
Delay, Memory, and Messaging Tradeoffs in Distributed
Service Systems

David Gamarnik
MIT, ORC

77 Massachusetts Ave.
Cambridge, MA 02139
gamarnik@mit.edu

John N. Tsitsiklis
MIT, LIDS

77 Massachusetts Ave.
Cambridge, MA 02139

jnt@mit.edu

Martin Zubeldia
MIT, LIDS

77 Massachusetts Ave.
Cambridge, MA 02139
zubeldia@mit.edu

ABSTRACT
We consider the following distributed service model: jobs
with unit mean, exponentially distributed, and independent
processing times arrive as a Poisson process of rate λN , with
0 < λ < 1, and are immediately dispatched to one of several
queues associated with N identical servers with unit pro-
cessing rate. We assume that the dispatching decisions are
made by a central dispatcher endowed with a finite memory,
and with the ability to exchange messages with the servers.

We study the fundamental resource requirements (mem-
ory bits and message exchange rate), in order to drive the
expected steady-state queueing delay of a typical job to zero,
as N increases. We propose a certain policy and establish
(using a fluid limit approach) that it drives the delay to
zero when either (i) the message rate grows superlinearly
with N , or (ii) the memory grows superlogarithmically with
N . Moreover, we show that any policy that has a certain
symmetry property, and for which neither condition (i) or
(ii) holds, results in an expected queueing delay which is
bounded away from zero.

Finally, using the fluid limit approach once more, we show
that for any given α > 0 (no matter how small), if the policy
only uses a linear message rate αN , the resulting asymp-
totic (as N → ∞) expected queueing delay is positive but
upper bounded, uniformly over all λ > 1. This is a sig-
nificant improvement over the popular “power-of-d-choices”
policy, which has a limiting expected delay that grows as
log (1/(1− λ)) when λ ↑ 1.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory, Markov
processes; C.2.1 [Network Architecture and Design]:
Performance tradeoffs

Keywords
Distributed service, Dispatching policies, Performance trade-
offs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS ’16, June 14 - 18, 2016, Antibes Juan-Les-Pins, France
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4266-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2896377.2901478

1. INTRODUCTION
This paper addresses the tradeoffs between various mea-

sures of performance (delay, message rate and memory) in
the context of large scale queueing systems. More specif-
ically, we consider the supermarket model [11], a service
system that involves a stream of incoming jobs that are to
be dispatched to the queue associated with one of multiple
servers. This setting is the dynamic generalization of the
classic balls and bins model [2], where N balls have to be
sequentially placed into one of N bins.

There is a variety of ways that this system can be oper-
ated, which correspond to different system architectures and
policies, with different delay performance. At one extreme,
incoming jobs can be sent to a random queue. This policy
has no informational requirements but incurs a substantial
delay because it does not take advantage of resource pooling.
At the other extreme, incoming jobs can be sent to a shortest
queue, or to a server with the smallest workload. The latter
policies have very good performance (small queueing delay),
but rely on a substantial information exchange overhead.

Many intermediate policies have been explored in the liter-
ature, which achieve different performance levels while using
varying degrees of resources such as messages and memory
(e.g., the power-of-d-choices [11, 15] or the PULL algorithm
[14]). Such policies have been individually analyzed, and the
merits of each have been pointed out. However, a compar-
ison is not always possible, because different policies often
involve different types of decision making architectures. A
more detailed discussion of the relevant literature and the
various schemes therein is deferred to Section 4.

The performance-resources tradeoffs have been analyzed
in the context of balls into bins models. In particular, the
tradeoff between number of messages and maximum load
was recently obtained by Lenzen and Wattenhofer [8]. More-
over, the tradeoff between the number of bits of memory
available and the maximum load was studied in [1, 4]. To
the best of our knowledge, the current study is the first to
address these tradeoffs for a dynamic model.

1.1 Our contribution
Instead of focusing on yet another policy or decision mak-

ing architecture, in this paper we step back and formulate a
more fundamental problem. We consider a broad family of
decision making architectures and policies, which includes
most of those considered in the earlier literature, and work
towards characterizing the attainable delay performance, for
a given level of resources that are employed.

In more concrete terms, as far as delay is concerned, we

1

http://dx.doi.org/10.1145/2896377.2901478

focus on the following qualitative criterion: does the aver-
age queueing delay go to zero, as the system size increases?
Regarding resources, we allow the dispatcher to have some
limited memory, where it can store information on the state
of the queues. We also allow the exchange of messages, ei-
ther from the dispatcher to the servers (queries), and from
the servers to the dispatcher; these latter messages can be
either responses to queries or spontaneous status updates.

The main question that we study is the following: What is
the message rate (total over both directions) and/or memory
size requirement that are necessary and sufficient in order
to achieve vanishing delay, as the system size grows to infin-
ity? We are able to provide a fairly complete answer to this
question. Specifically,

a) If the message rate is proportional to the arrival rate
and the memory size (in bits) is logarithmic in the
number of servers, then every decision making archi-
tecture and policy, within a certain broad class of poli-
cies, results in a delay that does not vanish as the
system size increases. The main constraints that we
impose on the policies that we consider are: (i) there
is no queueing at the dispatcher, and (ii) policies are
symmetric, in a sense to be defined.

b) If either the message rate is superlinear in the arrival
rate or the memory size is superlogarithmic in the
number of servers, we provide a fairly simple and nat-
ural policy that results in a vanishing delay as the sys-
tem size increases. Moreover, even if the message rate
is proportional to the arrival rate and the memory is
logarithmic in the number of servers, this same policy
performs better than the alternatives considered ear-
lier in the literature: among other properties, it has
uniformly upper bounded queueing delay as λ ↑ 1.

We analyze the proposed policy by considering a corre-
sponding fluid limit. This results in expressions that provide
a detailed characterization of the resulting queue lengths in
the regime where delays do not vanish (case (b) above). Al-
though we do not allow queueing at the dispatcher in our
model, the negative result still holds even if we had a cen-
tral queue with a finite buffer whose size is uniformly upper
bounded independent of N . However, if the buffer size can
grow with N , there exists a policy with a linear message
rate and no memory that achieves vanishing queueing delay.
Whether similar negative results can be established without
our symmetry assumption is left as an open problem.

1.2 Outline of the paper
The rest of this paper is organized as follows. In Section

2 we introduce some notation. The model and the main
results are presented in Section 3, where we also discuss the
implications of the results and compare our policy to the so-
called “power-of-d-choices” [11, 15]. In Section 4 we put our
results in the context of some popular dispatching policies
in the literature. In Sections 5, 6, and 7, we provide the
proofs of the main results. Finally, in Section 8 we provide
our conclusions and suggestions for future work.

2. NOTATION
We define the following sets:

S ,
{
s ∈ [0, 1]Z+ : s0 = 1; si ≥ si+1, ∀i ≥ 0

}
,

S1 ,

{
s ∈ S :

∞∑
i=0

si <∞

}
,

QN ,

{
x ∈ [0, 1]Z+ : xi =

Ki

N
, for some Ki ∈ Z+, ∀ i

}
.

We define the weighted `2 norm || · ||w on RZ+ by

||x− y||2w ,
∞∑
i=0

|xi − yi|2

2i
.

We also define a partial order on RZ+
+ as follows:

x ≥ y ⇔ xi ≥ yi ∀ i ≥ 0,

x > y ⇔ x ≥ y, x 6= y, and xi > yi, if i ≥ 1 and yi > 0.

For a given positive integer N , we define the set of server
IDs N , {1, . . . , N}. We let ΠN be the set of probability
distributions over N , and let SN denote the group of per-
mutations over N . We can also define the action of SN over
ΠN by letting, for every σ ∈ SN and p ∈ ΠN ,

σ(p)(σ(i)) = p(i), ∀i ∈ N .

In words, the probability of σ(i) under σ(p) is the same as
the probability of i under p. Finally, we denote by P(N) the
power set of N and we further extend the action of SN to
ΠP(N) (the set of probability distributions over the power
set P(N)) so that, for any σ ∈ SN and p ∈ ΠP(N), and for
all r ∈ N ,

σ(p)({σ(n1), . . . , σ(nr)}) = p({n1, . . . , nr}),

for all {n1, . . . , nr} ∈ P(N). This means that the proba-
bility of selecting the subset of servers {σ(n1), . . . , σ(nr)}
under σ(p) is the same as the probability of selecting the
subset {n1, . . . , nr} under p.

3. MODEL AND MAIN RESULTS
In this section we present our main results. In Section 3.1

we describe the model and our assumptions. In Section 3.2
we introduce and study three different variants of a certain
pull-based dispatching policy. We study their fluid limits
and state the validity of fluid approximations for the tran-
sient and the steady-state regimes. Then, in Section 3.3 we
present a unified framework for a broad set of dispatching
policies that includes most of the policies studied in previous
literature, and present our negative result on the queueing
delay for resource constrained policies.

3.1 Modeling assumptions
We consider a system consisting of N parallel servers,

where each server has a processing rate equal to 1. Fur-
thermore, each server is associated with an infinite capacity,
FIFO queue. We use the convention that a job that is being
served remains in the queue until its processing is completed.
We assume that each server is work conserving: a server is
idle if and only if the corresponding queue is empty. Jobs
arrive to the system as a single Poisson process of rate λN
(for some fixed λ < 1). Job sizes are i.i.d., independent from
the arrival process, and exponentially distributed with mean
1. A central controller (dispatcher) is responsible for routing
every incoming job to a suitable queue, immediately upon
arrival. The dispatcher may have limited information on
the state of the queues; it can only rely on a limited amount

2

of local memory and on messages that provide partial in-
formation about the state of the system. These messages
(which are assumed to be instantaneous) can be sent from
the servers to the dispatcher at any time, or from the dis-
patcher to the server (in the form of queries) at the time
of an arrival. Messages from the servers can only contain
information about the state of their queue (number of re-
maining jobs and total remaining workload). Within this
context, a system designer has the freedom to choose a mes-
saging policy, the rules with which the memory is updated,
and the dispatching policy. We are interested in the case
where N is very large and where we have some constraints
on the number of messages exchanged and on the memory
size. The performance metric of interest is the expected de-
lay in steady state of a typical job, i.e., the expected time
between its arrival and the time at which it starts receiving
service.

3.2 Our dispatching policy and its performance
In this section we introduce our policy, and study the

properties of three of its variants.

3.2.1 Policy description
Let us fix N . We consider a policy whereby the dis-

patcher’s memory is used to run a virtual queue that stores
up to C(N) server IDs (or tokens), so that the memory size
is of order C(N) log2(N) bits. Since there are only N dis-
tinct servers, we will assume throughout the rest of the paper
that C(N) ≤ N . While a server is idle, it sends messages
to the dispatcher as a Poisson process of rate µ(N) to in-
form or remind the dispatcher of its idleness. Whenever the
dispatcher receives a message, it adds the ID of the server
that sent the message to the virtual queue of tokens that
is kept in the memory, unless this ID is already stored or
the virtual queue is full, in which case it discards the new
message. When a new job arrives, if there is at least one
server ID in the virtual queue, the job goes to the queue of
a server chosen uniformly at random from the virtual queue
and the corresponding token is deleted. If there are no to-
kens present, the job is sent to a queue chosen uniformly at
random. This policy, called from now on the Resource Con-
strained Pull-Based (RCPB) policy or Pull-Based policy for
short, is depicted in Figure 1.

Nλ
Dispatcher

C(N)

Queue of tokens

Jobs to
empty queues

Messages from
idle servers

... N servers

Figure 1: Resource Constrained Pull-Based policy.
Jobs are sent to queues associated with idle servers,
based on tokens in the virtual queue. If no tokens
are present, a queue is chosen at random.

Note that under our policy, no messages are sent from the
dispatcher to the servers, which is why it is called a “Pull-
Based” policy [14]. We present a summary of our results for
the three variants of our policy in Table 1, where we also
introduce some mnemonic terms that we will use to refer to
these variants. For our purposes, the most relevant subcase
of the High Memory variant is when µ ≥ λ

1−λ , which achieves
zero asymptotic delay with superlogarithmic memory and
linear message rate.

Variant Memory Idle message rate Delay

High Mem. C(N) ∈ ω(1) µ(N) = µ ≥ λ
1−λ 0

µ(N) = µ < λ
1−λ > 0

High Mess. C(N) = C ≥ 1 µ(N) ∈ ω(1) 0
Constr. C(N) = C ≥ 1 µ(N) = µ > 0 > 0

Table 1: The three variants (regimes) of our policy,
and the resulting delays, in the limit as N →∞.

3.2.2 System state representation
For a fixed N , we can model the system as a continuous

time Markov chain using as state the queue length vector,

denoted by
(
QNi (t)

)N
i=1
∈ ZN+ , together with the number

of tokens, denoted by MN (t) ∈ {0, 1, . . . , C(N)}. Further-
more, as the system is symmetric with respect to the queues,
we can replace the queue length vector by the more conve-
nient representation SN (t) =

(
SNi (t)

)∞
i=0

, where

SNi (t) ,
1

N

N∑
j=1

1[i,+∞)

(
QNj (t)

)
, i ∈ Z+,

is the fraction of queues with at least i jobs at time t.

3.2.3 Fluid model
We now introduce the fluid model of SN (t), associated

with our policy.

Definition 1. (Fluid model) Given an initial condition s0 ∈
S, a function s(t) : [0,∞) → S is said to be a solution to
the fluid model (or fluid solution) if

1. s(0) = s0.

2. For all t ≥ 0, s0(t) = 1.

3. For almost all t ∈ [0,∞), and for every i ≥ 1, si(t) is
differentiable and satisfies

ds1(t)

dt
=λ[1− s1(t)P0(t)]− [s1(t)− s2(t)], (1)

dsi(t)

dt
=λ[si−1(t)− si(t)]P0(t)− [si(t)− si+1(t)],

(2)

for all i ≥ 2, where P0(t) is given, for the three variants
considered, by:

(i) High Memory: P0(t) =
[
1− µ[1−s1(t)]

λ

]+
;

(ii) High Message: P0(t) =
[
1− 1−s2(t)

λ

]+
1{s1(t)=1};

(iii) Constrained: P0(t) =

[
C∑
k=0

(
µ[1−s1(t)]

λ

)k]−1

.

3

Note that the fluid model does not include a variable as-
sociated with the number of tokens. This is because, as we
will see, the virtual queue process MN (t) evolves on a much
faster time scale than the processes of the queue lengths and
does not have a deterministic limit. We thus have a process
with two different time scales: on the one hand, the virtual
queue evolves on a fast time scale (at least N times faster)
and from its perspective the queue process SN (t) appears
static; on the other hand, the queue process SN (t) evolves
on a slower time scale; from its perspective, the virtual queue
appears to be at equilibrium. This latter property is mani-
fested in the drift of the fluid model: P0(t) is the probability
that the virtual queue is empty when the rest of the system
is fixed at the state s(t) (and is given by a different expres-
sion for each variant).

We now provide some intuition for each of the drift terms
in Equations (1) and (2).

(i) λ[1 − P0(t)]: This term corresponds to arrivals to an
empty queue while there are tokens in the virtual queue,
taking into account that the virtual queue is nonempty
with probability 1− P0(t), in the limit.

(ii) λ[si−1(t) − si(t)]P0(t): This term corresponds to ar-
rivals to a queue with exactly i−1 jobs while there are
no tokens in the virtual queue. This happens when
the virtual queue is empty and when a queue with
i − 1 jobs is drawn uniformly at random, which hap-
pens with probability P0(t)[si−1(t)− si(t)].

(iii) −[si(t)−si+1(t)]: This term corresponds to departures
from queues with exactly i jobs, which occur at a rate
equal to the proportion si(t) − si+1(t) of servers with
exactly i jobs.

(iv) Finally, the expressions for P0(t) are obtained through
an explicit calculation of the steady-state distribution
of MN (t) when SN (t) is fixed at the value s(t), while
also letting N →∞.

3.2.4 Properties of the fluid solutions
The existence of fluid solutions is established by show-

ing that the limit of every convergent subsequence of sam-
ple paths (SN (t)) is a fluid solution. Moreover, the follow-
ing theorem states their uniqueness for all initial conditions
s0 ∈ S, and it also characterizes the (unique) equilibrium
of the fluid model and its asymptotic stability for all ini-
tial conditions s0 ∈ S1 ⊂ S. The variants described below
correspond to assumptions on memory and message rates
described in the 2nd and 3rd columns of Table 1, respec-
tively.

Theorem 1. (Uniqueness and stability of fluid so-
lutions) A fluid solution, as described in Definition 1, exists
and is unique for any initial condition s0 ∈ S. Furthermore,
within the set S1, the fluid model has a unique equilibrium
s∗, given by s∗i = λ[λP ∗0]i−1, for all i ≥ 1, where P ∗0 is given
for the three variants considered by:

(i) High Memory: P ∗0 =
[
1− µ(1−λ)

λ

]+
;

(ii) High Message: P ∗0 = 0;

(iii) Constrained: P ∗0 =

[
C∑
k=0

(
µ(1−λ)

λ

)k]−1

.

This equilibrium is asymptotically stable, i.e.,

lim
t→∞

‖s(t)− s∗‖w = 0,

for all initial conditions s0 ∈ S1.

The proof for uniqueness and stability is given in Section
5. The proof of the existence is omitted due to space con-
straints.

3.2.5 Approximation theorems
The three results in this section justify the use of the fluid

model as an approximation to the finite stochastic system.
The first theorem states that the evolution of the process
SN (t) is almost surely uniformly close, over any finite time
horizon [0, T], to the unique fluid solution s(t).

Theorem 2. (Fluid limit) Fix T > 0. If

lim
N→∞

∥∥∥SN (0)− s0
∥∥∥
w

= 0, a.s.,

for some s0 ∈ S, then

lim
N→∞

sup
0≤t≤T

∥∥∥SN (t)− s(t)
∥∥∥
w

= 0, a.s.,

where s(t) is the fluid solution with initial condition s0.

The proof of this theorem is omitted due to space con-
straints.

If we combine Theorems 2 and 1 we have that the finite
system SN (t) can be approximated by the equilibrium of the
fluid model s∗ after some time, because

SN (t)
N→∞−−−−→ s(t)

t→∞−−−→ s∗,

almost surely. If we interchange the order of the limits over
N and t, we obtain the limiting behavior of the invariant
distributions πNs of the finite systems as N increases. In the
next proposition and theorem, it is shown that the result is
the same, i.e., that

SN (t)
t→∞−−−→ πNs

N→∞−−−−→ s∗,

in distribution, so that the interchange of limits is justified.
We start by showing that the stochastic process for any

fixed N is positive recurrent.

Proposition 3. (Positive recurrence for finite N)
For any fixed N , the stochastic process

(
SN (t),MN (t)

)
is

positive recurrent and therefore has a unique invariant dis-
tribution πN .

Proof. In this case it is advantageous to work with the

number of jobs in the queues
(
QNi (t)

)N
i=1

instead of with

SN (t). Then the positive recurrence follows by using the
simple quadratic Lyapunov function

Φ(Q,m) ,
1

N

N∑
i=1

Q2
i . (3)

We then show that the sequence of invariant measures
converges in distribution to the Dirac measure concentrated
on the equilibrium of the fluid model.

4

Theorem 4. (Interchange of limits) For any N , let
πN be the unique invariant distribution of the stochastic pro-

cess
(
SN (t),MN (t)

)
and let πNs (·) =

C(N)∑
m=0

πN (·,m) be the

marginal for SN . Then,

lim
N→∞

πNs = δs∗ , in distribution.

The proof is given in Section 6.

Putting everything together, we conclude that the fluid
model is a very accurate approximation for the stochastic
system when N is very large for the both transient regime
(Theorems 2 and 1) and for the steady state regime (Theo-
rem 4).

3.2.6 Delay
Having shown that we can approximate the stochastic sys-

tem by its fluid model for large N , we can analyze the per-
formance of the equilibrium of the fluid model and thus ap-
proximate the expected delay implied by our policy.

For the N -th system, we define the average delay (more
precisely, the waiting time) of a job, in steady state, gener-
ically denoted by E

[
WN

]
, as the mean time that the job

spends in queue until its service starts. Then by Little’s
law, we have that

E
[
WN

]
=

1

λN
E

[
∞∑
i=1

NSNi

]
− 1,

and taking limits as N →∞ we obtain the limiting queueing
delay as

E[W] , lim
N→∞

E
[
WN

]
=

1

λ

(
∞∑
i=1

s∗i

)
− 1,

where the interchange of the limit in N , and the expecta-
tion and the infinite sum can be justified by applying the
Dominated Convergence Theorem using the geometric up-
per bound from Lemma 10.

High Memory and High Message variants.
For the High Memory variant with µ ≥ λ

1−λ , as well as

for the High Message variant, the equilibrium is s∗1 = λ, and
s∗i = 0 for all i ≥ 2, which yields the claimed zero queueing
delay (cf. Table 1).

Constrained variant.
For the Constrained variant, even though we obtain a pos-

itive delay, our Pull-Based policy has some remarkable prop-
erties. First of all, as discussed above, the delay is

E[W] =
1

λ

∞∑
i=1

s∗i − 1 =

∞∑
i=1

(λP ∗0)i−1 − 1 =
λP ∗0

1− λP ∗0
. (4)

Suppose that the message rate of each idle server is µ =

µ′
(

λ
1−λ

)
for some constant µ′ > 0. Since a server is idle

(on average) a fraction 1−λ of the time, the resulting aver-
age message rate at each server is λµ′. We can rewrite the
equilibrium probability as

P ∗0 =

[
C∑
k=0

(
µ′
)k]−1

.

Substituting this in Equation (4) we can obtain an upper
bound (uniform in λ < 1) for the delay in steady state

E[W] ≤

[
C∑
k=1

(
µ′
)k]−1

∀λ < 1. (5)

This implies that if µ′ > 1, the queueing delay decreases
exponentially fast with the maximum number of tokens C.
More importantly, for a fixed µ′ > 0 and C, the delay is in
fact bounded as λ ↑ 1. Finally, the delay is monotonically
decreasing with µ′ and C.

Phase transition of heavy traffic delay.
We have a phase transition between µ′ = 0 (which cor-

responds to a random uniform routing) and µ′ > 0. In the
first case, we have the usual unbounded heavy traffic delay
of the M/M/1 queue. However, when µ′ > 0 the delay is up-
per bounded uniformly in λ, as shown in Equation (5). This
highlights the importance of sending messages while idle and
the fact that an intelligent choice of the message budget is
to set µ = µ′ λ

1−λ . Note that this choice still results in a con-

stant (λµ′) average message rate at each server, uniformly
upper bounded by µ′ for all N and all λ < 1. This is a key
qualitative improvement over all other policies in the liter-
ature that have a non-vanishing delay; see the discussion
below and in Section 4.

Comparison with the power-of-d-choices.
The expected steady-state delay for the power-of-d-choices

policy was shown in [11, 15] to be

E[WPod] =

∞∑
i=1

λ
di−d
d−1 − 1 ≥ λd,

which means that the delay decreases at best exponentially
with d, much like the delay decreases exponentially with C
in our scheme. However, increasing d increases the number
of messages sent, unlike our policy.

Furthermore, the delay in heavy traffic for the power-of-d-

choices is shown in [11] to grow as log
(

1
1−λ

)
as λ ↑ 1 for any

fixed d. In contrast, the delay of our scheme has a constant
upper bound, independent of λ.

In conclusion, our Pull-Based policy provides better ex-
pected delay (especially in heavy traffic) using fewer mes-
sages: the power-of-d-choices policy requires 2λdN messages
per unit of time, while our policy requires µ′λN messages
per unit of time and C log2(N) bits of memory.

3.3 Delay lower bound for resource constrained
policies

In this subsection we present a negative result that shows
that resource constraints on the message rate and on the
size of the memory result in asymptotically non-vanishing
delays, for a broad class of symmetric policies.

3.3.1 Unified framework for policies
In order to provide a negative result for a class of poli-

cies, we need to be very precise on the family of policies
considered, including details on the way that the memory is
operated, and the precise meaning of “symmetry”. We as-
sume that in order to decide the destination of each arriving
job, the dispatcher relies entirely on queries to a subset of
servers regarding the state of their queues, and on a memory

5

with CN bits. The memory is updated only when either (i)
the dispatcher receives a message from a server, or (ii) the
dispatcher has just dispatched a job.

We define the set of memory states asM ,
{

1, . . . , 2CN
}

.
Furthermore, we define the set of possible states at a given

queue as the set of nonnegative sequences Q , RZ+
+ , where a

sequence specifies the remaining workload of each job in the
queue, including the one that is being served. As long as a
queue has a finite number of jobs, then the queue state is a
sequence with a finite number of non-zero entries. We define
next a broad class of memory-based dispatching policies.

Definition 2. (Memory-based dispatching policy) For a
fixed N , a memory-based dispatching policy ηN has four
components:

1. (Process of messages from servers) We have a bounded
rate function µN : Q → R+ which defines a set of
modulated Poisson1 counting processes{

Y Nn (t)
}N
n=1

.

The rate of Y Nn (·) at each time t depends on the cur-
rent queue state QNn (t) and equals µN (QNn (t)). Be-
sides, the functions are uniformly upper bounded, i.e.,
µN (q) ≤ µN (0) for all q ∈ Q.

2. (Memory update due to a new message from a server)
Given a memory state m ∈ M, whenever there is an
arrival of a message from server n ∈ N , containing
the current queue state q ∈ Q, the memory is updated
according to a function

gNpull :M×N ×Q →M.

3. (Server sampling and dispatching rule) Given a mem-
ory state m ∈ M, whenever a new job arrives to the
system, the dispatcher sends queries to a subset of the
servers, chosen according to the distribution specified
by a function

νN :M→ ΠP(N).

Then, given the set of pairs {(n1, qn1), . . . , (nr, qnr)}
of sampled subset of servers and the state of the corre-
sponding queues, the new arrival is dispatched accord-
ing to a probability distribution specified by a function

fN :M×B → ΠN ,

where B is the subset of P(N ×Q) where each element
of N appears only once.

4. (Memory update due to a dispatched job) Immediately
after a new job is dispatched to some queue, the mem-
ory is updated according to a function

gNd :M×B ×N →M,

where the last argument of the function gNd is the iden-
tity of the server to which the job was dispatched.

1Although we will use Poisson processes for the analysis, our
negative result can also be established even if the messages
are more general renewal processes (e.g., with deterministic
inter-arrival times).

Remark 1. Note that we only consider the memory used
to store information between one arrival or message to the
next. When counting the memory resources used by a policy,
we do not take into account information that is used in zero
time (e.g., the responses from the queries at the time of
an arrival), or the memory required to evaluate the various
functions that describe the policy. If that additional memory
was accounted for, then the memory constraints would be
more severe, and therefore our negative result would still
hold.

The functions gNpull, ν
N , fN , and gNd define a Markov pro-

cess over the state space QN×M, as follows. First of all, the
states of the queues progress naturally through time as jobs
get processed. Then, there are two sources of events: the
exogenous arrivals and the messages that servers send to the

dispatcher according to the processes
{
Y Nn (·)

}N
n=1

. When a
message from server n with queue state q arrives to the dis-
patcher, the memory is updated according to gNpull(·, n, q).
When we have an arrival of a new job, there are three steps
that occur sequentially but instantaneously: first, an ele-
ment of the power set P(N) (i.e., a subset of N) is selected
according to νN and the current memory state; second, the
job is sent to a queue according to the distribution obtained
by fN evaluated on the actual memory state, sampled sub-
set of servers, and actual states of the queues associated with
them; and third, the memory is updated once more accord-
ing to gNd , taking into account the destination of the last
job, as well as the IDs and the queue states of the sampled
servers.

Remark 2. Here we are considering policies that send mes-
sages to the servers only at the time of an arrival and in
one round of communication. This eliminates the possibil-
ity of having policies that sequentially poll the servers uni-
formly at random until they find an idle one. The reason be-
hind this restriction is that, in practice, these queries involve
some processing and travel time ε. Were we to consider a
model with ε > 0, the sequential polling policies would suffer
greatly and would incur positive delay. In contrast our pull-
based policy would only have to work with slightly delayed
information, but the asymptotic vanishing result would still
hold, as long as ε is small enough.

Remark 3. We could expand the set of policies by allow-
ing the servers to also send messages whenever there is a
service completion. This would result in some additional
notation. However, the same negative result can be proved
for this somewhat enlarged class of policies as well.

We now introduce a symmetry assumption on the policies.

Definition 3. (Symmetric policy) The memory-based dis-
patching policy ηN is symmetric if for every permutation
of the servers σ ∈ SN (and associated permutations, also
denoted by σ, over the sets P(N), ΠN , and ΠP(N)), there
exists some permutation σM of the memory states such that
the following properties hold.

1. (Memory update due to new message from a server)

gNpull(σM (m), σ(n), q) = σM
(
gNpull(m,n, q)

)
,

for all (m,n, q) ∈M×N ×Q.

6

2. (Server sampling and dispatching rule)

νN (σM (m)) = σ
(
νN (m)

)
,

for all m ∈M, and

fN (σM (m),{(σ(n1), q1), . . . , (σ(nr), qr)}) =

σ
(
fN (m, {(n1, q1), . . . , (nr, qr)})

)
,

for all (m, {(n1, q1), . . . , (nr, qr)}) ∈M×B.

3. (Memory update due to a dispatched job)

gNd (σM (m), {(σ(n1), q1), . . . , (σ(nr), qr)}, σ(n))

= σM
(
gNd (m, {(n1, q1), . . . , (nr, qr)}, n)

)
,

for all (m, {(n1, q1), . . . , (nr, qr)}, n) ∈M×B ×N .

3.3.2 Lower bound for queueing delay
We are now ready to state the main result of this section.

Theorem 5. Fix C,α > 0. For any symmetric policy
ηN with CN = C log2(N) bits of memory, with a time-
average message rate bounded by αN almost surely, and with
a unique steady state distribution, we have that the expected
queueing delay is uniformly lower bounded, i.e.,

E
[
WN

]
≥ b(C,α) > 0,

where E
[
WN

]
is the expected queueing delay in steady state,

and b(C,α) is a constant that only depends on C and α.

A detailed proof is given in Section 7.

4. COMPARISON WITH OTHER POLICIES
IN THE LITERATURE

In this section we put our results in perspective by review-
ing various dispatching policies in the literature, focusing on
their queueing delay and on the amount of resources they
use.

4.1 Open-loop policies (without messages)
An optimal open-loop policy dispatches arriving jobs to

the queues in a round robin fashion [13]. This policy does
not require messages but needs log2(N) bits of memory to
store the ID of the next queue to receive a job. In the limit,
each queue behaves similar to an D/M/1 queue, which still

has a Ω
(

1
1−λ

)
delay (see [13]). This policy is not symmetric.

4.2 Policies based on queue lengths

4.2.1 Join the shortest queue (SQ)
If we only have access to the queue lengths, an optimal

policy is to have each incoming job join a shortest queue.
This policy is symmetric, achieves vanishing delay, and re-
quires no memory, but uses 2λN2 messages per unit of time
(N queries and N responses for each arrival, with rate λN).
Alternatively, joining a queue with the least remaining work-
load performs just as well.

4.2.2 SQ(d) with memory (SQ(d,b))
An improvement over the power-of-d-choices, proposed by

Mitzenmacher et al. in [12], is obtained by using extra mem-
ory to store the b least loaded queues sampled at the time of
the previous arrival. When a new job arrives, d queues are
sampled uniformly at random and the job is sent to a least
loaded queue among the d sampled and the b stored queues.
This policy is symmetric, needs 2λdN messages per unit of
time and Ω(b log2(N)) bits of memory, and has positive de-
lay as expected. It compares unfavorably to our policy for
the same reasons as for the power-of-d-choices.

4.2.3 SQ(d) for divisible jobs
More recently, Ying et al. [16] considered the case of

having an arrival rate of Nλ
m(N)

(with m(N) ∈ ω(1) and

m(N) ∈ o(N)), where each job can be divided into m(N)
tasks with mean size 1. The dispatcher samples dm(N)
queues and does a water-filling of those queues with the
m(N) tasks. In this case, the number of messages sent per
unit of time is 2λdN and it needs no memory.

Even though this was not mentioned in [16], this policy
can drive the queueing delay to 0 if d ≥ 1

1−λ . This policy
does not fall into our framework because it works with di-
visible jobs. We could get a very similar policy by queueing
m(N) jobs in the dispatcher and dispatching them all at
the same time, but this needs an unbounded buffer at the
dispatcher.

4.3 Pull-based policies
In order to reduce the message rate, Badonnel and Burgess

[3], Lu et al. [10], and then Stolyar [14] proposed that mes-
sages be sent from a server to the dispatcher whenever the
server becomes idle, so that the dispatcher can keep track
of the set of idle servers in real time. Then, an arriving
job is to be sent to an empty queue (if there is one) or to
a queue chosen uniformly at random if all queues are non-
empty. This symmetric policy requires at most λN messages
per unit of time and exactly N bits of memory (one bit for
each server, indicating whether it is empty or not). Stolyar
[14] has shown that when N goes to infinity, the expected
delay vanishes.

These pull-based policies are very efficient and they were
the inspiration for our own policy. In fact, the High Memory
variant of our own policy can be viewed as a more memory-
efficient version of Stolyar’s PULL policy [14] where instead
of requiring N bits of memory, we achieve the desired van-
ishing delay with any superlogarithmic memory size.

4.4 Memory, messages, and queueing delay
We now summarize the resource requirements (memory

and message rate) and the asymptotic delay of the policies
reviewed in this section that fall within our framework, to-
gether with our three variants.

Policy Memory (bits) Message rate Delay

RRobin [13] log2(N) 0 > 0

JSQ 0 2λN2 0
JSQ(d) [11] 0 2dλN > 0
JSQ(d, b) [12] Ω(b log2(N)) 2dλN > 0
Pull-based [14] N λN 0
High Memory ω(log2(N)) λN 0
High Message C log2(N) ω(N) 0
Constrained C log2(N) µ′λN > 0

7

Note that there are several policies that achieve 0 queueing
delay in the limit, but (as expected) all of them fall into one
(or both) of two categories:

a) Those that need ω(N) messages. For example: JSQ
and JLW require Θ(N2) messages per unit of time.

b) Those that need ω(log2(N)) bits of memory. For exam-
ple, the PULL policy [14] requires N bits of memory.

This is consistent with our results: the only way to achieve
vanishing delay is by having a superlogarithmic memory or
a superlinear message rate. Alternatively, we could obtain
a vanishing delay with a linear message rate and an un-
bounded central buffer [16].

5. PROPERTIES OF THE FLUID MODEL
We divide the proof of Theorem 1 into Lemmas 6 and

7, and Proposition 9 in which we establish uniqueness of
solutions, uniqueness of an equilibrium, and asymptotic sta-
bility, respectively. The proof of existence is omitted due to
space constraints.

5.1 Uniqueness of solutions

Lemma 6. A fluid solution, as described in Definition 1,
with initial condition s0 ∈ S, is unique.

Proof. The drift in the High Memory and Constrained
variants is always Lipschitz-continuous, so the uniqueness of
solutions is guaranteed by the Picard-Lindelöff theorem for
infinite dimensional spaces [9]. On the other hand, the drift
in the High Message variant is only continuous “almost ev-
erywhere” so we cannot guarantee the uniqueness of classical
(differentiable) solutions. However, we can show the unique-
ness of the possibly non-differential solutions of Definition 1.
Uniqueness issues only appear when the trajectories hit the
closure of the set where the drift is not Lipschitz-continuous,
which in this case is the closure of

D = {s ∈ S : s1 = 1 and s2 > 1− λ} .

The proof of the uniqueness for the High Message variant
consists in concatenating up to three unique solutions, and
has three steps:

1. If s0 ∈ S\D, then we have uniqueness up to the point
in which the solution hits D.

2. If s0 ∈ D, we show that the solution stays in D until
we have s2 = 1 − λ, implying that it can only escape
D through D\D. This is because ṡ1 > 0 if s2 > 1− λ.
Then, the uniqueness of the solution up to this point
is guaranteed by the fact that the drift restricted to D
is also Lipschitz-continuous.

3. Last, we show that once that it escapes D, it cannot
go back in again, thus guaranteeing the uniqueness of
the whole solution.

We omit the details due to space constraints.

5.2 Existence and uniqueness of an equilib-
rium

Lemma 7. The fluid model has the unique equilibrium
s∗ ∈ S1 defined in Theorem 1.

Proof. Suppose that s∗ ∈ S1 is an equilibrium. Since
s∗ ∈ S1, we have

∑∞
i=1 s

∗
i <∞ and we can sum the equilib-

rium conditions over all coordinates j ≥ i for all i ≥ 0, and
get the result.

5.3 Asymptotic stability of the equilibrium
We will establish asymptotic stability by sandwiching a

solution between two solutions that converge to s∗, similar
to the argument in [15]. For this purpose, we first establish
a monotonicity result.

Lemma 8. Suppose that s1 and s2 are two fluid solutions
with s1(0) ≥ s2(0). Then s1(t) ≥ s2(t), for all t ≥ 0.

The proof of this Lemma consists of checking the drift terms
of the fluid model. It is straightforward and is omitted. Now
we are ready to prove the convergence result.

Proposition 9. The equilibrium s∗ of the fluid model is
asymptotically stable for all initial conditions s0 ∈ S1, i.e.,

lim
t→∞

‖s(t)− s∗‖w = 0.

Proof. Fix some s0 ∈ S1. We define initial conditions
su(0) and sl(0) by letting

sui (0) = max {si(0), s∗i } ,

sli(0) = min {si(0), s∗i } .

We then have su(0) ≥ s0 ≥ sl(0), su(0) ≥ s∗ ≥ sl(0), and
su(0), sl(0) ∈ S1. Due to Lemma 8 we obtain that su(t) ≥
s(t) ≥ sl(t) and su(t) ≥ s∗ ≥ sl(t), for all t ≥ 0. Thus it suf-
fices to prove that ‖su(t)− s∗‖w and

∥∥sl(t)− s∗∥∥
w

converge
to 0 as t→∞.

At this point it is convenient work with the representation

vu(t), vl(t), and v∗, where vi ,
∞∑
j=i

sj . Then, the dynamics

of vu(t) are of the form

dvu1 (t)

dt
=λ− sui (t) = s∗1 − sui (t)

dvui (t)

dt
=λsui−1(t)Pu0 (t)− sui (t) ∀ i ≥ 2

=λ[sui−1(t)Pu0 (t)− s∗i−1P
∗
0]− [sui (t)− s∗i],

where in the last step we subtracted the equilibrium condi-
tion 0 = λs∗i−1P

∗
0 − s∗i from the right-hand side.

Now we will prove the coordinate-wise convergence by in-
duction on i. Note that, from the definition of vi, we have
vu1 (t) ≥ vui (t). Furthermore, we have su1 (t) ≥ s∗1, so that
dv1(t)
dt
≤ 0. It follows that vu1 (0) ≥ vui (t) − vui (0) ≥ −vui (0)

uniformly in t. Then, for the base case, we have

0 ≤
∞∫
0

(su1 (τ)− s∗1) dτ ≤ vu1 (0) <∞,

which, together with the Lipschitz-continuity of s1, implies
(su1 (τ)− s∗1) → 0 as τ → ∞. Now assume that we have
∞∫
0

(suk(τ)− s∗k) dτ <∞ for all non-negative integers k ≤ i−1.

Then,

−vui (0) ≤
t∫

0

(λ [sui−1(τ)Pu0 (τ)− s∗i−1P
∗
0]− [sui (τ)− s∗i]) dτ.

8

Adding and subtracting λs∗i−1P
u
0 (τ) inside the integral, we

can check that the former is less than or equal to

t∫
0

([sui−1(τ)− s∗i−1] + [Pu0 (τ)− P ∗0]− [sui (τ)− s∗i]) dτ, (6)

where the first term is uniformly upper-bounded in t by the
inductive hypothesis, and it can be checked that the second
one is also uniformly upper bounded for all variants using the
base case. This completes the induction. It is easily checked
that this coordinate-wise convergence implies convergence
in ‖ · ‖w, which concludes the proof.

Note that we proved asymptotic stability only for initial
conditions s0 ∈ S1 ⊂ S, which correspond to the initial
conditions with finite expected queue lengths.

6. INTERCHANGE OF LIMITS
We will prove Theorem 4 in this section, which shows that

the sequence of the marginals of the invariant distributions{
πNs
}∞
N=1

converges in distribution to a measure concen-

trated on the unique equilibrium (in S1) of the fluid model.
This, together with Proposition 3, guarantees that the prop-
erties derived from the equilibrium of the fluid model s∗,
specifically for the queueing delay, are an accurate approx-
imation for the steady state of the stochastic system for N
large enough. First, we will find a uniform upper bound for
EπN

[
V N1
]

in the following lemma.

Lemma 10. Let πN be the unique invariant distribution
of our process, and let V N1 = 1

N

∑N
i=1Q

N
i . We then have

the uniform upper bounds

πN
(
QN1 ≥ k

)
≤
(

1

2− λ

) k
2

, ∀N, ∀ k,

and

EπN

[
V N1

]
≤ 1 +

2

1− λ , ∀N.

Proof. Consider the linear Lyapunov function

Ψ(Q,m) = Q1.

The bounded upward jumps allows us to use Theorem 2.3
from [7] to obtain that EπN [Q1] <∞. Thus, all conditions
in Theorem 1 in [5] are satisfied, yielding the upper bounds

πN
(
QN1 ≥ 1 + 2m

)
≤
(

1

2− λ

)m+1

,

and

EπN

[
QN1

]
≤ 1 +

2

1− λ .

The first part of the result is obtained by letting m = (k −
1)/2 if k is odd or m = k/2 − 1 if k is even. Finally, using
the definition of V N1 and then symmetry, we have

E
[
V N1

]
=

1

N

N∑
i=1

E [Qi] = E [Q1] ,

which concludes the proof.

Now we prove the interchange of limits.

Proof of Theorem 4. Consider the set Z+ ∪ {∞} en-
dowed with the topology of Alexandroff’s compactification,
which is known to be metrizable. Moreover, the topology
defined by the norm ‖ · ‖w on [0, 1]Z+ is equivalent to the
product topology, which makes it compact. Then, S (cf.
Section 2 for its definition) is also compact because it is a
closed subset of [0, 1]Z+ . As a result, we have that the prod-
uct S × (Z+ ∪ {∞}) is a compact Polish space under the
product topology. Then,

{
πN
}∞
N=1

is trivially tight and by
Prohorov’s theorem [6], it is also relatively compact in the
weak topology, and any sequence has a weakly convergent
subsequence.

Given a weakly convergent subsequence
{
πNk

}∞
k=1

and its
limit π, we can use Skorokhod’s representation theorem to
construct a probability space (Ω0,A0,P0) and a sequence of
random variables

(
SNk (0),MNk (0)

)
distributed according

to πNk , such that

lim
k→∞

∥∥∥SNk (0)− s(0)
∥∥∥
w

= 0 P0 − a.s. (7)

for some random variable s(0) ∼ πs, where πs is the marginal
of π. Furthermore, we use

(
SNk (0),MNk (0)

)
as the initial

conditions for a sequence of processes
{(
SNk (t),MNk (t)

)}∞
k=1

,
which makes these processes stationary. Note that the ini-
tial conditions, distributed as πNk , do not necessarily con-
verge to a deterministic initial condition (this is actually
part of what we are trying to prove), so we cannot use The-
orem 2 directly to find the limit of the sequence of processes{
SNk (t)

}∞
k=1

. However, given any ω ∈ Ω0 outside a zero
P0-measure set, we can restrict this sequence of stochastic
processes to the probability space (Ωω,Aω,Pω) =

(ΩD × ΩS × {ω},AD ×AS × {∅, {ω}},PD × PS × δω)

and apply Theorem 2 to this new space, to obtain

lim
k→∞

sup
0≤t≤T

∥∥∥SNk (t, ω)− s(t, ω)
∥∥∥
w

= 0, Pω − a.s.,

where s(t, ω) is the fluid solution with initial condition s(0, ω).
Since this is true for all ω ∈ Ω0 except for a set of zero P0-
measure, it follows that

lim
k→∞

sup
0≤t≤T

∥∥∥SNk (t)− s(t)
∥∥∥
w

= 0, P− a.s.,

where P = PD×PS×P0 and where s(t) is another stochastic
process whose randomness is only in the initial condition (its
trajectory is the deterministic fluid solution for that specific
initial condition).

The uniform bound on EπN [V N1] (Lemma 10) and the con-
vergence of πN to π imply that Eπ[v1] ≤ 1 + 2/(1− λ) and
therefore v1 < ∞ a.s., or equivalently, πs

(
S1
)

= 1. This

means that every possible initial condition is in S1, almost
surely (and not in S\S1). Now suppose that

{
SNk (0)

}∞
k=1

does not converge P0-a.s. to s∗ (i.e., that πs 6= δs∗). Then,
the set of processes with initial conditions in S1\{s∗} has
probability πs

(
S1\{s∗}

)
> 0 and for every such process

s(t, ω) with initial condition s(0, ω) we have

‖s(0, ω)− s∗‖w > ‖s(t, ω)− s∗‖w
for t large enough (this is due to the fact that these sample
paths converge asymptotically to s∗, by Theorem 1). As a
result,

Eπs

[
‖s(0)− s∗‖w

]
> Eπs

[
‖s(t)− s∗‖w

]

9

for t large enough, which is a contradiction, because SNk

is stationary and thus s also has to be stationary. Then,
the limit of every convergent subsequence of the marginals{
πNs
}∞
N=1

has to be δs∗ .

7. PROOF OF THE NEGATIVE RESULT
We now prove our negative result for resource constrained

policies. The proof proceeds through a sequence of lemmas.
Due to space constraints, we will only prove it for the case in
which the distribution for the sampling of servers, νN (m),
is independent of m. The general case can be proven with a
similar line of reasoning.

We first show that for any fixed time t, we can have any
given finite number of arrivals before the next message or
departure, with probability bounded away from zero, uni-
formly for all N .

Lemma 11. Let ηN be a memory-based dispatching pol-
icy with message rate of at most αN for some α > 0. If TNt
is the (random) time of the first departure or message from a
server after some fixed time t > 0, then for every k ∈ Z+ we
have that P

(
k arrivals in

(
t, TNt

))
≥ P (α, λ, k) > 0, where

P (α, λ, k) is a constant independent from N .

Proof. Because of the upper bound for the message rate
of any server (cf. part 1 of Definition 2), we have that
µN
(
QNn (t)

)
≤ µN (0) for all t ≥ 0. In any interval [0, t]

we must have at most as many departures as arrivals to the
system. Therefore, the time-average number of departures
per unit of time is at most λN and thus we will have at least
(1−λ)N idle servers on the average. As a result, µN (0) has
to be uniformly upper bounded by α

1−λ in order to have at
most αN messages per unit of time, in average.

Starting at any time t > 0, we have k arrivals after an
Erlang(k,λN) time. Moreover, we will have a departure no
sooner than after an exponential time of rate N (which cor-
responds to the worst case in which all servers are busy),
and we will have a message no sooner than after an expo-
nential time of rate N α

1−λ (which corresponds to the worst

case in which all servers are idle). Then, we get the uniform
bound

P
(
k arrivals in

(
t, TNt

))
≥ P

(
Erl(k,Nλ) < exp

(
Nα

1− λ +N

))
≥ P

(
Erl(k, λ) < exp

(
α

1− λ + 1

))
,

which is a positive number, independent of N .

We now state a simple lemma regarding the number of
probability distributions overN . It implies that unless many
servers have the same probability, a distribution will have
many distinct permutations.

Lemma 12. If p ∈ ΠN has at most u servers with the
same probability of being selected, then

#{σ(p) : σ ∈ SN} ≥ max

{(
N

u

)
, dN/ue!

}
.

The proof consists of a simple counting argument and is thus
omitted.

The next step is to characterize the probability distribu-
tions on the set of servers induced by the dispatching rule
function fN when we take CN to be logarithmic in N .

Lemma 13. Consider a symmetric dispatching policy, with
CN = C log2(N), and dispatching rule function fN , and let
r be a positive integer. Then for every m ∈ M, for every
subset {n1, . . . , nr} ∈ P(N), and for every (qn1 , . . . , qnr) ∈
Qr, there exist at least N−C−r servers with the same proba-
bility of being selected under fN (m, {(n1, q1), . . . , (nr, qr)}).

Proof. Fix (q1, . . . , qr) ∈ Qr. First, note that there are(
N
r

)
different subsets {n1, . . . , nr}, and NC different memory

states m. Then, with (q1, . . . , qr) ∈ Qr fixed, the argument
of fN can only take

(
N
r

)
NC different values, that lead to at

most
(
N
r

)
NC different distributions. Let p ∈ ΠN be one of

those distributions, i.e., p = fN (m, {(n1, q1), . . . , (nr, qr)})
for some m ∈ M and {n1, . . . , nr} ∈ P(N). Then, σ(p) =
fN (σM (m), {(σ(n1), q1), . . . , (σ(nr), qr)}) is also a possible
distribution due to the symmetry hypothesis. As a result,

#{σ(p) : σ ∈ SN} ≤

(
N

r

)
NC , (8)

which is the upper bound for the total number of different
distributions implied by the limited number of different ar-
guments for fN .

On the other hand, if p has at most u servers with the
same probability of being selected, Lemma 12 provides the
lower bound

#{σ(p) : σ ∈ SN} ≥ max

{(
N

u

)
, dN/ue!

}
,

which combined with Equation (8) yields

max

{(
N

u

)
, dN/ue!

}
≤

(
N

r

)
NC . (9)

Now, if C + r < u < N − C − r, then
(
N
u

)
>
(

N
C+r+1

)
>(

N
r

)
NC for N large enough, which contradicts Equation (9).

If u ≤ C + r, then dN/ue! ≥ dN/(C + r)e! >
(
N
r

)
NC for

N large enough, which also contradicts Equation (9). Thus
u ≥ N − C − r.

We are now ready to prove our main result.

Proof of Theorem 5. Consider the system in steady
state, fix some time T > 0 and let CN (T) be the event that
there are at least C + 1 arrivals before the next message or
departure. This event has probability bounded away from
zero due to Lemma 11, and it is an event that depends only
on the Poisson processes of arrivals, departures, and mes-
sages. We will show that, for N large enough, a policy will
send at least one of those C + 1 jobs to a non empty queue,
with probability bounded away from zero.

Without loss of generality, we may assume that the ex-
pected delay is finite. This implies that there is no accumu-
lation of jobs in the system, and that the expected number
of busy servers is λN (because our system is in steady state).
Then, by the Markov inequality, we have that the probabil-
ity of QN (T) having at least N(λ−ε) busy servers is greater
than ε/(1− λ+ ε), for all ε ∈ (0, λ). Furthermore, since the
message rate is at most αN , and since the number of sam-
pled queues is independent from the arrivals (only depends

10

on νN), it follows that the expected number of queues sam-
pled at the time of an arrival is less than or equal to α/λ.
Therefore, using the Markov inequality once more, we get
that the probability of sampling less than β servers is lower
bounded by 1−α/(λβ), which is positive for β > α/λ. Then,
by the independence of the sampling, the probability that
the number of sampled servers for each of the first C + 1
arrivals after time T are fewer than β, is lower bounded by
(1− α/(λβ))C+1. Moreover, due to the symmetry hypothe-
sis, the sampling distribution νN is uniform over all subsets
of the same size. This implies that we have a further sub-
set of sample paths C′(T) ⊂ C(T), with probability bounded
away from zero uniformly in N , such that for the first C+ 1
arrivals after time T , all sampled servers are busy. From
now on, we will focus on those sample paths.

Recall that a policy defines a continuous time Markov pro-
cess,

(
QN (t),MN (t)

)
, over the state space QN ×M. The

evolution of this process between time T and the time of
the (C + 1)-st arrival, for all sample paths in C′(T), can
be described in terms of some basic random variables, as
follows.

Let tk be the time of the k-th arrival after time T , let
{U(k)}C+1

k=1 be a collection of independent random subsets

distributed as νN (the sampled servers at the time of each
arrival), let {V (k)}C+1

k=1 be a collection of i.i.d. random vari-
ables, uniform in [0, 1] (the seeds for the randomized selec-
tion of the destinations), and let {W (k)}C+1

k=1 be a collection
of i.i.d. exponential random variables with parameter 1 (the
workloads of each incoming job). All the randomness in our
system is modeled by these random variables, and the pro-
cess

(
QN (t),MN (t)

)
between times T and tC+1 will be a

deterministic function of them.
To begin with, the remaining workload of the jobs that are

being processed, decreases at a rate of one unit of work per
unit of time. Moreover, for all sample paths in C′(T), the
memory process MN (t) is only updated at the time of an ar-
rival. Consider the mapping FfN : [0, 1]×M×B → N , such
that FfN (V (k),m, {(n1, q1), . . . , (nr, qr)}) is distributed ac-

cording to fN (m, {(n1, q1), . . . , (nr, qr)}), and such that

σ
(
FfN (V (k),m, {(n1, q1), . . . , (nr, qr)})

)
=

FfN (V (k), σM (m), {(σ(n1), q1), . . . , (σ(nr), qr)}), (10)

for all σ ∈ SN . Then, let

X(k) = FfN
(
V (k),MN (t−k) ,{(U(k), QN

(
t−k
))})

(11)

be the random destination of the new job. At the time of
the k-th arrival, the following steps occur sequentially but
in zero time.

1. A random subset of servers is chosen (U(k)).

2. Based on U(k) and the state of their queues, a desti-
nation for the new job is chosen (X(k)) using the seed
V (k).

3. The memory is updated according to

MN (tk) = gNd

(
MN (t−k),

{(
U(k), QN (t−k)

)}
, X(k)

)
,

(12)
and a new job with workload W (k) is added to queue
X(k) in QN .

Recall that for all sample paths in C′(T), the memory pro-
cess is constant between arrivals, and thus its evolution af-
ter time T is completely determined by the previous up-
date equation, for which we have MN (t−1) = MN (T) and
MN (t−k) = MN (tk−1) for all k ≥ 2.

For every sample path ω, let Ek(ω) be a least cardinality
set such that fN

(
MN (tk−1, ω),

{(
U(k, ω), QN (t−k , ω)

)})
is

uniform (or zero) in Ek(ω)c, and let EN (C + 1)(ω) be the
union of those Ek(ω) for all 1 ≤ k ≤ C + 1. The sets Ek(ω)
will have cardinality of at most C + β by Lemma 13, for all
ω ∈ C′(T).

Using the construction of
(
QN (t),MN (t)

)
described above,

we can define a mapping G, that takes as arguments

• the initial condition
(
MN (T, ω), QN (T, ω)

)
,

• the arrival times {tk(ω)}C+1
k=1 , and the corresponding

workloads {W (k, ω)}C+1
k=1 ,

• the subsets of sampled servers {U(k, ω)}C+1
k=1 and seeds

{V (k, ω)}C+1
k=1 ,

and yields the set EN (C + 1)(ω).
Using the symmetry hypothesis in Equations (11) and

(12), the symmetry of the map FfN from Equation (10),
and proceeding recursively, it can be checked that the pre-
vious mapping G is “symmetric”. In particular, for every
permutation σ ∈ SN such that σ(U(k, ω)) = U(k, ω), if
1 ≤ k ≤ C + 1, we have that σ

(
EN (C + 1)(ω)

)
is obtained

when the argument of G is

• the initial condition
(
σM

(
MN (T, ω)

)
, QN (T, ω)

)
,

• the arrival times {tk(ω)}C+1
k=1 , and the corresponding

workloads {W (k, ω)}C+1
k=1 ,

• the subsets of sampled servers {U(k, ω)}C+1
k=1 and seeds

{V (k, ω)}C+1
k=1 .

We omit the details of this claim due to space constraints.
Note that, in order to obtain σ

(
EN (C + 1)

)
, we only need

to change the initial memory state to σM
(
MN (T)

)
. Then,

due to the fact that we have only NC memory states, we
can only obtain at most NC different sets σ(EN (C + 1)) by
varying σ among those that have σ(U(k, ω)) = U(k, ω), if
1 ≤ k ≤ C + 1, i.e., we have that

#
{
σ
(
EN (C + 1)

)
: σ ∈ A

}
≤ NC , (13)

where

A = {σ ∈ SN : σ(U(k)) = U(k), if 1 ≤ k ≤ C + 1} . (14)

Recall that for all ω ∈ C′(T), the number of sampled servers
(#U(k, ω)) is at most β, so these permutations leave at most
β servers fixed for each one of the C + 1 arrivals, which
translates into at most (C + 1)β servers fixed in total.

Now consider the collection of sample paths C′1(T) ⊂ C′(T)
where at least one of the sets Ek(ω) is empty. For those
sample paths, at least one of the jobs is dispatched accord-
ing to a uniform distribution, and because we had at least
N(λ− ε) non empty queues with probability bounded away
from zero, at least one job is sent to a non empty queue
with probability bounded away from zero (this last prob-
ability is conditioned on C′1(T)). If this event has overall
probability bounded away from zero (without conditioning

11

on C′1(T)), we are done. On the other hand, for all the sam-
ple paths in C′(T)\C′1(T), none of the Ek(ω) are empty. In
order to derive a contradiction, assume that the first C + 1
jobs are sent to an empty queue for a collection of sample
paths with “high probability” (in this context, “high prob-
ability” refers to probabilities converging to 1 as N → ∞).
This implies that the jobs are sent to servers in EN (C + 1)
with high probability. Otherwise, their destination would be
distributed uniformly over Eck (which has cardinality of at
least N −β−C by Lemma 13), and they would go to a non
empty queue with probability bounded way from zero, for
the same reason as before. Then, each Ek must contain at
least 1 idle server with high probability (and at most C + β
by Lemma 13), and thus EN (C + 1) must contain between
C + 1 and (C + β)(C + 1) idle servers. This means that, if
a = #EN (C + 1), then

#
{
σ
(
EN (C + 1)

)
: σ ∈ SN

}
=

(
N

a

)
≥

(
N

C + 1

)
.

If instead of using all permutations σ ∈ SN , we take the

subset A defined in Equation (14), then, if b = #
C+1⋃
k=1

U(k)

and a′ = #

(
EN (C + 1)\

C+1⋃
k=1

U(k)

)
, we have that

#{σ(EN (C + 1)) : σ ∈ A} =

(
N − b
a′

)
≥

(
N − (C + 1)β

C + 1

)
,

because all sampled servers U(k) (which are at most (C +
1)β) are busy, and thus disjoint with the idle servers in
EN (C+1) (which are at least C+1). However, we also had
an upper bound for this quantity in Equation (13), which

leads to a contradiction because NC <
(
N−(C+1)β

C+1

)
for N

large enough. This concludes the proof.

8. CONCLUSIONS AND FUTURE WORK
The main objective of this paper is to find necessary and

sufficient conditions on the amount of resources (messages
and memory) available to a central dispatcher, in order to
achieve a vanishing queueing delay as the system size in-
creases. This is done by defining a unified framework for a
broad class of dispatching policies and by proving two sep-
arate results: First, we show that when we have a limited
amount of memory and a modest budget of messages per
unit of time, all dispatching policies result in queueing de-
lay uniformly bounded away from zero. Second, we present
two variants of a simple symmetric pull-based dispatching
policy for which it is sufficient to have a little more memory
or messages in order to have vanishing queueing delay. As
an added bonus, we analyze a third variant of the same dis-
patching policy with positive queueing delay. We show that
by wisely exploiting an arbitrarily small message rate (but
still proportional to the arrival rate) we obtain a queueing
delay which is finite and uniformly upper bounded even in
heavy traffic, a significant qualitative improvement over the
M/M/1 queueing delay obtained in the absence of messages.

There are several interesting directions for future research.
In light of the symmetry assumption in Theorem 5, an imme-
diate open question is whether the result still holds without
this assumption. Our proof heavily relies on the symme-
try assumption and is difficult to generalize. Second, we

could relax the assumption of homogeneous servers, con-
sider pools of servers with different service rates, and study
the tradeoffs between resources and the stability region of
a policy. In this setting we expect a result similar to our
lower bound for queueing delay, stating that a symmetric
resource constrained policy cannot be stable for every stabi-
lizable system. Last but not least, it would be interesting to
extend some or all of these results to the case of general job
size distributions (e.g., heavy tailed) and/or different service
disciplines such as processor sharing or LIFO, as these are
prevalent in many applications.

9. REFERENCES
[1] N. Alon, E. Lubetzky, and O. Gurel-Gurevich.

Choice-memory tradeoff in allocations. In Proceedings
of FOCS, 2009.

[2] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced
allocations. SIAM Journal on Computing,
29(1):180–200, 1999.

[3] R. Badonnel and M. Burgess. Dynamic pull-based
load balancing for autonomic servers. In Network
Operations and Management Symposium, 2008.

[4] I. Benjamini and Y. Makarychev. Balanced
allocations: memory performance tradeoffs. The
Annals of Applied Probability, 22(4):1642–1649, 2012.

[5] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis.
Performance of multiclass markovian queueing
networks via piecewise linear lyapunov functions. The
Annals of Applied Probability, 11(4):1384–1428, 2002.

[6] P. Billingsley. Convergence of Probability Measures.
Wiley, second edition, 1999.

[7] B. Hajek. Hitting-time and occupation-time bounds
implied by drift analysis with applications. Advances
in Applied Probability, 14(3):502–525, 1982.

[8] C. Lenzen and R. Wattenhofer. Tight bounds for
parallel randomized load balalcing. Distributed
Computing, pages 1–16, 2014.

[9] S. Lobanov and O. Smolyanov. Ordinary differential
equations in locally convex spaces. Uspekhi Mat. Nauk,
49:93–168, 1994.

[10] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and
A. Greenberg. Join-Idle-Queue: A novel load balancing
algorithm for dynamically scalable web services.
Performance Evaluation, 68(11):1056–1071, Nov. 2011.

[11] M. Mitzenmacher. The power of two choices in
randomized load balancing. PhD thesis, U.C. Berkeley,
1996.

[12] M. Mitzenmacher., B. Prabhakar., and D. Shah. Load
balancing with memory. In Proceedings of FOCS, 2002.

[13] G. Stamoulis and J. Tsitsiklis. Optimal distributed
policies for choosing among multiple servers. In
Proceedings of the CDC, pages 815–820, 1991.

[14] A. Stolyar. Pull-based load distribution in large-scale
heterogeneous service systems. Queueing Systems,
80(4):341–361, 2015.

[15] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich.
Queueing system with selection of the shortest of two
queues: an asymptotic approach. Problems of
Information Transmission, 32(1):15–27, 1996.

[16] L. Ying, R. Srikant, and X. Kang. The power of
slightly more than one sample in randomized load
balancing. In Proceedings of INFOCOM, 2015.

12

	Introduction
	Our contribution
	Outline of the paper

	Notation
	Model and main results
	Modeling assumptions
	Our dispatching policy and its performance
	Policy description
	System state representation
	Fluid model
	Properties of the fluid solutions
	Approximation theorems
	Delay

	Delay lower bound for resource constrained policies
	Unified framework for policies
	Lower bound for queueing delay

	Comparison with other policies in the literature
	Open-loop policies (without messages)
	Policies based on queue lengths
	Join the shortest queue (SQ)
	SQ(d) with memory (SQ(d,b))
	SQ(d) for divisible jobs

	Pull-based policies
	Memory, messages, and queueing delay

	Properties of the fluid model
	Uniqueness of solutions
	Existence and uniqueness of an equilibrium
	Asymptotic stability of the equilibrium

	Interchange of limits
	Proof of the negative result
	Conclusions and future work
	References

