
,

CONVERGENCE RATE AND TERMINATION
OF ASYNCHRONOUS ITERATIVE ALGORITHMS

Dimitri P. Bertselsas
John N. Tsitsiklis

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.

Abstract
We consider iterative algorithms of the form z :=
f(z), executed by a parallel or distributed comput-
ing system. We focus on asynchronous implemen-
tations whereby each processor iterates on a dif-
ferent component of z, at its own pace, using the
most recently received (but possibly outdated) in-
formation on the remaining components of 2. We
provide results on the convergence rate of such al-
gorithms and make a comparison with the conver-
gence rate of the corresponding synchronous meth-
ods in which the computation proceeds in phases.
We also present results on how to terminate asyn-
chronous iterations in finite time with an approxi-
mate solution of the computational problem under
consideration.

Keywords: Iterative methods, asynchronous
algorithms, parallel algorithms, distributed
algorithms, termination detection.

1. INTRODUCTION

This paper deals with iterative algorithms of the
form z := f(z), where z = (z~,...,z,) is a vector
in ZIP and f : 3” I+ 8” is an iteration mapping
defining the algorithm. In many interesting appli-

Research supported by the NSF under Grants ECS-
8519058 and ECS-8552419, with matching funds
from Bellcore and DuPont, and by the AR0 under
Grant DAAL03-86-K-0171.

Permission to copy without fee all or part of this mate&l is granted provided
that the topics are oat made or distributed for direct commercial advantage,
the ACM copyright ootice and the title of the publication and its date appear,
wd notice is given that copying is by pxmission of the Association for Com-
puting thbinery. To copy otbewiee, or to republish, requires a fee and/or
specitlc permission.

0 1989 ACM O-89791-309-4/89/006/ 046 3 $1.50

cations, it is natural to consider distributed exe-
cutions of this iteration whereby the ith processor
updates zi according to the formula

xi := fii(X lY,%a), (1-l)
while receiving information from other processors
on the current values of the remaining components.
Iteration (1.1) can be executed synchronously
whereby all processors perform an iteration, com-
municate their results to the other processors, and
then proceed to the next iteration. It can also
be executed asynchronously, whereby each proces-
sor computes at its own pace while receiving (pos-
sibly outdated) information on the values of the
components updated by the other processors. In
several circumstances, asynchronous methods can
have certain advantages over their synchronous
counterparts (see Section 2) and can be a desirable
alternative. On the other hand, the mathemati-
cal properties of asynchronous iterations are quite
different from those of their synchronous counter-
parts. Even though a fairly comprehensive theory
is available [BT2], there are certain issues (per-
taining to the convergence rate and termination
of asynchronous iterations), that have not been
sufficiently studied and this is the subject of the
present paper.

Outline of the paper.

In Section 2, we present a mathematical model
of synchronous and asynchronous iterations, dis-
cuss the possible advantages of asynchronous
methods, and present the basic convergence results
that are available. In Section 3, we concentrate
on asynchronous methods in which the iteration

461

mapping f is monotone and compare the conver-
gence rates of the synchronous and asynchronous
variants. Section 4 is similar, except that atten-
tion is shifted to the case where the iteration map
ping f is a contraction with respect to a maximum
norm. Finally, in Section 5, we consider modifica-
tions whereby an asynchronous algorithm can be
made to execute for a finite amount of time and
terminate with an approximate soulution of the
computational problem under consideration. This
is essentially a problem of detecting the validity
of certain termination conditions which is rather
trivial in the context of synchronous methods. We
indicate that this issue becomes much more diffi-
cult in the context of asynchronous methods and
we identify certain conditions under which our aim
can be accomplished. We note that the literature
on the subject is rather large. For this reason, we
do not provide a comprehensive list of references,
and we refer the reader to [BT2].

2. THE ALGORITHMIC MODEL AND
BASIC CONVERGENCE RESULTS.

Let Xl,..., X, be subsets of Euclidean spaces
!v’ !fPp , respectively. Let n = nl + l ‘9 + nP,
and ‘let ‘X c !I? be ,the Cartesian product X =
HT.= 1 Xi. Accordingly, any z E 8” is decomposed
in the form x = (~1 , . . . , z~), with each zi belong-
ing to Pi. For i = 1,. . . ,p, let fi : X I-+ Xi be
a given function and let f : X H X be the func-
tion defined by f(x) = (fi(x), . . . , fP(x)) for every
z E X. We consider an iteration of the form

x := f(x), (2.1)

and we call f the iteration mapping defining the
algorithm. We assume that there are p processors,
with the ith processor assigned the responsibility
of updating the ith component xi according to the
rule xi := fi(x) = fi(x1,. . . , zP). We say that an
execution of iteration (2.1) is synchronous if it can
be described mathematically by the formula

4k + 1) = f (x(k)),

where k is an integer-valued variable used to in-
dex different iterations, not necessarily represent-
ing real time. Synchronous execution is certainly
possible if the processors have access to a global
clock, if each processor initiates an update at each
“tick” of the clock, and if the results of an update
can be reliably transmitted to other processors be-
fore the next “tick”. Barring the existence of a
global clock, synchronous execution can be still ac-
complished by having each processor perform the

st update as soon as its kth update has been
and the results of the kth update of all

other processors have been received.

In an usynchronoue implementation of iteration
(2.1), processors are not required to wait until they
receive all messages generated during the previ-
ous iteration. Rather, each processor is allowed to
keep updating its own component at its own pace.
If the current value of the component updated by
some other processor is not available, then some
outdated value (received at some time in the past)
is used instead. Furthermore., processors are not
required to communicate therr results after each.
iteration but only once in a while. We allow some
processors to compute faster and execute more it-
erations than others, we allow some processors to
communicate more frequently than others, and we
allow the communication delays to be substantial
and unpredictable. We also allow the communi-
cation channels to deliver messages out of order,
i.e., in a different order than the one they were
transmitted.

There are several potential advantages that can
be gained from asynchronous execution (see e.g.,
[Kl, [BTl]> W-21 .

b
On the other hand, a ma-

jor potential draw ack is that asynchronous algo-
rithms cannot be described mathematicallly by an
equation of the form x(k + 1) = f (x(k)). Thus,
even if the latter difference equation is convergent,
the corresponding asynchronous iteration could di-
verge, and indeed this is sometimes the case. Even
if the asynchronous iteration converges, such a con-’
elusion often requires rather difficult analysis. Nev-
ertheless, there is a large number of results stating
that certain classes of important algorithms retain
their desirable conver ence properties in the face
of asynchronism [BT2 . 7 A very general result of
this form will be presented soon, following a pre-
cise description of our model of computation.

Let t be a time variable, representing (global)
real time. Even though t should be viewed as a
continuous variable, the presentation, the nota-
tion, and the proofs are simplified if we introduce
a small constant A, which is viewed as the unit
of time, and analyze the behavior of the algorithm
at times that are integer multiples of A. For such
an analysis to be possible, we only need to assume
that no processor can execute more than one up
date during a time interval of length A. Clearly,
such an assumption should be valid in practice if
A is taken very small. Still, even though A is
supposed to be small, it is notationally convenient
to scale the time axis so that we can assume that
A = 1. (This entails no loss of generality.) To con-
clude, our model will be cast in terms of an integer
time variable t, which is proportional to real time.

Let zi (t) be the value of xi residing in the mem-
ory of the ith processor at time t. We assume that
there is a set of times T’ at which xi is updated.
To account for the possibility that the ith proces-
sor may not have access to the most recent values

462

of the components of Z, we assume that

G@fl) = fi(21(~~(t)),...,Zp(~~(t))),

where r;(t) are integer times+ satisfying
t , Vt. At all times t 4 2’: , zi (t) is
changed and

zip + 1) = Xi@), Vt$T’.

BET’,
(24

r;(t) 5
left un-

(2.3)

The difference t - rf (t) is related to the communi-
cation delay of the message zj sent from processor
j to processor i, and which is used in an update of
4 that starts at time t. In a synchronous execu-
tion, we have t - r:(t) = 0. As t - r:(t) increases,
we can say that the amount of asynchronism in
the algorithm is larger. Of course, for the algo-
rithm to make any progress at all, we should not
allow r:(t) to remain forever small. Furthermore,
no processor should be allowed to drop out of the
computation and stop iterating. For this remon,
the following assumption is introduced:
Assumption 2.1. The sets T’ are infinite and if
{tk} is a sequence of elements of T’ which tends
to infinity, then limk-,oo 7j(tk) = 00 for every j.

Asynchronous convergence under Assumption
2.1 has been established by several authors for a
large variety of choices of the iteration mapping

starting with the work of Chazan and Miranker
(see [BT2] and the references therein). The

result originally given in (B] and refor-
mulated in (BT2], seems to be the most general
one.
Proposition 2.1. Suppose that for each i E (1,

bf*X?‘&% that
ere exists a sequence {Xi(k)) of subsets

(a) j;i(k + 1) tXi(k), for all Ic > 0.
(b) The sets X(k) = nr==, Xi(k) have the prop
erty f(Z) E X(k: + 1), for all 5 E X(k).
(c) All limit points of a sequence {z(k)} with the
pfroperty s(k) E X(k) for all k, are fixed points of

Furthermore, assume that z(r) E X(0) for all r 5
0. Then, under Assumption 2.1, all limit points of

enerated by the asynchronous
are fixed points of f,

We discuss briefly the assumption ~(7) E X(0)
for r 5 0. In the most common case, the algorithm

t The values of the variables r:(t) for t 4 Ti are
of no importance. Still, it is sometimes convenient
to assume that these variables are defined for all t.

We interpret Xj (rj (t)) as the value of ccj available
to processor i at time t, even if t 4 T’ and this
value is not used in an update.

is initialized at time 0 with some z(0) E X(O), and
we have r:(t) 1 0 for all t 2 0. In this case, the
values of z(r), r < 0, have no effect on the algo-
rithm, they can be assumed without loss of gen-
erality to belong to X(O), and the proposition ap-
plies. Another possible situation is the following.
Suppose that until some time t* the processors had
been executing some other asynchronous iteration
z := g(s) and that at time t* they start execut-
ing the asynchronous iteration x := f(z) using the
values z(t) produced by the iteration 2 := g(z) as
initial conditions. As long as the original iteration
wss initialized with a vector in the set X(0) and
if the mapping g maps X(0) into X(O), we have
~(7) E X(0) for all r 5 t*. We can then replace
the time origin by t’ and use Prop. 2.1 to establish
convergence.

The conditions of Prop. 2.1 can be easily verified
in two important cases that are the subjects of
Subsections 2.1 and 2.2, respectively.

2.2. Monotone mappings
Assumption 2.2. The iteration mapping f :
X H X has the following properties:
a f is continuous.

II b f is monotone [that is, if z 5 y then f(z) 5
f Y> -+
A

1 has a unique fixed point x*.
i Th ere exist vectors U,V E X, such that u 5

f(u) 5 f(u) I v.
Let fk be the composition of k copies of f (f”

is the identity mapping) and let

X(k) = 1~ I f”(u) I z* 5 f”(v)).

It is easily shown that f”(u) and fk
\
v) converge

to z:, as k tends to infinity. As a resu t, Prop. 2.1
apphes and establishes asynchronous convergence,
provided that the algorithm is initialized at some
z(0) satisfying u < 2(O) 5 v.

Assumption 2.2 can be verified for a variety of
algorithms, such as linear iterations involving non-
negative matrices, the Bellman-Ford algorithm for
the shortest path problem, the successive approxi-
mation algorithm for infinite horizon dynamic pro-
gramming, and dual relaxation algorithms for lin-
ear and nonlinear network flow problems [BT2].

2.2. Maximum norm contractions.
Let X = 8”. and consider a norm on !J?’ defined

bY

t Vector inequalities are to be interpreted com-
ponentwise throughout the paper.

463

where zi E 9Fi is the ith component of 2,]I l]]i
is a norm on F,
each i.

and wi is a positive scalar, for
(We call such a norm a block-mammum

norm.) Suppose that f has the following contrac-
tion property: there exists some (I! E [O,l) such
that

IIf(4 - %*I I + - ~*I19 Vx E W, (2.4)

where z* is a fixed point of f. Given a vector
z(0) E X with which the algorithm is initialized,
let

Xi(k) = {Xi E W’ 1 llX<-XfIli 5 O!k(lX(0)-X*II}*

It is easily verified that these sets satisfy the con-
ditions of Prop. 2.1 and asynchronous convergence
to 2* follows.

Iteration mappings f with the contraction prop
erty (2.4) are very common. We list a few exam-
ples:
(a) Linear iterations of the form f(z) = AZ + b,
where A is an n x n matrix such that p(lAl) < 1
,[CM

1
. Here, IAl is the matrix whose entries are the

abso ute values of the corresponding entries of A,
and p(/AI), the spectral radius of A], is the largest
of the magnitudes of the L eigenva ues of I AI. As a
special case, we obtain totally asynchronous con-
vergence of the iteration A := IMP for computing
a row vector R with the invariant probabilities of
an irreducible, discrete-time, finite-state Markov
chain specified in terms of the stochastic matrix P,
provided that one of the components of 1~ is held
fixed throughout the algorithm [BT2, p. 4351.
(b) Gradient iterations of the form j(z) = z -
7V F (z), where 7 is a small positive stepsize pa-
rameter, F : !lF H B is a twice continuously dif-
ferentiable cost function whose Hessian matrix is
bounded and diagonally dominant ([B], [BT2, p.
4371).

Other examples are the projection and other al-

t
orithms for the solution of variational inequalities
under certain diagonal dominance conditions), and

waveform relaxation methods for the solution of
PS;;Es or boundary value problems ([BT2], [M],

3. CONVERGENCE RATE COMPAR-
ISONS: MONOTONE ITERATIONS.

Throughout this section, we assume that As-
sumption 2.1 is in effect and that the iteration
mapping f satisfies the monotonicity Assumption
2.2. The monotonicity assumption is very conve-
nient for making convergence rate comparisons be-
tween different variants of the same algorithm. A
classical example concerns the comparison of the
Jacobi and Gauss-Seidel variants of the linear iter-
ation z := f(z) = As + b when A is a nonnegative

matrix of spectral radius less than 1. In particular
the Stein-Rosenberg Theorem [V] asserts that., in
a serial computing environment, the Gauss-Serdel
iteration converges at least as fast as its Jacobi
counterpart. The result in the following subsec-
tion states that exactly the opposite is true in a
parallel computing environment.

3.1. Comparison of synchronous Jacobi
and Gauss-Seidel methods.

Let us restrict ourselves for the moment to a
synchronous computing environment. In particu-
lar, we assume that component updates and the
delivery of the results to every other processor can
be accomplished within one time unit. A Jacobi
iteration is described by the equation

xJ (t + 1) = f (Z” (t)) . (3.1)

In a Gauss-Seidel iteration, components are up
dated one at a time and the update of a compo-
nent q uses updated values of the preceding com-
ponents Zl,-a.,Zi-l. In practice, the mapping f
is usually sparse (that is, each function fi depends
only on a few of the components xi
case, the Gauss-Seidel iteration can b

and in this
e somewhat

paral!elized by having more than one (but usually
not all) components being updated simultaneously.
(This IS accomplished by means of the well-known
coloring procedure [BT2, Section 1.2.41). Let U(t)
be the set of components that are updated at time
t. Then, the Gauss-Seidel iteration is described
by

xy (t + 1) = x7(t), if i $ U(t), (3.2)

and

Xy(t + 1) = fi (z:(t))) if i E U(t). (3.3)

The following result is
an earlier result of [SW P

roved in [T], generalizing
:

Proposition 3.1. If z?(O) = x”(O) = z(O) and
the property f (z(0)) < Z(O) holds, then Z* <
x”(t) 5 x”(t) for all t.

Proposition 3.1 establishes the faster conver-
gence of the Jacobi iteration, at least for special
choices of initial conditions. [A symmetrical re-
sult holds if Z(O) satisfies z(0) 5 f (x(O))]. It can
also be shown [T] that for any initial conditions
satisfying Z* < z 0) or Z* > x(0 , there exists
some constant K t depending on z O)], such that 1
Z* 5 xJ(t + K) < d’(t) for all t. (In words, the
convergence rate of the Jacobi iteration cannot be
worse than the convergence rate of the correspond-
ing Gauss-Seidel iteration. A related effect has

464

also been observed experimentally in the context
of a specific example [ZL] .) In the nexf subsec-
tion, these results are extended to obtain a much
more general convergence rate comparison result.
In particular, it will be shown that if the num-
ber of components updated at each time step is
increased or if the size of the “communication de-
lays” t - rj (t) is reduced, then the convergence rate
can only improve.

3.2. Comparison between alternative
asynchronous iterations.

We consider two alternative executions of the
asynchronous iteration z := f(z). We distinguish
between them by putting a “hat” on the variables
associated with the second execution. Thus the
first execution is decsribed by Eqs. (2.2) and (2.3),
while the second by

4j (t + 1) = 4((t)) ift#?, (3-4

~~(t+1)=f~(if1(?~(t))r,..,2p(~~(t))), iftE5?,
(3.5)

Assumption 3.1. (a) For each i, j, and t 2 0, we
have $(t+l) 1 r;(t) 2 0 and $(t+l) > f;(t) 2 0.
(b) For each i, we have T’ > C?.
(c) For each i, j, and t E ?“, we have r;(t) 3 F;(t).

The requirements $ (t) 2 0 and t;(t) 2 0 basi-
cally mean that the algorithm is started at time 0.
Furthermore, Assumption 3.2(a) states that sub-
sequent iterations by the same processor are based
on newer information. It is essentially equivalent
to an assumption that messages are received in the
order that they are transmitted. Part (b states
that in the first execution there are at 1 east as
many variable updates as in the second. Finally,
part (c) states that the communication delays in
the first execution are no larger than those in the
first.
Proposition 3.2. Suppose that:
a Assumption 3.1 holds.

II b CC* _< z(O) = i(0).
(4 f 640)) 5 40).
Then, z* 5 z(t) ,< S(t) for all t. [A symmetrical
result holds if e(O) = ~(0) 2 2* and f(z(0)) 2
40) -1
Proof.
Lemma 3.1, There holds x(t + 1) 5 x(t) for all
t.
Proof of Lemma 3.1. We proceed by induction
on t. If 0 E T’ then z;(l) = f;(x(O)) 5 Xi(O); if
0 $2” then pi = Zi(O). Thus, ~(1) 5 X(O).

Let us now assume the induction hypothesis
x(t) 6 x(t - 1) < * l - _< z(l) 5 x(0). If t # T’

then xi(t + 1) = xi(t). If t E T’, we first consider
the case where t is the first element of T’. Then,
xi(t) = xi (0). Furthermore,

xi(t + l) = fi (zl (ri(t))t*- *tZp(Tt(t)))

i ri(X(O)) 5 Xi(O) = xi(t)s

where the first inequality follows from xi (7; (t)) 5
xj

d
0), j = I,..., p, which is a consequence of the

in u&on hypothesis. Finally, let us suppose that
t is not the first element of T’ and let t’ be the
previous element of r‘ . Using Assumption 3.1(a),
we have rj (t) > 7: (t’) , and the induction hypoth-
esis implies that sj (r;(t)) 5 xi ($ (t’)) . Using the
monotonicity of f, we obtain

L fi (xl(ri(t')) , . . *, xp (r;(t))) = z&‘+l) = q(t).

Q.E.D.

We now complete the proof of the proposition.
We proceed again inductively. We have x(0) =
2 0),
4

by assumption, which starts the induction.
e assume the induction hypothesis that x(a) 5

k(s) fors=O,l,..., t. We consider three cases:
(i) If t 4 T’, then Assumption 3.1(b) implies that
t $ 3. It follows that Xi(t + 1) = x;(t) 5 &(t) =
& (t+ 1), where the induction hypothesis was used
to obtain the inequality.
(ii)Ift~T’andt$~thenxi(t+l)jxi(t)<
xi(t) = gi (t + 1)) where we have used Lemma 3.1
for the first inequality and the induction hypothe-
sis for the second.
(iii) If t E T’ and 2 E 9, we have r;(t) 2 P;(t) [As-
sumption 3.1(c)]. We then use Lemma 3.1 and the
induction hypothesis to obtain zj (rj (t)) 5 xj (f:(t))
5 fj (;f (t)). Th e inequality Xi (t + 1) < 32i (t + 1)
then follows from the monotonicity off. Q.E.D.

Notice that Prop. 3.1 can be obtained as a corol-
lary of Prop. 3.2, by imposing the additional as-
sumptions that, 7; (t) = F;(t) = t for all i, j, t, and
that T’ = {O,l, 2,. . .} for all i. While Prop. 3.2
deals with special choices of the initialization x(O),
it also provides worst case convergence rate com-
parisons for other initial conditions, as we now dis-
cuss.

Let, us compare three asynchronous executions
which are identical except for the choice of ini-
tial conditions. These three executions generate
sequences {g(t)}, {S(t)}, and {Z(t)}, respectively,

465

and are initialized with z(0) = u, E(0) = u, where
u and u are the vectors of Assumption 2.2. Fur-
thermore, we assume that u 5 E(0) 5 v. As a
consequence of the monotonicity of f, it is easily
shown (by induction on t) that g(t) <.5(t) 5 Z(t)
for all t. It follows that over all possrble choices
of initial conditions ~(0) satisfying u 5 z(0) 5 u,
the slowest convergence to Z* is obtamed by let-
ting either z(O) = u or z(0) = u. Consequently,
if one is interested in the worst case convergence
rate of two alternative methods, only the initial
conditions x 0)
considered. I!i

= u and x(0) = v need to be
owever, these initial conditions have

the properties f(u) 2 u and f(v) 5 TV and Prop.
3.2 applies. Coming back to the context of Prop.
3.2, we conclude that the worst case convergence
rate of e(t) is at least as bad as the worst case
convergence rate of z(t), where the worst case is
taken over all choices of initial conditions satisfy-
ing u 5 x(0) 5 v.

3.3. Comparison of synchronous and asyn-
chronous iterations.

Let us now compare a synchronous iteration
in which processors wait to receive certain mes-
sages before proceeding to the next update, with
an asynchronous iteration in which processors per-
form updates at every time unit. Of course, in
order to make a fair comparison, we have to as-
sume that the communication delays in the two
algorithms are the same.

We use (x(t)} and {e(t)} to denote the sequence
generated by the asynchronous and the synchronous
iteration, respectively. Let the notation r:(t) and
f:(t) be as in the preceding subsection. As the
asynchronous iteration performs an update at each
time unit, we let 2” be the set of all nonnegative
integers. In the synchronous iteration, an update
is performed only when certain conditions are sat-
isfied (that is, when all the information needed
for the next update is available). So, we have
9 c T’, the inclusion being proper, in general.
The assumption that the communication delays
are the same for the two algorithms, translates
to the condition r;(t) = $(t) for all t E 5?. Fi-
nally, we assume that ~j(t) is nondecreasing in t.
Thus, Assumption 3.1 is satisfied and Prop. 3.2
applies. It follows that for any common choice
of initial conditions such that x(0) = 5(O) and
f(x(0)) 5 x(O), the convergence of the sequence
{x(t)} corresponding to the asynchronous iteration
is faster than that of the synchronous sequence
{g(t)}. By a symmetrical argument, the same con-
clusion is reached if x(0) 5 f(x(0)). We can then
argue as in the preceding subsection, to conclude
that the worst case [over all initial conditions satis-

fying u 5 z(0) 5 u] convergence rate of the asyn-
chronous variant is better than that of the syn-
chronous one.

Notice that the condition r:(t) = f:(t) was irn?
posed only for t E 5?. We now discuss a choice of
the variables r;(t), t 4 !?, that results in the most
fair comparison between the synchronous and the
asynchronous iteration. In particular, we are go-
ing to assume that a processor executing the asyn-
chronous algorithm sends a message only when the
corresponding processor executing the synchronous
algorithm sends a message. Furthermore, we shall
assume that the delays suffered by corresponding
messages are the same in the two algorithms. As
long as messages are delivered in the order that
they are received, r;(t) and ?f (t) are nonincreas-
ing in t and, furthermore, we will certainly have
7;(t) = $(t) f or all i, j and t E ?. We are there-
fore dealing with a special case of what was dis-
cussed earlier in this subsection. This shows that
the superiority of the asynchronous method holds
under the most fair comparison, whereby both al-
gorithms send the same number of messages and
the messages have the same delays. We may con-
clude that, in the case of monotone iterations, it
is preferable to perform as many updates as pos-
sible even if they are based on outdated informa-
tion and, therefore, asynchronous algorithms are
advantageous.

All of the discussion in this subsection has been
based on the premise that an update by some pro-
cessor takes one time unit and that the delays
t - rj (t) are integer. In particular, if the delays are
nonzero, they must be an integer multiple of the
time needed for an update. The analysis extends
without change to the case where the communica-
tion delays are noninteger but larger than 1. In ef-
fect, our analysis captures those cases where com-
munication is more time-consuming than compu-
tation (as is often the case in practice). In fact,
if the communication delays are smaller than the
update time, then the synchronous algorithm can
be slowed down by the communication delays by
at most a factor of 2, in which case there does
not seem to be any good reason for considering an
asynchronous algorithm.

The case where the communication delays are
smaller than the time needed for an update can
also be studied analytically and it can be shown
that the convergence rate of the asynchronous it-
eration could be worse than that of its synchronous
counterpart. This reinforces our earlier statement
that asynchronous iterations should be considered
primarily when the communication delays are sub-
stantial.

466

4. CONVERGENCE RATE COMPARE
* SON: CONTRACTING ITERATIONS.

added generality, we actually make the assump
tion $(t) > max(O,t - D}, for j # i. Under this
assumption, we have the following result.

Throughout this section we assume that As-
sumption 2.1 is in effect, that X = X”, and that

Proposition 4.1. Suppose that T’ is the set of

the iteration mapping f : !RQ” I-+ !Ri” has the fol-
all nonnegative integers for each i. Then, the se-

lowing contraction property [cf. Eq. (2.4)]:
quence {x(t)} of vectors generated by the asyn-
chronous iteration satisfies

(4.1)
where each 11 - J/i is a norm on R’Q , each wi is a
positive scalar, and 0 < (Y < 1.

To simplify the discussion, we assume that the
communication delay of any message is equal to D
time units, where D is a positive integer, and that
a variable update takes a single time unit. Then, a
synchronous algorithm performs one iteration ev-
ery D + 1 time units and the contraction property
(4.1) provides us with the estimate

IId4 - x*1] < Aat/fD+‘) ,
where ll~ll = maxi Ilzilli/wi and where A is a con-
stant depending on the initial conditions. We de-
fine ps = ,l/(D+l) and view ps as the convergence
rate of the synchronous iteration. This is meaning-
ful if Eq. (4.2) holds with approximate equality at
least for some initial conditions or if Eq. (4.2) is
the only available convergence rate estimate.

We impose an additional assumption on f:
Assumption 4.1. There exists some p such that
0 5 @ < (Y such that for all x and i,

< max { Ellxi - xflli, ~~~~lIxj - xrllj}* 3
Notice that in the case where ,f3 = cy, Assump

tion 4.1 coincides with Eq. (4.1). The case where
/3 is smaller than cy can be viewed as a weak cou-
pling assumption. In particular, when ,8 = 0, then
XT can be computed from knowledge of fi alone
and interprocessor communication is unnecessary.
It is intuitively clear that when p is very small, the
information on the values of the variables updated
by other processors is not as crucial and that the
performance of an asynchronous algorithm should
be comparable to its performance under the as-
sumption of zero delays. We now develop some
results corroborating this intuition.

Consistently with our assumption that commu-
nication delays are equal to D, we assume that
r:(t) = max{O,t-D},forj # i, and that 7,!(t) = t.
(The latter equality reflects the fact that proces-
sor i need not send messages to itself and there-
fore no delay is incurred.) For the sake of some

lb(t) - x* II L AP’, k(O) - x* II,

where PA is a nonnegative solution of the equation

p = max(cu,@pmD}. (4.3)

The proof of Prop. 4.1 is an easy inductive ar-
gument and can be found in [BTZ, p. 441). Notice
that we either have PA = CY < &@+I) = ps
or PA = @pi * 5 &piD which also yields PA <
(yll(D+l) = ps . In either case, the convergence
rate of the asynchronous iteration is better.

We now consider two interesting limiting cases:

B
a) Let us keep cy and D fixed and suppose that

is small. (That is, we are considering the case
where the iteration is very weakly coupled.) In
particular, let us suppose that p 2 cyo+l. If
PA = @Pi”, then &‘+l > /3 = pz+‘. On the
other han , PA > cy, and weconclude that PA = (Y.
Notice that the asynchronous convergence rate PA
is the same as the convergence rate (I! of the itera-
tion x(t+l) = f (x(t)) which is a synchronous iter-
ation without any delays. We conclude that when
the “coupling strength” /3 is sufficiently small, then
the communication delays have no effect on the
asynchronous convergence rate. In particular, the
asynchronous algorithm is D + 1 times faster than
its synchronous counterpart.
(b) Let us now consider the case where D tends
to infinity (very large delays). It is clear that in
this case ps and PA converge to 1. It is thus more
meaningful to concentrate on the values of p:’ ’

and PA D’l. These can be viewed as the error re-
duction factors per phase of the synchronous it-
eration. For the synchronous iteration, pf+’ is
of course equal to LY. For the asynchronous it-
eration, PA increases to 1 as D tends to infinity
and, therefore, for D large enough, we will have
PA > cy. Then, Eq. (4.3) shows that @paD = pA;
equivalently, p,” + ’ is equal to ,8. Therefore, the
convergence rate (per synchronous phase is de-
termined only by the coupling strength B . Once
more we reach the conclusion that weakly coupled
problems favor the asynchronous algorithm,

All of the above analysis can be carried through
for the case where Assumption 4.1 is replaced by

467

the related inequality

where Q! = /? + 7 < 1. The main difference is that
PA iS now a nonnegative SOhtiOn of the equation

P=r+BP-D,

as opposed to Eq. (4.3). It is easily shown that
PA 2 ps, that PA tends to 7 when /? is very small,
and that p:+’ approaches p
as D increases to infinity. h T

(1 - 7) 5 a! = pF+l
us, the qualitatltive

conclusions we had derived under Assumption 4.1
remain valid for this case as well.

We have so far demonstrated the superiority
of asynchronous iterations under the contraction
condition. It can be argued, however, that the
comparison is somewhat unfair for the following
reason: we are assuming that communication de-
lays are equal to D and that ri (t) = t - D for
all t 2 D. This is equivalent to assuming that
messages are transmitted by the processors exe-
cuting the asynchronous algorithm at each time
step. This corresponds to message transmissions
at a rate D f 1 higher than the message transmis-
sion rate in the synchronous algorithm. In order
to make a more fair comparison, let us now con-
sider an asynchronous iteration in which messages
are transmitted only at integer multiples of D + 1,
that is, at the same times that the synchronous
iteration is transmitting messages. Notice that
processors will be receiving a message once every
D + 1 time units. Thus, at each update, the time
elapsed since the last message reception can be at
most D. Furthermore, messages carry information
which is outdated by D time units. It follows that
t- ri (t) < 20 for all t. We are therefore in the situ-
ation that was considered in Prop. 4.1, except that
D is replaced by 20. In particular, if we assume
that Assumption 4.1 holds, we obtain an asyn-
chronous convergence rate estimate PA, where PA
is a nonnegative solution of p = max(cw,pp-2D }.
All of our earlier qualitative conclusions remain
valid and, in particular, we have PA 5 ps, with
the difference between pe - PA being more pro-
nounced in the case of weakly coupled iterations.

5. TERMINATION OF ASYNCHRO-
NOUS ITERATIONS.

In practice, iterative algorithms are executed
only for a fimte number of iterations, until some
termination condition is satisfied. In the ewe of
asynchronous iterations, the problem of determin-
ing whether termination conditions are satisfied is
a rather difficult problem because each processor

possesses only partial information on the progress
of the algorithm. We address this issue in this
section.

While the general model introduced in Section 2
can be used for both shared memory and message-
passing parallel architectures [BT2, Section 6.11,
in this section we need to adopt a more explicit
message-passing model. In particular, we assume
that each processor j sends messages with the value
of zj to every other processor i. Processor i keeps
a buffer with the most recently received value of
zj. We denote the value in this buffer at time
t by z:.(t). This value was transmitted by pro-
cessor j at some earlier time r:(t) and therefore
x$(t) = zj (r:(t)). This model will be in effect
throughout this section, and is easily seen to con-
form to the general model of Section 2.

5.1 Finitely terminating iterations.

We first consider asynchronous iterative algo-
rithms that are guaranteed to terminate. For this
to happen, we need to impose certain assumptions
on the way that the algorithm is implemented:
Assumption 5.1. (a) If t E T’ and z;(t t 1) #
xi (t), then processor i will eventually send a mes-
sa
(b

K

e to every other processor.
If a processor i has sent a message with the

va ue of xi t) to some other processor j, then pro-
\ cessor i wi 1 send a new message to processor j

only after the value of x; changes (due to an up
date by processor i).
(c) Messages are received in the order that they
are transmitted.
(d) Each processor sends at least one message to
every other processor.

According to Assumption 5.1(b), if the value of
x(t) settles to some final value, then there will be
some time t* after which no messages will be sent.
Furthermore, all messages transmitted before t*
will eventually reach their destinations and the
algorithm will eventually reach a quiescent state
where none of the variables xi changes and no
message is in transit. We can then say that the
algorithm has terminated.

We still assume that the sets r’ are infinite for
each i. However, once the algorithm becomes qui-
escent any further updates will be inconsequential.
It is not hard to see that the property Iim,,, $(t)=
00 (cf. Assumption 2.1) follows from Assumption
5.1. This is because every processor eventually
gets informed of the changes in the variables of the
other processors [cf. Assumption 51(a)]. Also, if
a processor i stops sending any messages (because
xi has stopped changing) then the last message re-
ceived by processor j is the last message that was
sent by processor i [due to Assumption 5.1(c)] and

468

therefore processor j will have up-to-date infor-
mation on zi.

Let us now suppose that there exists a family

6 d
X(iE) of nested sets with the properties intro-
uce in Prop. 2.1. Furthermore, let us assume

that there exists some k such that the set X(k)
consists of the single element z*. Since we have
just verified the validity of Assumption 2.1, it fol-
lows that we will eventually have z(t) = Z* ; that
is, the algorithm terminates in finite time. Notice
that termination is equivalent to the following two
properties:

t
i)
ii)

No message is in transit.
An update by some processor i causes no

change in the value of zi.
Property (ii) is really a collection of local termina-
tion conditions. There are several algorithms for
termination detection when a termination condi-
tion can be decomposed as above see
Section 8.1).
no essenti all

Thus termination d
[DS] , [BT2,

etection causes
difficulties in this case.

5.2. Non-terminating algorithms.
Let us now shift our attention to the more inter-

esting case of iterative algorithms that never ter-
minate if left on their own. If we were dealing with
the synchronous iteration z(k + 1) = f(z(k)), it
would be natural to terminate the algorithm when
the condition Il~(t+l)-z(t)11 5 E is satisfied, where
s is a small positive constant reflecting the desired
accuracy of solution, and where JI . I[is a suitable
norm. This suggests the followmg approach for
the context of asynchronous iterations. Given the
iteration mapping f and the accuracy parameter
e, we define a new iteration mapping g : X H X
by letting

d4 = fib), if l/f&) - sll 2 5

9i(X> = x2 otherwise.

We will henceforth assume that the processors are
executing the asynchronous iteration x := g(z)
and communicate according to Assumption 5.1.
Once more, the termination condition for this iter-
ation decomposes into a collection of local termina-
tion conditions and the standard termination de-
tection methods apply. We will therefore concen-
trate on the question of whether eventual termi-
nation is guaranteed. One could argue as follows.
Assuming that the original iteration x := f(x) is
guaranteed to converge to a fixed point x*, the
changes in the vector x will eventually become ar-
bitrarily small, in which case we will have g(z) = 2
and the iteration z := g(x) will terminate. Un-
fortunately, this argument is fallacious, as demon-
strated by the following example.
Example 5.1. Consider the function f : !JZ2 H R2
defined by fr(x) = -x1, if x2 2 e/2, fi (x> = 0,

if x2 < E 2, and fa(x) = z2/2. It is clear that
h the async ronous iteration x := f(z) is guaran-

teed to converge to x* = (0,O): in particular,
x2 is updated according to 22 := x2/2 and tends
to zero; thus, it eventually becomes smaller than
c/2. Eventually processor 1 receives a value of x2
smaller than e/2 and a subsequent update by the
same processor sets Z1 to zero.

Let us now consider the iteration x := g(x). If
the algorithm is initialized with 52 between 42
and 6, then the value of x2 will never change, and
processor 1 will keep executing the nonconvergent
iteration z1 := -x1. Thus, the asynchronous iter-
ation z := g(x) is not guaranteed to terminate.

The remainder of this section is devoted to the
derivation of conditions under which the iteration
x := 9() x is g uaranteed to terminate. We intro-
duce some notation. Let I be a subset of the set
0 , . . . ,p} of all processors. For each i E I, let
there be given some value 6i E Xi. We consider
the asynchronous iteration z := f’*“(x) which is
the same as the iteration x := f(x) except that
any component xi, with i E I, is set to the value
6$. Formally, the mapping fl@ is defined by let-
ting f,!*‘(x) = fi(x), if i 4 I, and $‘“(x) = Bi, if
i E I. The main result is the followmg:
Proposition 5.1. Let Assumption 5.1 hold. Sup-
pose that for any 1 c { 1,. . . , TV} and for any choice
of 8i E Xi, i E I, the asynchronous iteration
x := f’*“(x 1s) - g uaranteed to converge. Then., the
asynchronous iteration x := g(x) terminates m fi-
nite time.
Proof. Consider the asynchronous iteration z :=
g(x). Let 1 be the set of all indices i for which
the variable xi(t) changes only a finite number of
times and for each a’ E 1, let oi be the limiting
value of xi(t). Since f maps X into itself, so does
g. It follows that 19, E Xi for each i. For each
i E I, processor i sends a positive but finite num-
ber of messages [Assumptions 5.1(d) and 5.l(b 1.
By Assumption 5.1(a), the last message sent l y
processor i carries the value Bi and by Assump
tion 5.1(c) this is also the last message received by
any other processor. Thus, for all t large enough,
and for all j, we will have xi (t) = xi (ri (t)) = 0,.
Thus, the iteration x := g(x) eventually becomes
identical with the iteration x := f’@(~) and there-
fore converges.
Xi(t + 1) - Xi(t)

This implies that the difference
converges to zero for any i I.

On the other hand, because of the definition o f the
mapping g, the difference xi (t + 1
zero, or its magnitude is bounde 2

- xi (t) is either

It follows that xi (t + 1) - x;(t
below by 6 > 0.

to zero, for every i 4 I. This s h
eventually settles
ows that i E I for

1 4 I; we thus obtain a contradiction unless
n}, which proves the desired result.

469

We now identify certain cases in which the main
assumption in Prop. 5.1 is guaranteed to hold. We
consider first the case of monotone iterations and
we assume that the iteration mapping f satisfies
Assumption 2.2. For any I and (0i 1 i E I}, the
mapping fl-e inherits the continuity and mono-
tonicity properties of f. Let u and u be as in As-
sumption 2.2 and suppose that X = {z 1 u 2 z <
v}. Let 0i be such that q ,< 8, 5 vi. Since f sat-
isfies Assumption 2.2(d), we have f’*“(u) 2 u and
f’*“(u) < v. We conclude that the mapping fzve
satisfies parts (a) (b),
Assumption 2.2(c) ’

and (d) of Assumption 2.2.
1s not automatically true for the

mappings fz@, in general; however, if it can be in-
dependently verified, then the asynchronous itera-
tion x := fzle is guaranteed to converge, and Prop.
5.1 applies. Let us simply say here that Assump
tion 2.2(c) can be verified for certain network flow
algorithms, as well as for successive approximation
algorithms for discounted and (a class of) undis-
counted dynamic programming problems. (These
results will be reported in more detail elsewhere.)

Let us now consider the case where f satisfies
the contraction condition of Eq. (4.1). Unfortu-
nately, it is not necessarily true that the mappings
f ‘,’ also satisfy the same contraction condition. In
fact, the mappings fzve are not even guaranteed to
have a fixed point. Let, us strengthen Eq. (4.1) and
assume. that

IIf(4 - fMII 5 + - YIL v’s, y E P, (5.1)

where 11 *]I is again a block-maximum norm, as
in Eq. (4.1), and a! E [O,l). We have f’?“(z) -
f’*“(y) = Bi - Bi = 0 for all i E I. Thus,

Thus, the mappings fzle inherit the contraction
property (5.1). As discussed in Section 2.2, this
property guarantees asynchronous convergence and
therefore Prop. 5.1 applies again.

We conclude that the modification z := g(z)
of the asynchronous iteration z := f(z) is often,
but not alway!, guaranteed to terminate in finite
time. It is an mteresting research question to de-
vise economical termination procedures for the it-
eration z := f(z) for those cases where the itera-
tion z := g(z) does not terminate.

REFERENCES

[B] D. P. Bertsekas, ‘Distributed asynchronous com-
putation of fixed points,” Mathematical Program-
ming, 27, 1983, pp. 107-120.

k BG] D. P. Bertsekas and R. G. Gallager, Data
etworks, Prentice Hall, Englewood Cliffs, NJ, 1987

I
-BTl]D. P. Bertsekas and J. N. Tsitsiklis, “Paral-
el and distributed iterative algorithms: a selective

survey,” Technical Report LIDS-P-1835, Labora-
tory for Information and Decision Systems, M.I.T.,
Cambridge, Mass., November 1988.

I
BT2]D. P. Bertsekas and J. N. Tsitsitilis, Paral-
el and Distributed Computation: Numericcil Meth-

ods, Prentice Hall, Englewood Cliffs, NJ, 1989.

I
CM] D. Chazan and W. Miranker, ‘Chaotic re-
axation” , Linear Algebra and its Applications, 2,
1969, pp. 199-222.
[DS] E. W. Dijkstra and C. S. Sholterf, “Termi-
nation detection for diffusing computations” , Ini
Proc. Lett., 11, 1980, pp. l-4.
[K] H. T. Kung, “$ynchronized and asynchronous
parallel algorithms for multiprocessors”, in Algo-
rithms and Complezity, J.F. Traub (Ed;), Aca-
demic, 1976, pp. 153-200.
[M] D. Mitra, “Asynchronous relaxations for the
numerical solution of differential equations by par-
allel processorsn , SIAM J. Scientific and Statisti-
cal Computing, 8, 1987, pp. syi3-~58.
[S] P. Spiteri, “Contribu~~,n,,a,~;e~~er~~t~~~~
systemes non lineaires”,
Universite de Franche-Comte, Besancon, Fraice,
1984.

I
SW]D. Smart and J. White, “Reducing the paral-
el solution time of sparse circuit matrices using

reordered Gaussian elimination and relaxation”,
Proceedings of the 1988 ISCAS, Espoo, Finland.
[T] J. N. Tsitsiklis, “A comparison of Jacobi and
Gauss-Seidel parallel iterations, to appear in +p-
plied Mathematics Letters.
[V] R. S. Varga, Matrix Iterative Methods. Engle-
wood Cliffs, NJ: Prentice-Hall, 1962.
[ZL] S. A. Zenios and R. A. Lasken, “Nonlinear
network optimization on a massively parallel con-
nection machine”, Annals of Operations Research,
14, 1988.

470

