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Abstract 
We consider iterative algorithms of the form z := 
f(z), executed by a parallel or distributed comput- 
ing system. We focus on asynchronous implemen- 
tations whereby each processor iterates on a dif- 
ferent component of z, at its own pace, using the 
most recently received (but possibly outdated) in- 
formation on the remaining components of 2. We 
provide results on the convergence rate of such al- 
gorithms and make a comparison with the conver- 
gence rate of the corresponding synchronous meth- 
ods in which the computation proceeds in phases. 
We also present results on how to terminate asyn- 
chronous iterations in finite time with an approxi- 
mate solution of the computational problem under 
consideration. 

Keywords: Iterative methods, asynchronous 
algorithms, parallel algorithms, distributed 
algorithms, termination detection. 

1. INTRODUCTION 

This paper deals with iterative algorithms of the 
form z := f(z), where z = (z~,...,z,) is a vector 
in ZIP and f : 3” I+ 8” is an iteration mapping 
defining the algorithm. In many interesting appli- 
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cations, it is natural to consider distributed exe- 
cutions of this iteration whereby the ith processor 
updates zi according to the formula 

xi := fii(X lY,%a), (1-l) 
while receiving information from other processors 
on the current values of the remaining components. 
Iteration (1.1) can be executed synchronously 
whereby all processors perform an iteration, com- 
municate their results to the other processors, and 
then proceed to the next iteration. It can also 
be executed asynchronously, whereby each proces- 
sor computes at its own pace while receiving (pos- 
sibly outdated) information on the values of the 
components updated by the other processors. In 
several circumstances, asynchronous methods can 
have certain advantages over their synchronous 
counterparts (see Section 2) and can be a desirable 
alternative. On the other hand, the mathemati- 
cal properties of asynchronous iterations are quite 
different from those of their synchronous counter- 
parts. Even though a fairly comprehensive theory 
is available [BT2], there are certain issues (per- 
taining to the convergence rate and termination 
of asynchronous iterations), that have not been 
sufficiently studied and this is the subject of the 
present paper. 

Outline of the paper. 

In Section 2, we present a mathematical model 
of synchronous and asynchronous iterations, dis- 
cuss the possible advantages of asynchronous 
methods, and present the basic convergence results 
that are available. In Section 3, we concentrate 
on asynchronous methods in which the iteration 
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mapping f is monotone and compare the conver- 
gence rates of the synchronous and asynchronous 
variants. Section 4 is similar, except that atten- 
tion is shifted to the case where the iteration map 
ping f is a contraction with respect to a maximum 
norm. Finally, in Section 5, we consider modifica- 
tions whereby an asynchronous algorithm can be 
made to execute for a finite amount of time and 
terminate with an approximate soulution of the 
computational problem under consideration. This 
is essentially a problem of detecting the validity 
of certain termination conditions which is rather 
trivial in the context of synchronous methods. We 
indicate that this issue becomes much more diffi- 
cult in the context of asynchronous methods and 
we identify certain conditions under which our aim 
can be accomplished. We note that the literature 
on the subject is rather large. For this reason, we 
do not provide a comprehensive list of references, 
and we refer the reader to [BT2]. 

2. THE ALGORITHMIC MODEL AND 
BASIC CONVERGENCE RESULTS. 

Let Xl,..., X, be subsets of Euclidean spaces 
!v’ !fPp , respectively. Let n = nl + l ‘9 + nP, 
and ‘let ‘X c !I? be ,the Cartesian product X = 
HT.= 1 Xi. Accordingly, any z E 8” is decomposed 
in the form x = (~1 , . . . , z~), with each zi belong- 
ing to Pi. For i = 1,. . . ,p, let fi : X I-+ Xi be 
a given function and let f : X H X be the func- 
tion defined by f(x) = (fi(x), . . . , fP(x)) for every 
z E X. We consider an iteration of the form 

x := f(x), (2.1) 

and we call f the iteration mapping defining the 
algorithm. We assume that there are p processors, 
with the ith processor assigned the responsibility 
of updating the ith component xi according to the 
rule xi := fi(x) = fi(x1,. . . , zP). We say that an 
execution of iteration (2.1) is synchronous if it can 
be described mathematically by the formula 

4k + 1) = f (x(k)), 

where k is an integer-valued variable used to in- 
dex different iterations, not necessarily represent- 
ing real time. Synchronous execution is certainly 
possible if the processors have access to a global 
clock, if each processor initiates an update at each 
“tick” of the clock, and if the results of an update 
can be reliably transmitted to other processors be- 
fore the next “tick”. Barring the existence of a 
global clock, synchronous execution can be still ac- 
complished by having each processor perform the 

st update as soon as its kth update has been 
and the results of the kth update of all 

other processors have been received. 

In an usynchronoue implementation of iteration 
(2.1), processors are not required to wait until they 
receive all messages generated during the previ- 
ous iteration. Rather, each processor is allowed to 
keep updating its own component at its own pace. 
If the current value of the component updated by 
some other processor is not available, then some 
outdated value (received at some time in the past) 
is used instead. Furthermore., processors are not 
required to communicate therr results after each. 
iteration but only once in a while. We allow some 
processors to compute faster and execute more it- 
erations than others, we allow some processors to 
communicate more frequently than others, and we 
allow the communication delays to be substantial 
and unpredictable. We also allow the communi- 
cation channels to deliver messages out of order, 
i.e., in a different order than the one they were 
transmitted. 

There are several potential advantages that can 
be gained from asynchronous execution (see e.g., 
[Kl, [BTl]> W-21 . 

b 
On the other hand, a ma- 

jor potential draw ack is that asynchronous algo- 
rithms cannot be described mathematicallly by an 
equation of the form x(k + 1) = f (x(k)). Thus, 
even if the latter difference equation is convergent, 
the corresponding asynchronous iteration could di- 
verge, and indeed this is sometimes the case. Even 
if the asynchronous iteration converges, such a con-’ 
elusion often requires rather difficult analysis. Nev- 
ertheless, there is a large number of results stating 
that certain classes of important algorithms retain 
their desirable conver ence properties in the face 
of asynchronism [BT2 . 7 A very general result of 
this form will be presented soon, following a pre- 
cise description of our model of computation. 

Let t be a time variable, representing (global) 
real time. Even though t should be viewed as a 
continuous variable, the presentation, the nota- 
tion, and the proofs are simplified if we introduce 
a small constant A, which is viewed as the unit 
of time, and analyze the behavior of the algorithm 
at times that are integer multiples of A. For such 
an analysis to be possible, we only need to assume 
that no processor can execute more than one up 
date during a time interval of length A. Clearly, 
such an assumption should be valid in practice if 
A is taken very small. Still, even though A is 
supposed to be small, it is notationally convenient 
to scale the time axis so that we can assume that 
A = 1. (This entails no loss of generality.) To con- 
clude, our model will be cast in terms of an integer 
time variable t, which is proportional to real time. 

Let zi (t) be the value of xi residing in the mem- 
ory of the ith processor at time t. We assume that 
there is a set of times T’ at which xi is updated. 
To account for the possibility that the ith proces- 
sor may not have access to the most recent values 
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of the components of Z, we assume that 

G@fl) = fi(21(~~(t)),...,Zp(~~(t))), 

where r;(t) are integer times+ satisfying 
t , Vt. At all times t 4 2’: , zi (t) is 
changed and 

zip + 1) = Xi@), Vt$T’. 

BET’, 
(24 

r;(t) 5 
left un- 

(2.3) 

The difference t - rf (t) is related to the communi- 
cation delay of the message zj sent from processor 
j to processor i, and which is used in an update of 
4 that starts at time t. In a synchronous execu- 
tion, we have t - r:(t) = 0. As t - r:(t) increases, 
we can say that the amount of asynchronism in 
the algorithm is larger. Of course, for the algo- 
rithm to make any progress at all, we should not 
allow r:(t) to remain forever small. Furthermore, 
no processor should be allowed to drop out of the 
computation and stop iterating. For this remon, 
the following assumption is introduced: 
Assumption 2.1. The sets T’ are infinite and if 
{tk} is a sequence of elements of T’ which tends 
to infinity, then limk-,oo 7j(tk) = 00 for every j. 

Asynchronous convergence under Assumption 
2.1 has been established by several authors for a 
large variety of choices of the iteration mapping 

starting with the work of Chazan and Miranker 
(see [BT2] and the references therein). The 

result originally given in (B] and refor- 
mulated in (BT2], seems to be the most general 
one. 
Proposition 2.1. Suppose that for each i E (1, 

bf*X?‘&% that 
ere exists a sequence {Xi(k)) of subsets 

(a) j;i(k + 1) tXi(k), for all Ic > 0. 
(b) The sets X(k) = nr==, Xi(k) have the prop 
erty f(Z) E X(k: + 1), for all 5 E X(k). 
(c) All limit points of a sequence {z(k)} with the 
pfroperty s(k) E X(k) for all k, are fixed points of 

Furthermore, assume that z(r) E X(0) for all r 5 
0. Then, under Assumption 2.1, all limit points of 

enerated by the asynchronous 
are fixed points of f, 

We discuss briefly the assumption ~(7) E X(0) 
for r 5 0. In the most common case, the algorithm 

t The values of the variables r:(t) for t 4 Ti are 
of no importance. Still, it is sometimes convenient 
to assume that these variables are defined for all t. 

We interpret Xj (rj (t)) as the value of ccj available 
to processor i at time t, even if t 4 T’ and this 
value is not used in an update. 

is initialized at time 0 with some z(0) E X(O), and 
we have r:(t) 1 0 for all t 2 0. In this case, the 
values of z(r), r < 0, have no effect on the algo- 
rithm, they can be assumed without loss of gen- 
erality to belong to X(O), and the proposition ap- 
plies. Another possible situation is the following. 
Suppose that until some time t* the processors had 
been executing some other asynchronous iteration 
z := g(s) and that at time t* they start execut- 
ing the asynchronous iteration x := f(z) using the 
values z(t) produced by the iteration 2 := g(z) as 
initial conditions. As long as the original iteration 
wss initialized with a vector in the set X(0) and 
if the mapping g maps X(0) into X(O), we have 
~(7) E X(0) for all r 5 t*. We can then replace 
the time origin by t’ and use Prop. 2.1 to establish 
convergence. 

The conditions of Prop. 2.1 can be easily verified 
in two important cases that are the subjects of 
Subsections 2.1 and 2.2, respectively. 

2.2. Monotone mappings 
Assumption 2.2. The iteration mapping f : 
X H X has the following properties: 
a f is continuous. 

II b f is monotone [that is, if z 5 y then f(z) 5 
f Y> -+ 
A 

1 has a unique fixed point x*. 
i Th ere exist vectors U,V E X, such that u 5 

f(u) 5 f(u) I v. 
Let fk be the composition of k copies of f (f” 

is the identity mapping) and let 

X(k) = 1~ I f”(u) I z* 5 f”(v)). 

It is easily shown that f”(u) and fk 
\ 
v) converge 

to z:, as k tends to infinity. As a resu t, Prop. 2.1 
apphes and establishes asynchronous convergence, 
provided that the algorithm is initialized at some 
z(0) satisfying u < 2(O) 5 v. 

Assumption 2.2 can be verified for a variety of 
algorithms, such as linear iterations involving non- 
negative matrices, the Bellman-Ford algorithm for 
the shortest path problem, the successive approxi- 
mation algorithm for infinite horizon dynamic pro- 
gramming, and dual relaxation algorithms for lin- 
ear and nonlinear network flow problems [BT2]. 

2.2. Maximum norm contractions. 
Let X = 8”. and consider a norm on !J?’ defined 

bY 

t Vector inequalities are to be interpreted com- 
ponentwise throughout the paper. 
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where zi E 9Fi is the ith component of 2, ]I l ]]i 
is a norm on F, 
each i. 

and wi is a positive scalar, for 
(We call such a norm a block-mammum 

norm.) Suppose that f has the following contrac- 
tion property: there exists some (I! E [O,l) such 
that 

IIf(4 - %*I I + - ~*I19 Vx E W, (2.4) 

where z* is a fixed point of f. Given a vector 
z(0) E X with which the algorithm is initialized, 
let 

Xi(k) = {Xi E W’ 1 llX<-XfIli 5 O!k(lX(0)-X*II}* 

It is easily verified that these sets satisfy the con- 
ditions of Prop. 2.1 and asynchronous convergence 
to 2* follows. 

Iteration mappings f with the contraction prop 
erty (2.4) are very common. We list a few exam- 
ples: 
(a) Linear iterations of the form f(z) = AZ + b, 
where A is an n x n matrix such that p(lAl) < 1 
,[CM 

1 
. Here, IAl is the matrix whose entries are the 

abso ute values of the corresponding entries of A, 
and p( /AI), the spectral radius of A], is the largest 
of the magnitudes of the L eigenva ues of I AI. As a 
special case, we obtain totally asynchronous con- 
vergence of the iteration A := IMP for computing 
a row vector R with the invariant probabilities of 
an irreducible, discrete-time, finite-state Markov 
chain specified in terms of the stochastic matrix P, 
provided that one of the components of 1~ is held 
fixed throughout the algorithm [BT2, p. 4351. 
(b) Gradient iterations of the form j(z) = z - 
7V F (z), where 7 is a small positive stepsize pa- 
rameter, F : !lF H B is a twice continuously dif- 
ferentiable cost function whose Hessian matrix is 
bounded and diagonally dominant ([B], [BT2, p. 
4371). 

Other examples are the projection and other al- 

t 
orithms for the solution of variational inequalities 
under certain diagonal dominance conditions), and 

waveform relaxation methods for the solution of 
PS;;Es or boundary value problems ([BT2], [M], 

3. CONVERGENCE RATE COMPAR- 
ISONS: MONOTONE ITERATIONS. 

Throughout this section, we assume that As- 
sumption 2.1 is in effect and that the iteration 
mapping f satisfies the monotonicity Assumption 
2.2. The monotonicity assumption is very conve- 
nient for making convergence rate comparisons be- 
tween different variants of the same algorithm. A 
classical example concerns the comparison of the 
Jacobi and Gauss-Seidel variants of the linear iter- 
ation z := f(z) = As + b when A is a nonnegative 

matrix of spectral radius less than 1. In particular 
the Stein-Rosenberg Theorem [V] asserts that., in 
a serial computing environment, the Gauss-Serdel 
iteration converges at least as fast as its Jacobi 
counterpart. The result in the following subsec- 
tion states that exactly the opposite is true in a 
parallel computing environment. 

3.1. Comparison of synchronous Jacobi 
and Gauss-Seidel methods. 

Let us restrict ourselves for the moment to a 
synchronous computing environment. In particu- 
lar, we assume that component updates and the 
delivery of the results to every other processor can 
be accomplished within one time unit. A Jacobi 
iteration is described by the equation 

xJ (t + 1) = f (Z” (t)) . (3.1) 

In a Gauss-Seidel iteration, components are up 
dated one at a time and the update of a compo- 
nent q uses updated values of the preceding com- 
ponents Zl,-a.,Zi-l. In practice, the mapping f 
is usually sparse (that is, each function fi depends 
only on a few of the components xi 
case, the Gauss-Seidel iteration can b 

and in this 
e somewhat 

paral!elized by having more than one (but usually 
not all) components being updated simultaneously. 
(This IS accomplished by means of the well-known 
coloring procedure [BT2, Section 1.2.41). Let U(t) 
be the set of components that are updated at time 
t. Then, the Gauss-Seidel iteration is described 
by 

xy (t + 1) = x7(t), if i $ U(t), (3.2) 

and 

Xy(t + 1) = fi (z:(t))) if i E U(t). (3.3) 

The following result is 
an earlier result of [SW P 

roved in [T], generalizing 
: 

Proposition 3.1. If z?(O) = x”(O) = z(O) and 
the property f (z(0)) < Z(O) holds, then Z* < 
x”(t) 5 x”(t) for all t. 

Proposition 3.1 establishes the faster conver- 
gence of the Jacobi iteration, at least for special 
choices of initial conditions. [A symmetrical re- 
sult holds if Z(O) satisfies z(0) 5 f (x(O))]. It can 
also be shown [T] that for any initial conditions 
satisfying Z* < z 0) or Z* > x(0 , there exists 
some constant K t depending on z O)], such that 1 
Z* 5 xJ(t + K) < d’(t) for all t. (In words, the 
convergence rate of the Jacobi iteration cannot be 
worse than the convergence rate of the correspond- 
ing Gauss-Seidel iteration. A related effect has 
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also been observed experimentally in the context 
of a specific example [ZL] .) In the nexf subsec- 
tion, these results are extended to obtain a much 
more general convergence rate comparison result. 
In particular, it will be shown that if the num- 
ber of components updated at each time step is 
increased or if the size of the “communication de- 
lays” t - rj (t) is reduced, then the convergence rate 
can only improve. 

3.2. Comparison between alternative 
asynchronous iterations. 

We consider two alternative executions of the 
asynchronous iteration z := f(z). We distinguish 
between them by putting a “hat” on the variables 
associated with the second execution. Thus the 
first execution is decsribed by Eqs. (2.2) and (2.3), 
while the second by 

4j (t + 1) = 4((t)) ift#?, (3-4 

~~(t+1)=f~(if1(?~(t))r,..,2p(~~(t))), iftE5?, 
(3.5) 

Assumption 3.1. (a) For each i, j, and t 2 0, we 
have $(t+l) 1 r;(t) 2 0 and $(t+l) > f;(t) 2 0. 
(b) For each i, we have T’ > C?. 
(c) For each i, j, and t E ?“, we have r;(t) 3 F;(t). 

The requirements $ (t) 2 0 and t;(t) 2 0 basi- 
cally mean that the algorithm is started at time 0. 
Furthermore, Assumption 3.2(a) states that sub- 
sequent iterations by the same processor are based 
on newer information. It is essentially equivalent 
to an assumption that messages are received in the 
order that they are transmitted. Part (b states 
that in the first execution there are at 1 east as 
many variable updates as in the second. Finally, 
part (c) states that the communication delays in 
the first execution are no larger than those in the 
first. 
Proposition 3.2. Suppose that: 
a Assumption 3.1 holds. 

II b CC* _< z(O) = i(0). 
(4 f 640)) 5 40). 
Then, z* 5 z(t) ,< S(t) for all t. [A symmetrical 
result holds if e(O) = ~(0) 2 2* and f(z(0)) 2 
40) -1 
Proof. 
Lemma 3.1, There holds x(t + 1) 5 x(t) for all 
t. 
Proof of Lemma 3.1. We proceed by induction 
on t. If 0 E T’ then z;(l) = f;(x(O)) 5 Xi(O); if 
0 $2” then pi = Zi(O). Thus, ~(1) 5 X(O). 

Let us now assume the induction hypothesis 
x(t) 6 x(t - 1) < * l - _< z(l) 5 x(0). If t # T’ 

then xi(t + 1) = xi(t). If t E T’, we first consider 
the case where t is the first element of T’. Then, 
xi(t) = xi (0). Furthermore, 

xi(t + l) = fi (zl (ri(t))t*- *tZp(Tt(t))) 

i ri(X(O)) 5 Xi(O) = xi(t)s 

where the first inequality follows from xi (7; (t)) 5 
xj 

d 
0), j = I,..., p, which is a consequence of the 

in u&on hypothesis. Finally, let us suppose that 
t is not the first element of T’ and let t’ be the 
previous element of r‘ . Using Assumption 3.1(a), 
we have rj (t) > 7: (t’) , and the induction hypoth- 
esis implies that sj (r;(t)) 5 xi ($ (t’)) . Using the 
monotonicity of f, we obtain 

L fi ( xl(ri(t')) , . . *, xp (r;(t))) = z&‘+l) = q(t). 

Q.E.D. 

We now complete the proof of the proposition. 
We proceed again inductively. We have x(0) = 
2 0), 
4 

by assumption, which starts the induction. 
e assume the induction hypothesis that x(a) 5 

k(s) fors=O,l,..., t. We consider three cases: 
(i) If t 4 T’, then Assumption 3.1(b) implies that 
t $ 3. It follows that Xi(t + 1) = x;(t) 5 &(t) = 
& (t+ 1), where the induction hypothesis was used 
to obtain the inequality. 
(ii)Ift~T’andt$~thenxi(t+l)jxi(t)< 
xi(t) = gi (t + 1)) where we have used Lemma 3.1 
for the first inequality and the induction hypothe- 
sis for the second. 
(iii) If t E T’ and 2 E 9, we have r;(t) 2 P;(t) [As- 
sumption 3.1(c)]. We then use Lemma 3.1 and the 
induction hypothesis to obtain zj (rj (t)) 5 xj (f:(t)) 
5 fj (;f (t)). Th e inequality Xi (t + 1) < 32i (t + 1) 
then follows from the monotonicity off. Q.E.D. 

Notice that Prop. 3.1 can be obtained as a corol- 
lary of Prop. 3.2, by imposing the additional as- 
sumptions that, 7; (t) = F;(t) = t for all i, j, t, and 
that T’ = {O,l, 2,. . .} for all i. While Prop. 3.2 
deals with special choices of the initialization x(O), 
it also provides worst case convergence rate com- 
parisons for other initial conditions, as we now dis- 
cuss. 

Let, us compare three asynchronous executions 
which are identical except for the choice of ini- 
tial conditions. These three executions generate 
sequences {g(t)}, {S(t)}, and {Z(t)}, respectively, 
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and are initialized with z(0) = u, E(0) = u, where 
u and u are the vectors of Assumption 2.2. Fur- 
thermore, we assume that u 5 E(0) 5 v. As a 
consequence of the monotonicity of f, it is easily 
shown (by induction on t) that g(t) <.5(t) 5 Z(t) 
for all t. It follows that over all possrble choices 
of initial conditions ~(0) satisfying u 5 z(0) 5 u, 
the slowest convergence to Z* is obtamed by let- 
ting either z(O) = u or z(0) = u. Consequently, 
if one is interested in the worst case convergence 
rate of two alternative methods, only the initial 
conditions x 0) 
considered. I!i 

= u and x(0) = v need to be 
owever, these initial conditions have 

the properties f(u) 2 u and f(v) 5 TV and Prop. 
3.2 applies. Coming back to the context of Prop. 
3.2, we conclude that the worst case convergence 
rate of e(t) is at least as bad as the worst case 
convergence rate of z(t), where the worst case is 
taken over all choices of initial conditions satisfy- 
ing u 5 x(0) 5 v. 

3.3. Comparison of synchronous and asyn- 
chronous iterations. 

Let us now compare a synchronous iteration 
in which processors wait to receive certain mes- 
sages before proceeding to the next update, with 
an asynchronous iteration in which processors per- 
form updates at every time unit. Of course, in 
order to make a fair comparison, we have to as- 
sume that the communication delays in the two 
algorithms are the same. 

We use (x(t)} and {e(t)} to denote the sequence 
generated by the asynchronous and the synchronous 
iteration, respectively. Let the notation r:(t) and 
f:(t) be as in the preceding subsection. As the 
asynchronous iteration performs an update at each 
time unit, we let 2” be the set of all nonnegative 
integers. In the synchronous iteration, an update 
is performed only when certain conditions are sat- 
isfied (that is, when all the information needed 
for the next update is available). So, we have 
9 c T’, the inclusion being proper, in general. 
The assumption that the communication delays 
are the same for the two algorithms, translates 
to the condition r;(t) = $(t) for all t E 5?. Fi- 
nally, we assume that ~j(t) is nondecreasing in t. 
Thus, Assumption 3.1 is satisfied and Prop. 3.2 
applies. It follows that for any common choice 
of initial conditions such that x(0) = 5(O) and 
f(x(0)) 5 x(O), the convergence of the sequence 
{x(t)} corresponding to the asynchronous iteration 
is faster than that of the synchronous sequence 
{g(t)}. By a symmetrical argument, the same con- 
clusion is reached if x(0) 5 f(x(0)). We can then 
argue as in the preceding subsection, to conclude 
that the worst case [over all initial conditions satis- 

fying u 5 z(0) 5 u] convergence rate of the asyn- 
chronous variant is better than that of the syn- 
chronous one. 

Notice that the condition r:(t) = f:(t) was irn? 
posed only for t E 5?. We now discuss a choice of 
the variables r;(t), t 4 !?, that results in the most 
fair comparison between the synchronous and the 
asynchronous iteration. In particular, we are go- 
ing to assume that a processor executing the asyn- 
chronous algorithm sends a message only when the 
corresponding processor executing the synchronous 
algorithm sends a message. Furthermore, we shall 
assume that the delays suffered by corresponding 
messages are the same in the two algorithms. As 
long as messages are delivered in the order that 
they are received, r;(t) and ?f (t) are nonincreas- 
ing in t and, furthermore, we will certainly have 
7;(t) = $(t) f or all i, j and t E ?. We are there- 
fore dealing with a special case of what was dis- 
cussed earlier in this subsection. This shows that 
the superiority of the asynchronous method holds 
under the most fair comparison, whereby both al- 
gorithms send the same number of messages and 
the messages have the same delays. We may con- 
clude that, in the case of monotone iterations, it 
is preferable to perform as many updates as pos- 
sible even if they are based on outdated informa- 
tion and, therefore, asynchronous algorithms are 
advantageous. 

All of the discussion in this subsection has been 
based on the premise that an update by some pro- 
cessor takes one time unit and that the delays 
t - rj (t) are integer. In particular, if the delays are 
nonzero, they must be an integer multiple of the 
time needed for an update. The analysis extends 
without change to the case where the communica- 
tion delays are noninteger but larger than 1. In ef- 
fect, our analysis captures those cases where com- 
munication is more time-consuming than compu- 
tation (as is often the case in practice). In fact, 
if the communication delays are smaller than the 
update time, then the synchronous algorithm can 
be slowed down by the communication delays by 
at most a factor of 2, in which case there does 
not seem to be any good reason for considering an 
asynchronous algorithm. 

The case where the communication delays are 
smaller than the time needed for an update can 
also be studied analytically and it can be shown 
that the convergence rate of the asynchronous it- 
eration could be worse than that of its synchronous 
counterpart. This reinforces our earlier statement 
that asynchronous iterations should be considered 
primarily when the communication delays are sub- 
stantial. 
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4. CONVERGENCE RATE COMPARE 
* SON: CONTRACTING ITERATIONS. 

added generality, we actually make the assump 
tion $(t) > max(O,t - D}, for j # i. Under this 
assumption, we have the following result. 

Throughout this section we assume that As- 
sumption 2.1 is in effect, that X = X”, and that 

Proposition 4.1. Suppose that T’ is the set of 

the iteration mapping f : !RQ” I-+ !Ri” has the fol- 
all nonnegative integers for each i. Then, the se- 

lowing contraction property [cf. Eq. (2.4)]: 
quence {x(t)} of vectors generated by the asyn- 
chronous iteration satisfies 

(4.1) 
where each 11 - J/i is a norm on R’Q , each wi is a 
positive scalar, and 0 < (Y < 1. 

To simplify the discussion, we assume that the 
communication delay of any message is equal to D 
time units, where D is a positive integer, and that 
a variable update takes a single time unit. Then, a 
synchronous algorithm performs one iteration ev- 
ery D + 1 time units and the contraction property 
(4.1) provides us with the estimate 

IId4 - x*1] < Aat/fD+‘) , 
where ll~ll = maxi Ilzilli/wi and where A is a con- 
stant depending on the initial conditions. We de- 
fine ps = ,l/(D+l) and view ps as the convergence 
rate of the synchronous iteration. This is meaning- 
ful if Eq. (4.2) holds with approximate equality at 
least for some initial conditions or if Eq. (4.2) is 
the only available convergence rate estimate. 

We impose an additional assumption on f: 
Assumption 4.1. There exists some p such that 
0 5 @ < (Y such that for all x and i, 

< max { Ellxi - xflli, ~~~~lIxj - xrllj}* 3 
Notice that in the case where ,f3 = cy, Assump 

tion 4.1 coincides with Eq. (4.1). The case where 
/3 is smaller than cy can be viewed as a weak cou- 
pling assumption. In particular, when ,8 = 0, then 
XT can be computed from knowledge of fi alone 
and interprocessor communication is unnecessary. 
It is intuitively clear that when p is very small, the 
information on the values of the variables updated 
by other processors is not as crucial and that the 
performance of an asynchronous algorithm should 
be comparable to its performance under the as- 
sumption of zero delays. We now develop some 
results corroborating this intuition. 

Consistently with our assumption that commu- 
nication delays are equal to D, we assume that 
r:(t) = max{O,t-D},forj # i, and that 7,!(t) = t. 
(The latter equality reflects the fact that proces- 
sor i need not send messages to itself and there- 
fore no delay is incurred.) For the sake of some 

lb(t) - x* II L AP’, k(O) - x* II, 

where PA is a nonnegative solution of the equation 

p = max(cu,@pmD}. (4.3) 

The proof of Prop. 4.1 is an easy inductive ar- 
gument and can be found in [BTZ, p. 441). Notice 
that we either have PA = CY < &@+I) = ps 
or PA = @pi * 5 &piD which also yields PA < 
(yll(D+l) = ps . In either case, the convergence 
rate of the asynchronous iteration is better. 

We now consider two interesting limiting cases: 

B 
a) Let us keep cy and D fixed and suppose that 

is small. (That is, we are considering the case 
where the iteration is very weakly coupled.) In 
particular, let us suppose that p 2 cyo+l. If 
PA = @Pi”, then &‘+l > /3 = pz+‘. On the 
other han , PA > cy, and weconclude that PA = (Y. 
Notice that the asynchronous convergence rate PA 
is the same as the convergence rate (I! of the itera- 
tion x(t+l) = f (x(t)) which is a synchronous iter- 
ation without any delays. We conclude that when 
the “coupling strength” /3 is sufficiently small, then 
the communication delays have no effect on the 
asynchronous convergence rate. In particular, the 
asynchronous algorithm is D + 1 times faster than 
its synchronous counterpart. 
(b) Let us now consider the case where D tends 
to infinity (very large delays). It is clear that in 
this case ps and PA converge to 1. It is thus more 
meaningful to concentrate on the values of p:’ ’ 

and PA D’l. These can be viewed as the error re- 
duction factors per phase of the synchronous it- 
eration. For the synchronous iteration, pf+’ is 
of course equal to LY. For the asynchronous it- 
eration, PA increases to 1 as D tends to infinity 
and, therefore, for D large enough, we will have 
PA > cy. Then, Eq. (4.3) shows that @paD = pA; 
equivalently, p,” + ’ is equal to ,8. Therefore, the 
convergence rate (per synchronous phase is de- 
termined only by the coupling strength B . Once 
more we reach the conclusion that weakly coupled 
problems favor the asynchronous algorithm, 

All of the above analysis can be carried through 
for the case where Assumption 4.1 is replaced by 
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the related inequality 

where Q! = /? + 7 < 1. The main difference is that 
PA iS now a nonnegative SOhtiOn of the equation 

P=r+BP-D, 

as opposed to Eq. (4.3). It is easily shown that 
PA 2 ps, that PA tends to 7 when /? is very small, 
and that p:+’ approaches p 
as D increases to infinity. h T 

(1 - 7) 5 a! = pF+l 
us, the qualitatltive 

conclusions we had derived under Assumption 4.1 
remain valid for this case as well. 

We have so far demonstrated the superiority 
of asynchronous iterations under the contraction 
condition. It can be argued, however, that the 
comparison is somewhat unfair for the following 
reason: we are assuming that communication de- 
lays are equal to D and that ri (t) = t - D for 
all t 2 D. This is equivalent to assuming that 
messages are transmitted by the processors exe- 
cuting the asynchronous algorithm at each time 
step. This corresponds to message transmissions 
at a rate D f 1 higher than the message transmis- 
sion rate in the synchronous algorithm. In order 
to make a more fair comparison, let us now con- 
sider an asynchronous iteration in which messages 
are transmitted only at integer multiples of D + 1, 
that is, at the same times that the synchronous 
iteration is transmitting messages. Notice that 
processors will be receiving a message once every 
D + 1 time units. Thus, at each update, the time 
elapsed since the last message reception can be at 
most D. Furthermore, messages carry information 
which is outdated by D time units. It follows that 
t- ri (t) < 20 for all t. We are therefore in the situ- 
ation that was considered in Prop. 4.1, except that 
D is replaced by 20. In particular, if we assume 
that Assumption 4.1 holds, we obtain an asyn- 
chronous convergence rate estimate PA, where PA 
is a nonnegative solution of p = max(cw,pp-2D }. 
All of our earlier qualitative conclusions remain 
valid and, in particular, we have PA 5 ps, with 
the difference between pe - PA being more pro- 
nounced in the case of weakly coupled iterations. 

5. TERMINATION OF ASYNCHRO- 
NOUS ITERATIONS. 

In practice, iterative algorithms are executed 
only for a fimte number of iterations, until some 
termination condition is satisfied. In the ewe of 
asynchronous iterations, the problem of determin- 
ing whether termination conditions are satisfied is 
a rather difficult problem because each processor 

possesses only partial information on the progress 
of the algorithm. We address this issue in this 
section. 

While the general model introduced in Section 2 
can be used for both shared memory and message- 
passing parallel architectures [BT2, Section 6.11, 
in this section we need to adopt a more explicit 
message-passing model. In particular, we assume 
that each processor j sends messages with the value 
of zj to every other processor i. Processor i keeps 
a buffer with the most recently received value of 
zj. We denote the value in this buffer at time 
t by z:.(t). This value was transmitted by pro- 
cessor j at some earlier time r:(t) and therefore 
x$(t) = zj (r:(t)). This model will be in effect 
throughout this section, and is easily seen to con- 
form to the general model of Section 2. 

5.1 Finitely terminating iterations. 

We first consider asynchronous iterative algo- 
rithms that are guaranteed to terminate. For this 
to happen, we need to impose certain assumptions 
on the way that the algorithm is implemented: 
Assumption 5.1. (a) If t E T’ and z;(t t 1) # 
xi (t), then processor i will eventually send a mes- 
sa 
(b 

K 

e to every other processor. 
If a processor i has sent a message with the 

va ue of xi t) to some other processor j, then pro- 
\ cessor i wi 1 send a new message to processor j 

only after the value of x; changes (due to an up 
date by processor i). 
(c) Messages are received in the order that they 
are transmitted. 
(d) Each processor sends at least one message to 
every other processor. 

According to Assumption 5.1(b), if the value of 
x(t) settles to some final value, then there will be 
some time t* after which no messages will be sent. 
Furthermore, all messages transmitted before t* 
will eventually reach their destinations and the 
algorithm will eventually reach a quiescent state 
where none of the variables xi changes and no 
message is in transit. We can then say that the 
algorithm has terminated. 

We still assume that the sets r’ are infinite for 
each i. However, once the algorithm becomes qui- 
escent any further updates will be inconsequential. 
It is not hard to see that the property Iim,,, $(t)= 
00 (cf. Assumption 2.1) follows from Assumption 
5.1. This is because every processor eventually 
gets informed of the changes in the variables of the 
other processors [cf. Assumption 51(a)]. Also, if 
a processor i stops sending any messages (because 
xi has stopped changing) then the last message re- 
ceived by processor j is the last message that was 
sent by processor i [due to Assumption 5.1(c)] and 
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therefore processor j will have up-to-date infor- 
mation on zi. 

Let us now suppose that there exists a family 

6 d 
X(iE ) of nested sets with the properties intro- 
uce in Prop. 2.1. Furthermore, let us assume 

that there exists some k such that the set X(k) 
consists of the single element z*. Since we have 
just verified the validity of Assumption 2.1, it fol- 
lows that we will eventually have z(t) = Z* ; that 
is, the algorithm terminates in finite time. Notice 
that termination is equivalent to the following two 
properties: 

t 
i) 
ii) 

No message is in transit. 
An update by some processor i causes no 

change in the value of zi. 
Property (ii) is really a collection of local termina- 
tion conditions. There are several algorithms for 
termination detection when a termination condi- 
tion can be decomposed as above see 
Section 8.1 ). 
no essenti all 

Thus termination d 
[DS] , [BT2, 

etection causes 
difficulties in this case. 

5.2. Non-terminating algorithms. 
Let us now shift our attention to the more inter- 

esting case of iterative algorithms that never ter- 
minate if left on their own. If we were dealing with 
the synchronous iteration z(k + 1) = f(z(k)), it 
would be natural to terminate the algorithm when 
the condition Il~(t+l)-z(t)11 5 E is satisfied, where 
s is a small positive constant reflecting the desired 
accuracy of solution, and where JI . I[ is a suitable 
norm. This suggests the followmg approach for 
the context of asynchronous iterations. Given the 
iteration mapping f and the accuracy parameter 
e, we define a new iteration mapping g : X H X 
by letting 

d4 = fib), if l/f&) - sll 2 5 

9i(X> = x2 otherwise. 

We will henceforth assume that the processors are 
executing the asynchronous iteration x := g(z) 
and communicate according to Assumption 5.1. 
Once more, the termination condition for this iter- 
ation decomposes into a collection of local termina- 
tion conditions and the standard termination de- 
tection methods apply. We will therefore concen- 
trate on the question of whether eventual termi- 
nation is guaranteed. One could argue as follows. 
Assuming that the original iteration x := f(x) is 
guaranteed to converge to a fixed point x*, the 
changes in the vector x will eventually become ar- 
bitrarily small, in which case we will have g(z) = 2 
and the iteration z := g(x) will terminate. Un- 
fortunately, this argument is fallacious, as demon- 
strated by the following example. 
Example 5.1. Consider the function f : !JZ2 H R2 
defined by fr(x) = -x1, if x2 2 e/2, fi (x> = 0, 

if x2 < E 2, and fa(x) = z2/2. It is clear that 
h the async ronous iteration x := f(z) is guaran- 

teed to converge to x* = (0,O): in particular, 
x2 is updated according to 22 := x2/2 and tends 
to zero; thus, it eventually becomes smaller than 
c/2. Eventually processor 1 receives a value of x2 
smaller than e/2 and a subsequent update by the 
same processor sets Z1 to zero. 

Let us now consider the iteration x := g(x). If 
the algorithm is initialized with 52 between 42 
and 6, then the value of x2 will never change, and 
processor 1 will keep executing the nonconvergent 
iteration z1 := -x1. Thus, the asynchronous iter- 
ation z := g(x) is not guaranteed to terminate. 

The remainder of this section is devoted to the 
derivation of conditions under which the iteration 
x := 9( ) x is g uaranteed to terminate. We intro- 
duce some notation. Let I be a subset of the set 
0 , . . . ,p} of all processors. For each i E I, let 
there be given some value 6i E Xi. We consider 
the asynchronous iteration z := f’*“(x) which is 
the same as the iteration x := f(x) except that 
any component xi, with i E I, is set to the value 
6$. Formally, the mapping fl@ is defined by let- 
ting f,!*‘(x) = fi(x), if i 4 I, and $‘“(x) = Bi, if 
i E I. The main result is the followmg: 
Proposition 5.1. Let Assumption 5.1 hold. Sup- 
pose that for any 1 c { 1,. . . , TV} and for any choice 
of 8i E Xi, i E I, the asynchronous iteration 
x := f’*“( x 1s ) - g uaranteed to converge. Then., the 
asynchronous iteration x := g(x) terminates m fi- 
nite time. 
Proof. Consider the asynchronous iteration z := 
g(x). Let 1 be the set of all indices i for which 
the variable xi(t) changes only a finite number of 
times and for each a’ E 1, let oi be the limiting 
value of xi(t). Since f maps X into itself, so does 
g. It follows that 19, E Xi for each i. For each 
i E I, processor i sends a positive but finite num- 
ber of messages [Assumptions 5.1(d) and 5.l(b 1. 
By Assumption 5.1(a), the last message sent l y 
processor i carries the value Bi and by Assump 
tion 5.1(c) this is also the last message received by 
any other processor. Thus, for all t large enough, 
and for all j, we will have xi (t) = xi (ri (t)) = 0,. 
Thus, the iteration x := g(x) eventually becomes 
identical with the iteration x := f’@(~) and there- 
fore converges. 
Xi(t + 1) - Xi(t) 

This implies that the difference 
converges to zero for any i I. 

On the other hand, because of the definition o f the 
mapping g, the difference xi (t + 1 
zero, or its magnitude is bounde 2 

- xi (t) is either 

It follows that xi (t + 1) - x;(t 
below by 6 > 0. 

to zero, for every i 4 I. This s h 
eventually settles 
ows that i E I for 

1 4 I; we thus obtain a contradiction unless 
n}, which proves the desired result. 
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We now identify certain cases in which the main 
assumption in Prop. 5.1 is guaranteed to hold. We 
consider first the case of monotone iterations and 
we assume that the iteration mapping f satisfies 
Assumption 2.2. For any I and (0i 1 i E I}, the 
mapping fl-e inherits the continuity and mono- 
tonicity properties of f. Let u and u be as in As- 
sumption 2.2 and suppose that X = {z 1 u 2 z < 
v}. Let 0i be such that q ,< 8, 5 vi. Since f sat- 
isfies Assumption 2.2(d), we have f’*“(u) 2 u and 
f’*“(u) < v. We conclude that the mapping fzve 
satisfies parts (a) (b), 
Assumption 2.2(c) ’ 

and (d) of Assumption 2.2. 
1s not automatically true for the 

mappings fz@, in general; however, if it can be in- 
dependently verified, then the asynchronous itera- 
tion x := fzle is guaranteed to converge, and Prop. 
5.1 applies. Let us simply say here that Assump 
tion 2.2(c) can be verified for certain network flow 
algorithms, as well as for successive approximation 
algorithms for discounted and (a class of) undis- 
counted dynamic programming problems. (These 
results will be reported in more detail elsewhere.) 

Let us now consider the case where f satisfies 
the contraction condition of Eq. (4.1). Unfortu- 
nately, it is not necessarily true that the mappings 
f ‘,’ also satisfy the same contraction condition. In 
fact, the mappings fzve are not even guaranteed to 
have a fixed point. Let, us strengthen Eq. (4.1) and 
assume. that 

IIf(4 - fMII 5 + - YIL v’s, y E P, (5.1) 

where 11 * ]I is again a block-maximum norm, as 
in Eq. (4.1), and a! E [O,l). We have f’?“(z) - 
f’*“(y) = Bi - Bi = 0 for all i E I. Thus, 

Thus, the mappings fzle inherit the contraction 
property (5.1). As discussed in Section 2.2, this 
property guarantees asynchronous convergence and 
therefore Prop. 5.1 applies again. 

We conclude that the modification z := g(z) 
of the asynchronous iteration z := f(z) is often, 
but not alway!, guaranteed to terminate in finite 
time. It is an mteresting research question to de- 
vise economical termination procedures for the it- 
eration z := f(z) for those cases where the itera- 
tion z := g(z) does not terminate. 

REFERENCES 

[B] D. P. Bertsekas, ‘Distributed asynchronous com- 
putation of fixed points,” Mathematical Program- 
ming, 27, 1983, pp. 107-120. 

k BG] D. P. Bertsekas and R. G. Gallager, Data 
etworks, Prentice Hall, Englewood Cliffs, NJ, 1987 

I 
-BTl]D. P. Bertsekas and J. N. Tsitsiklis, “Paral- 
el and distributed iterative algorithms: a selective 

survey,” Technical Report LIDS-P-1835, Labora- 
tory for Information and Decision Systems, M.I.T., 
Cambridge, Mass., November 1988. 

I 
BT2]D. P. Bertsekas and J. N. Tsitsitilis, Paral- 
el and Distributed Computation: Numericcil Meth- 

ods, Prentice Hall, Englewood Cliffs, NJ, 1989. 

I 
CM] D. Chazan and W. Miranker, ‘Chaotic re- 
axation” , Linear Algebra and its Applications, 2, 
1969, pp. 199-222. 
[DS] E. W. Dijkstra and C. S. Sholterf, “Termi- 
nation detection for diffusing computations” , Ini 
Proc. Lett., 11, 1980, pp. l-4. 
[K] H. T. Kung, “$ynchronized and asynchronous 
parallel algorithms for multiprocessors”, in Algo- 
rithms and Complezity, J.F. Traub (Ed;), Aca- 
demic, 1976, pp. 153-200. 
[M] D. Mitra, “Asynchronous relaxations for the 
numerical solution of differential equations by par- 
allel processorsn , SIAM J. Scientific and Statisti- 
cal Computing, 8, 1987, pp. syi3-~58. 
[S] P. Spiteri, “Contribu~~,n,,a,~;e~~er~~t~~~~ 
systemes non lineaires”, 
Universite de Franche-Comte, Besancon, Fraice, 
1984. 

I 
SW]D. Smart and J. White, “Reducing the paral- 
el solution time of sparse circuit matrices using 

reordered Gaussian elimination and relaxation”, 
Proceedings of the 1988 ISCAS, Espoo, Finland. 
[T] J. N. Tsitsiklis, “A comparison of Jacobi and 
Gauss-Seidel parallel iterations, to appear in +p- 
plied Mathematics Letters. 
[V] R. S. Varga, Matrix Iterative Methods. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1962. 
[ZL] S. A. Zenios and R. A. Lasken, “Nonlinear 
network optimization on a massively parallel con- 
nection machine”, Annals of Operations Research, 
14, 1988. 

470 


