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A b s t r a c t  

It has become increasingly apparent this last decade that many prob- 
lems in systems and control are NP-hard and, in some cases, undecidable. 
The inherent complexity of some of the most elementary problems in sys- 
tems and control points to the necessity of using alternative approximate 
techniques to deal with problems that are unsolvable or intractable when 
exact solutions are sought. 

We survey some of the decidability and complexity results available 
for three classes of discrete time nonlinear systems. In each case, we 
draw the line between the problems that are unsolvable, those that are 
NP-hard, and those for which polynomial time algorithms are known. 

1 I n t r o d u c t i o n  

We look at the decidability and the complexity of four particular control prob- 
lem for three different classes of discrete time nonlinear systems. The first two 
problems that  we consider are analysis problems, the other two are control 
design problems. 

STATE GOES TO THE ORIGIN 
Input: A system x t + l  = . f ( x t ) ,  a state ~. 
Question: Does the initial state Xo = ~ eventually reach the origin when driven 

by ,TtT 1 = f ( x t ) ?  

STABILITY: ALL STATES GO TO THE ORIGIN 
Input: A system Xt+l  = . f ( x t ) .  
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Question: Do all initial states x0 = ~ eventually reach the origin when driven 
by xt+l  = f ( x t ) ?  

STATE CAN BE DRIVEN TO THE ORIGIN 
Input: A system xt+l  = f ( x t , u t ) ,  a state 4- 
Question: Does there exists some k >_ 0 and controls ut ,  i = 0 , . . . ,  k - 1 such 
that the system xt+l  -= f ( x t , u t )  drives xo = ~ to the origin? 

NULL-CONTROLLABILITY. ALL STATES CAN BE DRIVEN TO THE ORIGIN 
Input: A system xt+l  = f ( x t , u t ) .  
Question: Does there exists, associated to every state 4, some k _> 0 and 
controls ut,  i = 0 , . . . , k -  1 such that the system Xt+l = f ( x t , u t )  drives 
xo = ~ to the origin? 

Asymptotic versions of these definitions are obtained by requiring the se- 
quences to converge to the origin rather than reaching it exactly. The results 
surveyed in this paper are stated in their non-asymptotic version, most of them 
remain valid when stated in the asymptotic case. 

For linear systems all four questions axe decidable and can be decided efficiently 
(see, e.g., [Sontag, 1990]). On the other hand, no such algorithms exist for 
general nonlinear systems. Stated at the general level of nonlinear systems, 
these questions are not interesting because they are far too difficult to solve. 
For example, as pointed in [Sontag, 1995], the null-controllability question for 
general nonlinear systems encompasses the problem of solving an arbitrary 
nonlinear equation. Indeed, for a given function g, consider the system Xt+l = 
g(ut ) .  Then the system is null-controllable if and only if g has a zero and 
so the null-controllability question for nonlinear systems is at least as hard as 
deciding the existence of a zeros for an arbitrary nonlinear functions, which is a 
far too general problem. For nonlinear control problems to lead to interesting 
questions we need to constraint the type of nonlinear systems considered. 

In the next sections we consider nonlinear systems of the following type: 
systems with a single nonlinearity, systems of the neural network type, and 
piecewise-linear systems. In many of these cases control questions become in- 
tractable even for systems that are apparently weakly nonlinear. An overview 
of the results surveyed in this contribution is given in a summarising table. 

Before proceeding to the results, let us say a few words on the notions of de- 
cidability and computational complexity. When we say that a certain problem 
is decidable we mean that there is an algorithm which, upon input of the data 
associated to the problem, provides an answer after finitely many steps. The 
precise definition of algorithm is not critical here, it may be, for instance, a 
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Taring machine, an unlimited register machine or any one of most of the other 
abstract computer models that are proposed in the literature. Most models 
proposed so far have been shown equivalent from the point of view of their 
computing capabilities. 

When we say that a problem can be decided in polynomial time, or that it can 
be decided e~ciently, we mean that there is a polynomial P and an algorithm 
which, upon input of any instance ~ of the problem, provides an answer after 
at most P(size(~)) computational steps. Again, the precise definition of the 
size of ~, and the definition of what is meant by a computational step are not 
critical. The property of being decidable in polynomial time is robust across 
all reasonable definitions. The class P is the class of problems that can be de- 
cided in polynomial time. The class N P  is a class of problems that includes all 
problems in P and includes a large number of problems of practical interest for 
which no polynomial time algorithms have yet been found. It is widely believed 
that P ~ N P .  A problem is NP-hard if it is at least has hard as any problem 
in N P .  A polynomial time algorithm for an NP-hard problem would immedi- 
ately result in a polynomial time algorithm for all problems in N P .  Finally, a 
problem is NP-complete if it is NP-hard and belongs to N P .  For an introduc- 
tion to computability, see [Davis, 1982] or [Hopcroft and Ullman, 1969]. For 
an introduction to computational complexity, see [Garey and Johnson, 1979] 
or the more recent reference [Papadimitriou, 1994]. 

This paper is partly based on a survey paper on computational complexity 
results for systems and control problems [Blondel and Tsitsiklis, 1997c]. A 
survey of complexity results for nonlinear systems is given in [Sontag, 1995]. 
See also [Tsitsiklis, 1994]. 

2 Systems with a single nonlinearity 

Let us fix a scalar function v : R ~ R. We use the function u to capture the 
nonlinearity in a system that has a single nonlinearity. Let n _> 1, A0, Ax E 
R nx", c E R" ,  and consider the system 

xt+l = (Ao + v(cT xt)At  ) xt. (i) 

When v is constant, the system (1) is linear and its stability can be decided 
easily. In Theorem 1 in [Blondel and Tsitsiklis, 1997a] the authors show that 
for most functions v that are not constant, the stability of systems of the form 
(1) is NP-hard to decide. 

T h e o r e m  1: Let v : R ~ R be a nonconstant scalar function such that 

lim v(x) < v(x) < lim v(z) 
x--~--oo -- -- x-++oo 
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for all x E R. Then, STABILITY of 

Xt+l = (Ao + v(crxt)A1) xt 

is NP-hard to decide. 

49 

Each particular choice of a nonconstant function v leads to a particular class of 
nonlinear systems for which stability is NP-hard to decide. In particular, one 
of the classes is the class of systems that are linear on each side of a hyperplane 
that divides the state space in two. 

Corol lary:  The problem of deciding, for given matrices A+, A_ and vector c, 
whether the system 

A+xt when cTxt > O, 
xt+x = A_xt  when cTxt < O, 

is stable, is NP-hard. 

A control implication of this result is obtained for linear systems controlled 
by bang-bang controllers. A linear system Xt+l = Axt + But controlled by a 
bang-bang controller of the type 

Koxt 
Uk : KlXt 

leads to a closed-loop system 

when yt >_ 0, 
when yt < 0, 

(A + BKo)xt  when Yt >_ O, 
(A + BK1)xt  when Yt <0.  

LFrom Theorem 1 we see that the stability of such systems is NP-hard to 
decide. 

It is not clear when the stability of the systems (1) is actually decidable. Except 
for the trivial case where v is constant, and the systems are then linear, the 
authors are not aware of any function v for which stability of (1) is decidable. 
For the simple case where v is piecewise constant, the problem is related to 
the difficult open problem of deciding the stability of all possible sequences 
of products of finitely many matrices, see [Blondel and Tsitsiklis, 1997b] for 
more details. 

One can easily adapt the definition (1) to include the possibility of a control 
action. Let us consider systems of the type 

xt+l = (Ao + v(cTxt)A1) xt + But. (2) 
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When v is a constant function, these systems are linear and control questions 
can be decided easily. When v is a nonconstant function tha t  satisfies the 
hypothesis of Theorem 1, it is clear that  null-controllability of (2) for B = 0 is 
equivalent to the stability of (1), and so NULL-CONTROLLABILITY of (2) is NP- 
hard to decide. One can in fact say more than  that .  We will see in Section 4 
that ,  when v is a function that  has a finite range of cardinality greater or equal 
to two, then the system (2) becomes piecewise linear and null-controllability 
of the system is undecidable. The decidability of the case where the range of 
v is infinite is open. 

3 Systems  of the neural network type  

Let us fix a scalar function a : R ~ R.  Let n > 1, A E R n• and consider 
the system 

Zt-4-1 : a(Axt) (3) 

where a is defined componentwise, i.e., 

q2 

qn 

a(ql) ] 
a(q2) 

a(q . )  

Systems of this type arise in a wide variety of situations. The dynamics of (3) 
depends heavily on the function a. When a is linear, the systems are linear 
and most dynamical properties are easy to check. When a is the Heaviside 
function, the entries of the state vector take values in {0, 1} and the system 
becomes finite state after the first iteration. The dynamics of such a system, 
and in fact of any system (3) with a function a that  has finite range, can be 
modeled by a directed graph whose nodes correspond to the finite states of the 
system and with directed edges constructed from the matrix A. Dynamical 
properties for such systems are easy to decide�9 

Recurrent artificial neural networks are modeled by equations (3) where the 
function a is the activation function used in the network (see [Sontag, 1993]). 
Activation functions that  are common in the neural network literature are the 
saturated linear function 

0 when x < 0 
a(x) = x when O < x < l  

1 when x > 1 
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the standard sigmoid a(x) = 1/(1 + e*), and the inverse trigonometric func- 
tion a(x)  = arctan(x). All these functions are continuous and have a finite 
limit on both end of the real axis. These are features that are common in 
the context of artificial neural networks. Systems (3) with the saturated lin- 
ear function also arises in the context of linear systems with saturation on 
the state, and in the analysis and design of fixed-point digital filters (see 
[Liu and Michel, 1994] for motivations and many references related to filter 
design). Finally, we also deal with the cut function a(x)  = max(0, x) which is 
probably the simplest piecewise linear function after the linear ones. 

Although the difference between the systems (3) and linear systems looks mi- 
nor when the function a is weakly nonlinear (such as the cut function for 
example), the differences in the behavior is complete. In a work announced in 
[Siegelmann and Sontag, 1991] and completed in [Siegelmann and Sontag, 1995] 
it is shown that, when a is the saturated linear function, systems of the type 
(3) are capable of simulating arbitrary Turing machines. In the simulation, the 
Turing machine is encoded in the matrix A and the tape content and machine 
configuration are encoded on some of the states of the system. The simula- 
tion of the machine is then obtained by simple iteration. Thus, as computa- 
tional devices, linear saturated systems are as powerful as Turing machines. 
The problem of deciding if a given Turing machine halts on some particular 
tape configuration (the halting problem) is undecidable for Turing machines. 
Therefore, the problem of deciding if a given initial state of a saturated linear 
system eventually reaches a state that encodes a halting configuration, is also 
undecidable. One can show that this halting state can always be chosen to be 
the origin. And so one conclude (see [Sontag, 1995] for the sketch of a proof). 

T h e o r e m  2: STATE GOES TO THE ORIGIN is undecidable for saturated linear 
systems. 

By using a universal Turing machine one can in fact prove the stronger result 
that STATE GOES TO THE ORIGIN is undecidable for some particular matrix 
A. There exists a particular matrix A (of size less than 1000 x 1000 and with 
integer entries) such that the problem of deciding if a given initial state x0 -- 
eventually hits the origin when driven by Xt+l = a(Ax t ) ,  is undecidable. 

The initial result by [Siegelmann and Sontag, 1995] has generated research 
activity in the direction of finding conditions on the function a under which 
Turing machine simulation is possible by systems of the type (3). The fact 
that such simulations are possible is proved in a very elementary and simple 
way in [Hyotyniemu, 1997] in the case of the cut function. (Notice that the 
title of the reference [Hyotyniemu, 1997] involves the term "stability", but this 
term is actually used in a sense different than the usual notion of stability in 
systems theory). 
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In [Koiran, 1996], the author shows how to simulate Turing machines with 
systems of the type (3) and any function a tha t  eventually becomes con- 
stant on both ends of the real line and is twice differentiable with nonzero 
derivative on some open interval. The function a = arctan and other classi- 
cal function in the neural network literature do not satisfy these hypothesis. 
Conditions on a under which systems (3) have Turing power are relaxed in 
[Kilian and Siegelmann, 1996] where the authors offer a sketch of a proof tha t  
Turing machines can be simulated by systems (3) with functions a that  belong 
to a class that  encloses, among others, the functions just described and all the 
functions that  are classically used in neural networks models. The function do 
not need to become ultimately constant but need to be monotone. Using an 
argument similar to that  used for the case of the saturated linear function one 
then obtain: 

T h e o r e m  3: STATE GOES TO THE ORIGIN is undecidable for systems of the 
type xt+l = a(Axt) when a is the saturated linear function, the cut function, 
the sigmoid function, the zeroing function and any function tha t  belongs to 
the classes defined in [Koiran, 1996] and [Kilian and Siegelmann, 1996]. 

At this point we feel safe to conjecture that ,  STATE GOES TO THE ORIGIN is 
undecidable for any function a tha t  is not linear and tha t  contains an open 
set in its codomain (the case where a has finite range is trivially decidable). 

/,From Theorem 3, undecidability of STATE CAN BE DRWEN TO THE ORIGIN 
for the controlled system 

Xt+l = a(Axt + But) (4) 

is immediate to obtain. This result does however not have direct implications 
for the decidability of null-controllability (ALL STATES CAN BE DRIVEN TO 
THE ORIGIN) or for the decidability of stability (ALL STATES GO TO THE 
ORIGIN) of the systems (4) and (3). Despite various at tempts and the fact 
that  the undecidability of STABILITY for saturated linear systems was con- 
jectured in [Sontag, 1995], it is yet unclear whether there exists functions a 
for which STABILITY is undecidable. And if one exists, it is not clear if one 
exists that  is continuous. The computational complexity of this problem is 
also an open question. Although the stability of (3) is strongly suspected to 
be NP-hard for most function a, this result was never proved. Let us finally 
notice that,  since undecidability of STABILITY would imply undecidability 
of NULL-CONTROLLABILITY, the later problem is probably easier to prove 
undecidable. 
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4 Piecewise  linear sys tems  

Let a finite partition of R n be given by R n = Hi U/-/2 U--. U Hm, and suppose 
that different linear systems are associated to each partition, i.e., the overall 
nonlinear system is given by 

xt+i = A i x t  when xt E Hi. (5) 

When the partitions Hi are definable in terms of a finite number of linear 
equalities and inequalities, the systems (5) are the piecewise linear systems 
introduced in [Sontag, 1981] as a unifying model for interconnection between 
automata and linear systems (see [Sontag, 1996] for an updated overview of 
results available for this model). 

Particular classes of piecewise linear systems are obtained from (1) when v 
is piecewise constant and from (3) when a is piecewise linear. Hence, STATE 
CAN BE DRIVEN TO THE ORIGIN and STATE GOES TO THE ORIGIN are 
both undecidable and NP-hard for piecewise linear systems. Undecidability 
of these questions is obtained by using the fact that Turing machines can be 
simulated by systems of the type (3). These simulations are performed in 
[Siegelmann and Sontag, 1995] with linear saturated systems of state dimen- 
sion approximately equal to 1000. In [Koiran et al., 1994], the authors show 
that similar simulations of Turing machines are possible by iteration of piece- 
wise affine systems of state dimension two, or by piecewise linear systems of 
dimension three. Hence, STATE GOES TO THE ORIGIN is undeeidabte for such 
systems. 

As in the case of systems of the neural network type one can prove a stronger 
result by using a universal Turing machine. There exist a particular piecewise 
linear system with state dimension three (the system has approximately 800 
partitions) such that the problem of deciding for this system if a given initial 
state x0 = ~ eventually hits the origin, is undecidable. 

T h e o r e m  4: There exist a particular piecewise linear system with state di- 
mension three and with 800 partitions such that STATE GOES TO THE ORIGIN 
is undecidable. 

The systems (5) are similar to the piecewise constant derivative systems an- 
alyzed in [Asarin et al., 1995] and for which analogous undecidability results 
are available. A piecewise constant derivative system is given by a finite par- 
tition R n = Hi U/-/2 U . . .  U Hm, and by slope vectors bi for every region Hi 
of the partition. On any given region of the partition, the state x(t) of the 
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system has a fixed constant derivative, 

dx( t )  _ bi when x E Hi. 
dt 

The trajectories of such systems are continuous broken lines, with breaking 
points occurring on the boundaries of the regions. In [Asarin et aL, 1995] the 
authors show that ,  for given states zb and xr the problem of deciding whether 
xb is reached by a trajectory starting from xb, is decidable for systems of 
dimension two, but is undecidable for systems of dimension three or more. 

Suppose now that  we add a control to the system and define 

xt+x = Aix t  + But  when xt E Hi. (6) 

As already explained, it follows from Theorem 4 tha t  STATE CAN BE DRIVEN 
TO THE ORIGIN is undecidable for such systems. This result is also obtained 
in 

[Blondel and Tsitsiklis, 1997a] by using a different proof based on the unde- 
cidability of the Post correspondence problem. 

POST'S CORRESPONDENCE PROBLEM. 

Instance: A set of pairs of words {(Ui, 1I/) : i = 1 , . . . ,  n} over a finite alphabet.  

Question: Does there exist a non-empty sequence of indices il,  i 2 , . . . ,  ik where 
1 <_ ij <_ n, such that  Ui~ Ui2 "'" Uik = Vi~ 17/= . . .  Vik ? 

Post 's correspondence problem is trivially decidable for one letter alphabets. 
Furthermore, it is easy to see that  the solvability of the problem does not 
depend on the size of the alphabet, as long as the alphabet contains more 
than one letter. Post proved that  the correspondence problem for an alphabet 
with more than one letter is undecidable (for a proof of this classical result 
see [Hopcroft and Ullman, 1969]). In a recent contribution ([Matiyasevich and 
S~nizergues, 1996]) this result has been improved by showing that  the problem 
remains undecidable in the case where there are only seven pairs of words. On 
the other hand, the problem is known to be decidable for two pairs of words. 
The limit between decidability/undecidability is somewhere between three and 
seven pairs. 

There is an obvious trade-off in piecewise linear systems between the state 
space dimension n and the number of partitions m. When there is only one par- 
tition, or when the state dimension is equal to one, STATE CAN BE DRIVEN TO 
THE ORIGIN and NULL-CONTROLLABILITY are easy to check. The proof tech- 
nique used in [Blondel and Tsitsiklis, 1997a] is effective for obtaining bounds 
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on n and m for which undecidability is attained. The next result is proved in 
[Blondel and Tsitsiklis, 1997d]. 

T h e o r e m  5: Let np be any number of pairs of words for which POST'S COR- 
RESPONDENCE PROBLEM is undecidable. Let  n be the state space dimension 
of a piecewise linear system defined on m partitions. If n > 4, m > 2 and 
nm > 2 + 6rip, then, STATE CAN BE DRIVEN TO THE ORIGIN is undecidable. 

As mentioned earlier we can take np = 7, and thus STATE CAN BE DRIVEN 
TO THE ORIGIN is undecidable when n m  >_ 44. In particular, STATE CAN BE 
DRIVEN TO THE ORIGIN is undecidable for piecewise linear systems of s tate  
dimension 22 and with as few as 2 partitions. 

Theorem 5 does not have direct implications for the problems NULL-CONTROL- 
LABILITY and STABILITY for which we require certain properties to  be shared 
by all states. Piecewise linear systems on two partit ions are obtained as 
special cases of systems with a single nonlinearity. It is therefore clear tha t  
STABILITY and NULL-CONTROLLABILITY are NP-hard for piecewise linear 
systems. But that  doesn't  settle the issue of the decidability of these problems. 
We now consider these two problems in turn. The first one is undecidable but  
decidability of the second problem is an unsolved question. The next  result is 
proved in [Blondel and Tsitsiklis, 1997d]. 

T h e o r e m  6: Let np be any number of pairs of words for which Post 's  cor- 
respondence problem is undecidable. Let n be the state space dimension of 
a piecewise linear system defined on m partitions. If n _> 4, m > 2 and 
n m  > 26 + 6np, then, NULL-CONTROLLABILITY, is undecidable. 

We finally turn our at tention to the decidability of STABILITY of piecewise 
linear systems. Consider the particular class of piecewise linear systems in 
which the parti t ion consists of two regions separated by a hyperplane. The  
system is 

Alx t  when cTxt ~ 0 
xt+l = A2xt  when cTxt <( 0 (7) 

Deciding stability of nonlinear systems as simple as (7) is already a nontrivial 
task. We know that  the problem is NP-hard  but  we do not know if it is 
decidable. The decidability of this problem is, as we now argue, int imately 
related to the problem of determining if all possible sequences of products  of 
two given matrices are stable. Let us illustrate this with an example. We 
build a piecewise linear system with state vector (vt, Yt, zt), where vt and Yt 
are scalars and zt is a vector in R n. The system consists of two linear systems, 
each of which is enabled in one of two halfspaces, as determined by the sign 
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of Yt 
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and 

(Vt l) (1j2o o)(vt) 
Yt+l = - -1 /2  1 0 Yt 
Zt+l 0 0 A+ zt 

(vt l) (1/2o 
Yt+l = 1/2 1 0 Yt 
Zt+l 0 0 A -  zt 

when Yt ~_ 0, 

when Yt < O. 

Let us now look at the evolution of an initial state vector (v0, Y0, zo). Suppose 
that  v0 = 1 in which case we have vt = 2 - t  for all t. Suppose in addition, 
that Y0 can take any value in [ - 1 ,  1]. Then, it is easily seen that  Yl can 
take any value in [ - 1 / 2 ,  1/2], no matter what was the sign of Y0. Continuing 
inductively, we see that Yt can take any value in [ - 2  - t ,  2 - 9 ,  can have either 
sign, and this is independent of the signs of y,  for s < t. This shows that every 
possible sign sequence can be generated by suitable choice of Y0. Hence, the 
dynamics of the state subvector zt are of the form Zt+l = Atz t ,  where At is an 
arbitrary matrix from {A_,  A+ }. We conclude that the state vector converges 
to zero, for all possible initial states, if and only if all sequences of products of 
the matrices A_ and A+ (taken in an arbitrary order) converge to zero. Thus,  
a decision algorithm for STABILITY of piecewise linear systems would lead to 
a test for the stability of all possible sequences of products of two matrices. 

5 Summary 

A U T O N O M O U S  S Y S T E M S  

zt+t = (Ao + v(cTzt)At)zt 

zt+l = a(Azt) 

xt+t = Aixt (xt E Hi) 

CONTROLLED SYSTEMS 

Xt+l = (Ao "4- v(cT xt)A1)zt 
+But 

Z t + l  = cr(Axt + But) 

X t + l  = Aizt + But (xt E Hi) 

STABILITY STATE GOES 
TO ORIGIN 

Complexity NP-hard for nonconstant v ? 

Decidability ? ? 
for nonconstant v 

Complexity ? ? 
Decidability Conjectured Undecidable 

undecidable for most 
Complexity NP-hard ? 
Decidability ? Undecidable 

NULL-CONTROLLABILITY STATE DRIVEN 
TO ORIGIN 

Complexity NP-hard ? 

Decidability Undecidable for v Undecldable for v 
with finite range with finite range 

Complexity ? ? 
Dec idab i l i t y  ? U n d e c i d a b l e  

for m o s t  cr 
C o m p l e x i t y  N P - h a r d  ? 
Dec idab i l i t y  U n d e c i d a b l e  U n d e c i d a b l e  
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