observations. the signal and ob- 

with the boundary conditions 

;k,(O, s) = 0 and k,(O, s) = 0, for n # 0. 

(2.16) 
Proof: It is shown in [lo, Theorem 2.2.21 that z( .) is 

mean-square differentiable if and only if k(a) is twice 
differentiable. Furthermore, since k( .) is twice differentia- 

~7 -u ble, k,(., 0) is twice differentiable. By noting that J,(b) 
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satisfies the differential equation 

i g+;;+ A2-; i 1) J,(hr)=O, 
we obtain 

= 

= 

So that (2.15) is 

- JWh’J.(hr)J,(hs)t(h)hdX 
0 

i 

a2 i a n2 
g + ; & - 7 knh 4 

i 
satisfied. The boundary conditions (2.16) 

are a consequence of the initial conditions jO(0) = 0 and 
J,(O) = 0 for n # 0. 

The displacement property (2.15) is similar to the prop- 
erty 

i i 
; + ; k(r,s) = 0 (2.17) 

of the covariance k(r, s) = k(r - s) of a stationary pro- 
cess. In [7] and [ll] this property was used to derive the 
Levinson recursions for estimating a stationary process. 
We will see below that (2.15) plays the same role for 
estimating zn( - ). 

It will later be useful to consider the normalized estima- 
tion problem 

j,(r) = q(r) + &h9, O<r<R, (2.18) 
where j,(r) = r’/2y,(r), Z,(r) = r112z,(r), and U,(r) = 
r112u,(r) and where the noise process V,(.) is stationary, 
i.e., 

E [ i&(r)&(s)] = &8(r - s). 

Then, the covariance of Z,( -) is given by 

z,(r,s) = E[Z,(r)Z,(s)] = (rs)1’2kn(r,s), 

and the displacement property (2.15) takes the form 

-($-$(n2-i)))%.(r,s)=0. (2.19) 

B. Filtered Estimates for the Fourier Coefficients, 

The first step to solve the estimation problem (2.9) is to 
compute the filtered estimate 

E[4R)IY,4] = WW) = ~RdR, sbn(sbds. 

(2.20) 
By denoting the filtering error as 

z”,(RJR) = z,(R) - B,(RIR), 

637 

and using the orthogonality property, z”,(R]R) I Yi, of 
linear least-squares estimates, we find that the filter g,(. , .) 
satisfies the integral equation 

kn(r, R) = ~Rk,,(r,s)g,(R,s)sds + &g,,(R, r) 

(2.21) 
for 0 I r I R. 

To show that the solution of (2.21) exists and is unique, 
we assume that k,(. , .) E L,(rs drds, [0, R12), or, equiv- 
alently, that k(a) E L,(rdr, [0, RI). Then, the operator 

K,: a(r) + b,(r) = i’k,,(r,s)a(s)sds 

is defined over L,(rdr, [O,R]), and since k,(*, a) is a 
covariance kernel, K, is self-adjoint and nonnegative defi- 
nite, so that K, + I/2a is invertible. This guarantees the 
existence and unicity of a solution in L,(rdr, [0, R]) to the 
integral equation (2.21). 

Our method of computing g,(R, a) is to divide the 
interval [0, R] into N subintervals of length A = R/N and 
to discretize (2.21) accordingly. The solution of the result- 
ing system of linear equations requires 0( N 3, operations, 
but by exploiting the displacement property of k,, we can 
obtain a more efficient procedure. 

Theorem 1: If k( .) is twice differentiable, or, equiv- 
alently, if z(a) is mean-square differentiable, and if 

8, = 
i 

a2 1 a n2 d2 1 a n2 
-+--y--g 
aR2 i i 

- p+;jy-- 
r2 i 

denotes the displacement operator used to characterize the 
structure of k,(. , e), then g,(. .) satisfies the partial dif- 
ferential equation 

%g,(R, r> = V,(Rk(R,r), (2.22) 

where V,( -) is given by 

V,(R) = -2-&(&,(R, R)), (2.23) 

and where the boundary value g,( R, R) can be found from 
the relation 

g,(R, R) = 2rj k,(R, R) - jdlk,(R,s)g,(R,s)sds), 

(2.24) 
which is obtained by setting r = R in (2.21). In addition, 
g,( R, .) satisfies the boundary condition 

-$,(R,O) = 0 g,(R,O) = 0, for n f 0. 

(2.25) 

Proof: Operate with S, on both sides of (2.21) and use 
the displacement property (2.15). Integrating by parts gives 

K,‘,(Rk,k, R) 
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where V,(a) is defined by (2.23). Then, by linearity, and 
since the solution of (2.21) is unique, we obtain (2.22). The 
boundary conditions (2.25) are a consequence of the condi- 
tions (2.16) for k,(*, e). 

The hyperbolic partial differential equation (2.22) has a 
structure similar to that of the continuous-time Levinson 
recursions [7]. The only difference is that on the left side of 
(2.22) we have used S, for displacement operator, instead 
of 

a a 
7=-+- 

6% Jr 
for the Levinson recursions. Equation (2.22) shows that the 
optimum filter g,( -, e), which is a function of two vari- 
ables, is parametrized by V,(a), which depends on one 
variable only. Note that V,(R).is given as a function of the 
boundary value g,( R, R), so the partial differential equa- 
tion (2.22) is nonlinear. The given data, which is the 
covariance k,( . , . ), is introduced in equation (2.22) via 
relation (2.24), which is used to evaluate the bounday value 
g,(R, R) and then to compute Vn(R) through (2.23). To 
compute g,(R, r) over the triangle 0 I r I R, a finite 
difference discretization scheme can be applied to (2.22), or 
to an equivalent system of first-order equations for 
t a/aWg,tR~ 4 and (a/&)&R, r), as shown in [12, 
Chapter 61. One difficulty with this approach is that the 
derivative of Rg,(R, R), used to express V,(R), has to be 
evaluated by a finite difference scheme, which is likely to 
give unreliable numerical results. It will be shown later 
(Theorem 3) that the second-order hyperbolic equation 
(2.22) can be replaced by an equivalent system of first-order 
coupled partial-differential equations that do not require 
the evaluation of the derivative of Rg,(R, R). By using a 
finite difference discretization scheme with mesh size A = 
R/N for these equations, it will be shown that only 0( N 2, 
operations are required to compute g,( R, e), instead of 
0( N3) for methods that do not exploit the structure of k,. 

Alternately, we may choose to compute the normalized 
filter 

&(R, r) A (Rr)“2g,(R, r>, 
which is associated with the normalized estimation prob- 
lem (2.18). In this case g,, satisfies the partial-differential 
equation 

where 
&g,(R, r> = V,(R)&(R, r>, (2.26) 

(2.27) 

is the normalized displacement operator, and where 

V,(R) = -2-&R, R). 

This formulation will turn out to be quite useful in Section 
V, where our estimation results will be interpreted from an 
inverse spectral point of view. 

The function V,( .), which parametrizes (2.22) and (2.26), 
can be interpreted as follows. Let 

e:(R) = E[z”,2(RIR)] 

be the mean-square error for the filtering problem (2.9). By 
using the orthogonality property of linear least-squares 
estimates, we find that 

e:(R) = ~h(R)z”n(RlR)] = ;g,(R, R), 
(2.29) 

so that V,( .) can be interpreted as 

J$(R) = -4n-&(Rei(R)), (2.30) 

the negative rates of change of the normalized mean-square 
error, Rez(R), as R increases. 

C. Innovations Processes 

An interesting feature of the recursions associated with 
the partial-differential equation (2.22) is that in the process 
of computing g,( R, 0) they generate all the optimum filters 
g,(r, a) for 0 I r I R. These filters can be used to gener- 
ate the filtered estimates $,(rlr) and the innovations 

h9 = y,(r) - 4W> 
for 0 I r I R. Here v,( *) is a white Gaussian noise pro- 
cess with intensity 

(2.31) 

Furthermore, if v; = H(v,(r), 0 5 r I R) denotes the 
Hilbert space spanned by v,(e), we have , 

v-i= Yin, (2.32) 

and it is therefore equivalent to use v,( 0) or y,(a) to solve 
the estimation problem (2.9). 

III. GENERALESTIMATION PROCEDURE 

In the previous section, we have seen that the problem of 
estimating a 2-D isotropic random field over a disk can be 
decomposed into a countable set of 1-D estimation prob- 
lems. We will now describe the resulting estimation proce- 
dure. Let u be an arbitrary zero-mean random variable, 
whose joint statistics with y( .) are Gaussian and such that 

E bY,*(r)l = 49. 
A special case of interest is when a = z(s), with s E D,, a 
sample of the random field that we observe. In this case 
estimation of a is a smoothing problem, and the function 
a,(r) is k,(r,s)exp(-jr@) where (s,+) are the polar 
coordinates of s. 

For the general case, the orthogonal decomposition 
(2.11b) shows that the conditional mean of u given Y, can 
be expressed as 

E[4YRI = E Jqwy], (3-l) 
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with 

E [4YR] = (h@, sbnbbds, (3.2) 

and by noting that the error a” = a - E [a]YR] is orthogo- 
nal to Y; for all n, we find that 

ah> = Jblk,( r,s)c,(R,s)sds + kc,(R,r) 

for 0 I r I R. 
(3.3) 

To guarantee the existence and unicity of a solution to 
(3.3), we assume as above that k(e) E L,(rdr; [0, RI), so 
the operator Z/2n + K, is invertible over L,(r d r; [0, RI). 
Then, to compute c,,(R, o), one method would be to dis- 
cretize the interval [0, R] into N subintervals of length 
A = R/N and to solve the resulting system of linear equa- 
tions. However, this methods requires 0( N 3, operations 
and a more efficient approach is to use the following result 

Theorem 2: If k and a, E L,(rdr; [0, RI), the filter 
cn(R, *) obeys the equation 

Ac,(R, r) = -Rc,(R, R)g,(R, r) (3.4) 

for 0 I r I R, where c”(R, R) is evaluated by setting 
r = R in (3.3). 

-Rc,(R, R)k,(r, R) = jo”kn(r,s)gc.(r,s)sds 

+ k Ac,,(R, r>, 

Proof: Take the partial derivative of (3.3) with respect 
to R. This gives 

depends only on the filter c,(R, s), so that on& c,, and g, 
need to be computed. 

The problem of estimating the random field z( .) at the 
origin of the disk D, might arise when noisy observations 
of z( .) are given over a large domain, and we want to 
construct a smoothed estimate of the field over this do- 
main. In this case a simple smoothing procedure is to base 
the estimate at a given point r on the observations over a 
disk DR(r) centered at this point. The recursions obtained 
above for c&R, a) and g,(R, 0) show that this smoothing 
procedure requires the same amount of computation as the 
Levinson recursions of 1-D linear prediction [l], [2], which 
is somewhat surprising in light of the fact that here we are 
solving a 2-D estimation problem, instead of a 1-D one. 

IV. FIRST-ORDEREQUATIONS 

As was noted above, the second-order equation (2.22) 
for g, can be replaced by a system of coupled first-order 
equations for g, and g,, i, which are easier to propagate. 
As we will see below, these equations have a structure very 
similar to that of the continuous-time Levinson recursions. 
The key step is to observe that the covariance kernels k, 
have the following property. 

Lemma 2: If k(e) is differentiable, we have 

(4Sa) 

(i--~jk.(r,s)+(~+~)k,,,,(r,s)=O 

($-:)k.(r,s)+(A+y)k,,,(r,s)=O 

so that, by linearity, if we compare this equation to (2.21) (4.lb) 
and use the unicity of the solution to (2.21), we obtain for all n. 
(3.4). 

To compute c,(e) .) one needs only to propagate the 
recursions (3.4) simultaneously with (2.22) for g,(. , .), 
starting from R = 0. It will be shown in Section IV that by 
discretizing these equations with the step size A = R/N, 
one gets a numerical scheme that requires only 0( N2) 
operations to compute c,,( R, a), so that this method is very 
efficient. 

The estimation procedure described above requires the 
computation of the filters c, and g, for all integers n. 
However, in Section V it will be shown that the functions 
y, that are obtained by taking the Hankel transform of 
order n of S(r - s) - g,(r, s) with respect to s can be 
computed easily from one another. In addition, there exist 
several cases that require considerably less work. 

Example: Assume that we want to estimate the random 
field z( .) at the origin of the disk DR,, i.e., u = z(0). In 
this case we have z(0) = z,(O), so that z(0) is uncorrelated 
with the processes y, for n # 0, and the estimate 

Eb(O)lY,] = ~Rc,(R,sbo~s)sds P-5) 

Proof: The kernel k,( a, *) can be expressed as (2.13), 
and the Bessel functions {J,(a), n E Z} obey the recur- 
sions 

J,(Ar) = -AJ,+,(Ar). 

This implies that 

k,(r,s) = -IowJ,+l(Xr)J.(hs)iC(h)hdX 

=- 

so that (4.la) is satisfied. The relation (4.16) can be ob- 
tained by symmetry. 

The displacement property (2.15) of the covariance kernel 
k,(. , .) is a direct consequence of Lemma 2. To see this, 
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note that the displacement operator 8, can be expressed as 
6, = B,(r) - B,(s), where 

d2 Id n2 
=;iT”+;x--> r2 (4.2) 

so that by combining (4.la) and (4.lb), we obtain (2.15). 
We can also use Lemma 2 to establish the following result. 

Thearem 3: If k( .) is differentiable, the filters g, and 
g n + i satisfy the system of first-order equations 

= -p,(R)g,(R, r> (4.3a) 

where 
= p,(R)g,+l(R,r), (4.3b) 

P,(R) A R(g,(R, R) - g,+dR, R)). (4.4 
Proof: Operate respectively with (a/dR) - (n/R) and 

(a/&) + ((n + 1)/r) on the integral equations satisfied 
by g, and g,+r and add the resulting equations. Using the 
displacement property (4.la) of k, and k,+I, and integrat- 
ing by parts gives 

0 = p,(R)k,(r, R) + iRk,(r, s)m(R, s)sds 

+ &m(R, r>, G,+l(K + 1J) = 
where 

m(R,r) g 

and where p,( .) satisfies (4.4). This equation can be viewed 
as obtained from (2.21) by multiplication by -p,,(R). 
Therefore, by linearity, and since the solution of (2.21) is 
unique, we have 

m(R, r> = -p,(R)g,(R, r). 
The identity (4.3b) can be derived similarly. 

The structure of the first-order equations (4.3) is remi- 
niscent of the continuous-time Levinson recursions [7], 
[ll]. As expected, these equations are equivalent to the 
second-order equation (2.22). Indeed, by combining (4.3a) 
and (4.3b), we obtain (2.22) with 

V,(R) = P;(R) - /i(R) - 
(2n + 1) 

R Pit(R) 

(4.5a) 

K+,(R) = P;(R) + isi@ - 
(2n + 1) 

R P,(R). 

(4.5b) 

The relation (4.5) shows that the potential functions I’,( .) 
and V,+ i( .) are entirely specified by p,,( -), which plays a 
role similar to that of the reflectivity function of ‘the 
Levinson recursions. Conversely, given either V,(o) or 
V,+,( .) with n 2 0, to compute p,( .) we need only to solve 
the Riccati equation (4.5a) or (4.5b) with the initial condi- 
tion 

EOR- 
(2”+1)p,(R) = RhoR-2ngn(R, R) 

+ 
2n =---- 

J (2”n!)2 0 
“hz”+%(h) dh, 

(4.6) 
which is obtained by setting r = R and letting R -+ 0 in 
the integral equation (2.21). 

A. Discretization Scheme 

To compute g,(R, *) and c,(R, e), we can divide the 
interval [0, R] into N subintervals of length A = R/N and 
discretize (4.3) and (3.4) accordingly. If G,(k, 1) A 
g,(kA, 1A) and C,,(k, 1)‘” c,(kA, IA), and if at stage K we 
assume that G,( K, I), G, + 1( K, I), and C,( K, Z) have been 
computed for 0 I 1 2 K, the recursions that we obtain are 

G,,(K+ l,l)= 1 +;- R,(K)A)G,(K,Z) 
i 
+G,+l(K, I- 1) 

-(l + $+n+,(K,I) (47 ) 
. a 

+G(KJ - 1) - 1 - ; G,(K,l), 
i i 

(4.7b) 
with R,(K) = K(G,(K, K) - G,+,(K, K))A and 1 I I I 
K, and 

C,(K + 1J) = C,(K,I) - KC,(K, K)Gn(K,Z)A2 
(4.8) 

for 0 I I I K. The boundary condition (2.25) gives 
G,(K+ 1,O) = G,(K+ 1,l) (4.9a) 
G,(K + 1,O) = 0, for n # 0, (4.9b) 

and by discretizing the integral equations (2.21) and (3.3), 
we find that 

;Gn(K+ l,K+ l)= k,((K+ l)A,(K+ 1)A) 

- f k,((K + l)A, IA)G,(K + 1, Z)1A2 (4.10) 
I=0 

and 

&C,(K + 1, K + 1) = a,((K + l)A) 

- ; k,((K + l)A, IA)C,(K + 1, ,)fA2. (4.11) 
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The functions G,(K, .), G,,+,(K, a), and C,(K, .) can 
therefore be computed recursively, starting from K = 0. 
The number of operations required at each step is 8K, so 
that the total number of operations required to compute 
G,(N, e), G,+,(N, a), and C,(N, -) is 4N2. The amount of 
storage required is 3N. 

The recursions (4.7)-(4.11) for G,(., e), G,,+t(., .), and 
C,(. , .) correspond to a simple finite-difference discreti- 
zation of the coupled hyperbolic equations (4.3). To keep 
these recursions as simple as possible, we have used for- 
ward differences to approximate a/JR! and backward 
differences for a/&. However, other choices are possible 
(see [12, Chapter 6]), such as a central-central (CC) scheme. 
Several factors intervene in the selection of a particular 
difference scheme: the most important is its stability, but 
another is accuracy, i.e., the magnitude of the truncation 
error. For the scheme described above the error is propor- 
tional to A, whereas for a CC scheme it would be propor- 
tional to A2. Another important consideration is that, in 
order to take full advantage of the causality of equations 
(4.3) for g, and g,+ll an explicit difference scheme should 
be selected, since implicit schemes are more costly from a 
computational point of view [12]. No matter what particu- 
lar scheme is selected to discretize (4.3), the resulting 
recursions will be considerably more efficient than nonre- 
cursive methods based on the results of Popov [3] and 
Yadrenko [4], [5, Chapter 41, since such methods would 
require 0( N 3, operations to compute G,(. , *) and C,( 0, e). 

Finally, for large values of R, instead of discretizing the 
first-order system (4.3), it may be preferable to discretize 
an equivalent system of equations for the normalized filters 
g,(. , .) and g,+r(. , .), since as R + cc, the normalized 
filtering problem (2.18) remains regular, whereas the un- 
normalized problem (2.9) becomes singular because the 
variance of the noise v,,(a) is 1/2rr. 

V. SPECTRAL DOMAIN VIEWPOINT 

As in the 1-D case, where the Levinson recursions can be 
expressed in the Fourier domain as equivalent recursions 
for the Krein polynomials [6], [7], the second-order and 
coupled first-order equations that we have obtained above 
for the estimation filters g,( -, .) have counterparts in the 
spectral domain. To obtain these recursions, we will use the 
isometry 

y(r) tf exp 0 * 4 (5.1) 

between Y and L,(P(A)A d X d +/2r), where h . r denotes 
the inner product of A and r E R2, (X, $J) are the polar 
coordinates of X, and 

i(A) = & + i(X) 

= / O”Jo Al f$ + k(l))ldl ( )( (5.2) 
0 

is the spectral density function of the field y(e). To check 

that (5.1) constitutes an isometry, note that 

E[Y(~)Y(s)] 
w = T + k(1) 

= SomJ,(hl)P(X)hdA 

where 1 = Ir - s] and where we have used the property 

&~2vexp(jhlcosB)dB = J,(Xl) (5.4) 

of the Bessel function of order zero. 
Note that, strictly speaking, Y(r) and exp (jX . r) do 

not belong to Y and L2(i( X)h d h d 9/2m), respectively, 
since Y was defined in (2.6) as the Hilbert space obtained 
by integrating y(a) with respect to square-integrable func- 
tions. Thus, the map (5.1) should be interpreted as 

/b(r)y(r)dr */b(r)exp(jX.r)dr, (5.5) 

where b E L2(W2) is arbitrary. However, for convenience, 
we will continue to use y(r) and exp jX . r as the defining 
elements of the isometry (5.1). 

Under this isometry, the Fourier coefficient process y,(r) 
is mapped into 

;i2r I expj X.r-nB)dB=j”J,(Xr)exp(-jn+), 

(5.6) 
where (r, (3) are the polar coordinates of r and where we 
have used the Fourier series expansion 

expjX. r = 5 j*J,(Xr)exp(jn(B - Cp)). (5.7) 
It=-M 

The orthogonality of the Fourier coefficient processes y,( .) 
and y,(a) for n # m is reflected by the fact that 

E [y,(r)y,*(s)] = JmJ,(hr)J,(hs)i(h)Xdhs,,; 0 
(5.8) 

with 

exp (Am - n>+> d+ 
=lforn=m, 0 otherwise, 

so that the orthogonal decomposition (2.11b) of the ob- 
servation space corresponds to the decomposition 

s, = iii s; (5.9) 
n=-DC 

of the subspace S, of L,(P(A)A d A d cp/2~), which is 
spanned by {exp jX . r, 0 < r I R } and where Si is the 
subspace spanned by { J,(Xr)exp -jn+, 0 I r I R}. 
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A. Schriidinger Equations 

The identity (5.8) shows that within the larger isometry 
between Y and L,(P(X)XdX d+/2r), we can construct a 
smaller isometry between Y” and L2(P( A)h d A) that is 
defined by 

.h(r) ++ JAW. (5.10) 

.In this framework the Fourier coefficient estimation prob- 
lem (2.9) is equivalent to the one of orthogonalizing the 
functions { J,(Xs), 0 I s I r}, and the innovations pro- 
cess v,(r) is mapped into 

y,(r, A) B J,(Xr) - grg.(r, s)J,(Xs)sds. 

(5.11) 
The functions y,,(r, .) can be viewed as Hankel transforms 
of order n of i3(r - s) - g,(r, s) with respect to s. They 
play the same role as the Krein polynomials [6], [7] in one 
dimension. Since the innovations process v,(r) is white 
with intensity 1/2ar, the functions y,(r, A) are orthogonal 
and 

/“y,(r, h)y,(s,A)i(X)XdX = &3(r - s). 
0 77 

(5.12) 
To characterize y,( . , . ), instead of using the function 
g,( a, .) as in (5.11), we will rely on the following result. 

Theorem 4: For n 2 0 the function y,,(r, A) satisfies the 
differential equation 

i 
$+fg+ A*- K(r)-; 

i 1) 
yn(r,X)=O 

(5.13) 
with the initial condition c 

lim2”n!(Xr)-“y,(r, h) = 1, 
r-0 

and for n I 0 we have 

u,(r, A) = (-l>“y-,(r, A>. 

(5.14) 

Proof: Operate with B,(r) (defined in (4.2)) on (5.11). 
This gives 

B,(r)y,(r, A) = -(A* - K(r))Jn(Xr> 

Then, since the displacement operator can be expressed as 
6, = B,(r) - B,(s), by using (2.22) for g,(., a) and in- 
tegrating by parts, we obtain (5.13). The initial condition 
(5.14) is equivalent to the one satisfied by J,(Xr) and can 
be derived from (5.11). Note that only one initial condition 

is needed to specify the solution of (5.13), since only one 
solution of (5.13) is regular at r = 0. 

Equation (5.13) is a perturbed Bessel equation. To use it 
to compute the functions y,(r, a) for increasing values of r, 
we need to find an expression for the potential V,(r) 
appearing in this equation. To do so we use the definition 
(2.27) of V,(r) and note from (2.28) that 

g,,(r, r) = 2qE[Ei(rlr)] 

= 2PJmyn(r,X)J,(Xr)ic(X)XdX, 
0 

(5.15) 
where the second identity is obtained by observing that 
therz exists an isometry z,(r) * J,,(Xr) between 2” and 
L,(k(A)A d A) that is similar to the isometry (5.10) be- 
tween Y” and L,(i(h)Xd A). The potential V,(r) can 
therefore be expressed as 

V,(r) = -47rg( rJm u,f(r, X)J,,(hr)i(X)XdX , 
0 1 

(5.16) 
and by substituting this relation inside (5.13), we obtain a 
nonlinear second-order equation that can be used to com- 
pute y,(r, A) recursively. This equation is the exact ana- 
logue of the recursions satisfied by the Krein polynomials 
in one dimension. 

In terms of the normalized function 

(5.17) 

(5.13) becomes 

with 

(5.18) 

lim2”n!(Xr)-(“+“‘2))+~(r, A) = 1, 
r+O 

(5.19) 

which is the Schriidinger equation satisfied by a particle 
with angular momentum n and energy E = X2 moving 
inside a circulary symmetric potential well in a space of 
dimension two; the expression (5.16) for the potential V,(a) 
becomes 

K/‘,(r) = -4rd( irn&(rp A)u,(Xr)k(A) dh), 
(5.20) 

where 

u,(Ar) 4% (rX)“‘J,(Xr). 

The relations (5.18)-(5.20) will be used below to obtain an 
inverse spectral interpretation of our estimation procedure. 
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B. Transformation Operators 

The first-order equations (4.3) for g, and g,,, can also 
be transformed to the spectral domain. This gives 

-j$(r. A) = (3 - p,(r))u,(r, A) - hn+l(r, A) 

(5.21a) 

(4.5b), respectively, we obtain 

id* 1 d i , \ n2\ 

(5.25a) 

i 

d* ld 
dr2+;dr- i 

Vv+l(r) + (’ r2’)* 
11 

un(r) = 0, 

(5.21b) 
and by combining the relations (4.4) and (5.15), we obtain 

p,(r) = 2nrJom(y,(r, AlA 

-yn+l(r, X)J,+,(Xr))k(X)XdX. (5.22) 
When (5.22) is substituted inside (5.21), we get a set of 
nonlinear first-order equations for y, and y,+i which have 
almost the same form as the 1-D Krein recursions [6], [7]. 
When discretized, these equations can be used to compute 
y,(r, .) for increasing values of r, and the resulting numeri- 
cal scheme has the same complexity as the method de- 
scribed in Section IV for computing g, and g,+i. 

An additional feature of the first-order equations (5.21) 
is that they may be used to show that the functions y,( . , .) 
can all be generated from one another. This property is 
very important, since we have seen in Section III that to 
solve the 2-D estimation problem (2.1) in full generality, 
i.e., to estimate the random field z(r) at a point other than 
the origin of the observation disk, the functions g,( . , .) or 
y,( a, .) must be computed for all integers n. 

Let w,(a) and u,(a) be given by 

%sr) 
P,(r) = ; - m 

n 
(5.23a) 

(n + 1) ksr) =-----+- 
r %(r> 

(5.23b) 

with the initial conditions 
lim r-“w,( r) = 1 
r-+0 

limr”+‘u,(r) = 1. 
i--+0 

Then, the first-order equations (5.21) can be expressed as 

h,+dr, A) = - WMr, ~hnb91/wnW 
(5.24a) 

b,(r, A) = W[x+l(r, X),u,(r)l/u,(r), 

(5.24b) 

where 

w[f(r),dr)l A.Wdr) -f(rM) 
denotes the Wronskian of f(a) and g(e). By substituting 
(5.23a) and (5.23b) inside the Riccati equations (4.5a) and 

(5.25b) 
so that w,( .) and u,_i( .) are two solutions of the equation 
obtained by setting h = 0 in the differential equation 
(5.13). However, w, is regular at the origin, whereas u,-i 
has a singularity of order n at r = 0. So the relations (5.24) 
show that by operating on yn with the regular solution w,, 
we generate y,+ i, whereas by operating on it with the 
singular solution u,-i, we generate yn-i. 

To be able to use the recursion (5.24a) to generate all 
y,( ., .) for n 2 0 from yo(*, a), we must show that the 
solution wn + i can be computed from w,. To do so note that 

w,(r) = jimo2”n!y,(r, X)/A”, (5.26) 

so that by taking limits inside (5.24a) and noting that 

W[L(r, X),w,(r)] = - :iryn(s. X)w,,(s)sds, 

we find that 

%+1(r) = &fi;(s)sds. (5.27) 
n 

Similarly, by subtracting (5.23a) from (5.23b) and integrat- 
ing, one gets 

so that the singular solution u, can also be generated from 
Wrl* 

The transformations (5.24) were introduced by Crum 
[13] and were later used by Krein [14] and Agranovich and 
Marchenko [15] to study the inverse scattering problem of 
quantum mechanics for waves of nonzero angular momen- 
tum. The main property of these transformations is that 
they are isospectral, i.e., they transform the solutions of the 
Schrodinger equation associated with the potential V,( .) 
and angular momentum n into solutions of the equation 
associated with the potential 

K+1(r> = K’,(r) + wtw 

= VW(r) - 2-$ In (w,(r)/rn) (5.28) 

and angular momentum n + 1, and vice versa, but they 
keep invariant the spectral density function i(X) of 

A,,= -$+(Vn(r)--$(n*-i)) (5.29) 

and A,+i. To see this, note from (5.12) that P(X) is the 
spectral density of all Schrodinger operators A,,. 
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C. Inverse Spectral Interpretation 

The results of this paper have an inverse spectral inter- 
pretation. Indeed, as was noted above, a consequence of 
our estimation procedure is that we generate a sequence of 
Schrijdinger operators A,,, n E N whose spectral density 
i(h) is the same as that of the random field y(e). The 
operators A, are entirely characterized by the potentials 
V,( .), which unfortunately are unknown. However, the 
recursions (5.18)-(5.20) .for &(r, A) can be viewed as re- 
constructing V,(r) recursively from jc(h) = i(X) - 1/2~. 
The identity (5.20) for V,(r) is similar to the trace formula 
used by Deift and Trubowitz [16] for solving the inverse 
scattering problem on the real line. 

The expression (2.23) for V,(r), which was derived in 
Section II, has also an inverse spectral interpretation. Given 
P(X), a procedure proposed by Gelfand and Levitan [17] to 
reconstruct the potential V,(r) associated with P(X) is as 
follows. Let 

k,(r,s) = (rs)‘/‘~wJ.(hr)JM(As)( i(h) - &]Adh. 

(5.30) 
Then, solve the integral equation 

kn(r, R) = iRk,(r, s)&(R,s) ds + &&(R, r) 
(5.31) 

for 0 I r I R. The potential V,( .) is given by 

V,(R) = -2-&p, R). 

This procedure is identical to the estimation method de- 
scribed in Section II. 

However, there is an important difference between the 
random field estimation and inverse spectral problems. The 
primary objective of the estimation problem is to compute 
the functions g,(r, .) or y,,(r, e), whereas for the inverse 
spectral problem we are only interested in the potential 
V,( .). In the inverse spectral context the triangular kernel 
g,( ., .) relates the solutions +,(r, X) of the Schrodinger 
equation (5.18) to the free solutions, i.e., to the solutions 
obtained by setting V,(r) = 0 [18, p. 451. 

VI. CONCLUSION 

In this paper we have obtained an efficient method for 
constructing the estimates of a 2-D isotropic random field 
given noisy observations of this field over a finite disk. 
This method exploits the covariance structure of the field 
to obtain some recursions for the optimum filter as the 
radius of the observation disk increases. The resulting 
algorithm is very efficient and generalizes the Levinson 
recursions [l], [2] of 1-D linear prediction. An inverse 
spectral interpretation of this estimation procedure was 
also given. 

The analysis developed in this paper can be extended 
easily to isotropic random fields in higher dimensions, 
provided that instead of expanding the random field in 

Fourier series, we expand it in spherical harmonics as in [5, 
p. 51 and [20, p. 2541. However, the results described here 
depend heavily on the assumption that the observed field is 
isotropic. In the inverse spectral context this assumption 
implies that the potentials that we reconstruct are cir- 
cularly symmetric. When the observed field is not isotropic, 
but only homogeneous, it is not clear whether results in 
multidimensional inverse spectral theory will be useful to 
solve the random fields estimation problem. Another possi- 
ble research direction would be to see whether the ideas 
discussed in this paper can be used to study the various 
extrapolation and interpolation problems for isotropic ran- 
dom fields discussed in Chapter 4 of the recent monograph 
of Yadrenko [5]. 
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