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Abstract—We consider the decentralized binary hypothesis
testing problem in networks with feedback, where some or all
of the sensors have access to compressed summaries of other
sensors’ observations. We study certain two-message feedback
architectures, in which every sensor sends two messages to a
fusion center, with the second message based on full or partial
knowledge of the first messages of the other sensors. Under either
a Neyman-Pearson or a Bayesian formulation, we show that the
asymptotically optimal (in the limit of a large number of sensors)
detection performance (as quantified by error exponents) does not
benefit from the feedback messages.

Index Terms—Decentralized detection, feedback, error expo-
nent, sensor networks.

I. INTRODUCTION

In the problem of decentralized detection, each sensor
makes an observation, and sends a summary of that observa-
tion by first applying a quantization function to its observation,
and then communicating the result to a fusion center. The
fusion center makes a final decision based on all the sensor
messages. The goal is to design the sensor quantization
functions and the fusion rule so as to minimize a cost function,
such as the probability of an incorrect final decision. This
problem has been widely studied for various tree architectures,
including the parallel configuration [1]–[10], tandem networks
[11]–[14], and bounded height tree architectures [15]–[22].
For sensor observations not conditionally independent given
the hypothesis, the problem of designing the quantization
functions is known to be NP-hard [23]. For this reason, most
of the literature assumes that the sensor observations are
conditionally independent.

Non-tree networks are harder to analyze because the dif-
ferent messages received by a sensor are not in general
conditionally independent. While some structural properties
of optimal decision rules are available (see, e.g., [24]), not
much is known about the optimal performance. Networks with
feedback face the same difficulty. In this paper we consider
sensor network architectures that involve feedback: some or
all of the sensors have access to compressed summaries of
other sensors’ observations. We are interested in character-
izing the performance under different architectures, and, in
particular, to determine whether the presence of feedback can
substantially enhance performance. In the context of a wireless
network, feedback can result in unnecessary communication
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and computation costs, therefore it is important to quantify
the performance gain, if any, that feedback can provide.

A variety of feedback architectures, under a Bayesian for-
mulation, have been studied in [25], [26]. These references
show that it is person-by-person optimal for every sensor to
use a likelihood ratio quantizer, with thresholds that depend
on the feedback messages. However, because of the difficulty
of optimizing these thresholds when the number of sensors
becomes large, it is difficult to analytically compare the per-
formance of networks with and without feedback. Numerical
examples in [26] show that a system with feedback has lower
probability of error, as expected. To better understand the
asymptotics of the error probability, [27] studies the error
probability decay rate under a Neyman-Pearson formulation
for two different feedback architectures. For either case, it
shows that if the fusion center also has access to the fed back
messages, then feedback does not improve the optimal error
exponent. References [28], [29] consider the Neyman-Pearson
problem in a “daisy-chain” architecture, and obtain a similar
result.

In this paper, we revisit the two-message architecture stud-
ied in [27], and extend the available results. We also study
certain feedback architectures that have not been studied
before. Our main contributions are as follows.

1) We consider the two-message full feedback architecture
studied in [27]. Here, each sensor gets to transmit two
messages, and the second message can take into account
the first messages of all sensors. We resolve an open
problem for the Bayesian formulation, by showing that
there is no performance gain over the non-feedback case.
We also provide a variant of the result of [27] for the
Neyman-Pearson case. Our model is different because
unlike [27], because we do not restrict the feedback
message alphabet to grow at most subexponentially with
the number of sensors.

2) We also study a new two-message sequential feedback
architecture. Sensors are indexed, and the second message
of a sensor can take into account the first message of all
sensors with lower indices. We show that under either the
Neyman-Pearson or Bayesian formulation, feedback does
not improve the error exponent.

The remainder of this paper is organized as follows. In
Section II we define the model, formulate the problems that
we will be studying, and provide some background material.
In Section III, we study two-message feedback architectures
(sequential and full feedback). We offer concluding remarks
and discuss open problems in Section IV.
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II. PROBLEM FORMULATION

We consider a decentralized binary detection problem in-
volving n sensors and a fusion center. Each sensor k observes
a random variable Xk taking values in some measurable space
(X ,F), and is distributed according to a measure Pj under
hypothesis Hj , for j = 0, 1. Under either hypothesis Hj ,
j = 0, 1, the random variables Xk are assumed to be i.i.d.
We use Ej to denote the expectation operator with respect to
Pj .

A. Feedback Architectures
In the two-message feedback architecture (see Figure 1),

each sensor k sends a message Yk = γk(Xk), which is a
quantized version of its observation Xk, to the fusion center.
The quantization function is of the form γk : X 7→ T , where T
is the transmission signal set. In most engineering scenarios,
T is assumed to be a finite alphabet, although we do not
require this restriction. We denote by Γ the set of allowable
quantization functions.

X1 Xn

Yf

Y1 Yn

W1 Wn

Z1 Zn

Fig. 1. A two-message architecture.

We assume that the sensors are indexed in order of when
they send their messages to the fusion center. We will consider
two forms of feedback under the two-message architecture.
In the first form, the information Wk = (Y1, . . . , Yk−1)
received from sensors 1, . . . , k − 1, is fed back by the fusion
center to sensor k. We call this sequential feedback. In
the second form of feedback, the fusion center broadcasts
the messages (Y1, . . . , Yn) to all the sensors. In this case,
the additional information received at sensor k is Wk =
(Y1, . . . , Yk−1, Yk+1, . . . , Yn). We call this full feedback.

In both feedback scenarios, each sensor forms a new second
message Zk = δk(Xk,Wk) based on the additional informa-
tion Wk, and sends it to the fusion center. Finally, the fusion
center makes a decision Yf = γf (Y1, . . . , Yn, Z1, . . . , Zn).
The collection (γf , γ1, . . . , γn, δ1, . . . , δn) is called a strategy.
A sequence of strategies, one for each value of n, is called
a strategy sequence. Typically, we wish to design strategy
sequences that optimize a given objective function.

B. Preliminaries
In this section, we list the basic assumptions that we

will be making throughout this paper, and some preliminary

mathematical results that we will apply in our subsequent
proofs.

Consider the Radon-Nikodym derivative `Xij of the measure
Pi with respect to (w.r.t.) the measure Pj . Informally, this is
the likelihood ratio associated with an observation of X . It is a
random variable whose value is determined by X; accordingly,
its value should be denoted by a notation such as `Xij (X).
However, in order to avoid cluttered expressions, we will abuse
notation and just write `ij(X). Similarly, we use `ij(X|Y )
to denote the Radon-Nikodym derivative of the conditional
distribution of X given Y under Pi w.r.t. that under Pj .

For technical reasons (see [30]), we make the following
assumptions.

Assumption 1: The measures P0 and P1 are absolutely con-
tinuous w.r.t. each other. Furthermore, there exists some γ ∈ Γ
such that −E0 [log `01(γ(X1))] < 0 < E1 [log `10(γ(X1))].

Assumption 2: We have E0

[
log2 `01(X1)

]
< ∞ and

E1

[
log2 `10(X1)

]
<∞.

We will require the following lower bound for the maximum
of the Type I and II error probabilities. This bound was first
proved in [31] for the case of discrete observation space.
The following proposition generalizes the result to a general
observation space. The proof is almost identical to that in [31],
and is omitted here.1

Proposition 1: Consider a hypothesis testing problem based
on a single observation X with distribution Pj under hypoth-
esis Hj , j = 0, 1. Let Pe,j be the probability of error when
Hj is true. Let Z = log dP1

dP0
(X) be the log Radon-Nikodym

derivative. For any s ∈ R, let Λ(s) = logE0[exp(sZ)] be the
log-moment generating function of Z. Then, for s∗ ∈ [0, 1]
such that Λ′(s∗) = 0, we have

max(Pe,0, Pe,1) ≥ 1

4
exp

(
Λ(s∗)−

√
2Λ′′(s∗)

)
.

III. ASYMPTOTIC PERFORMANCE

In this section, we study the Neyman-Pearson and Bayesian
formulations of the decentralized detection problem in the two-
message architecture. For both sequential and full feedback,
and i, j ∈ {0, 1}, let the log likelihood ratio at the fusion
center be

L(n)
ij = log `ij(Y1, . . . , Yn, Z1, . . . , Zn)

=

n∑
k=1

log `ij(Yk) + log `ij(Z1, . . . , Zn|Y1, . . . , Yn)

=

n∑
k=1

log `ij(Yk) +

n∑
k=1

log `ij(Zk|Yk,Wk)

To simplify notation, we let

Lkij(w) = log `ij(Yk) + log `ij(Zk|Yk, w)

= log `ij(γk(Xk), δwk (Xk)),

where δwk : X 7→ T is a function that depends on the value w.

1Throughout this paper, we use f ′(s) to denote the derivative of f w.r.t. s.
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A. Neyman-Pearson Formulation

Let α ∈ (0, 1) be a given constant. A strategy is admissible
if its Type I error probability satisfies P0(Yf = 1) < α.
Let β∗n = inf P1(Yf = 0), where the infimum is taken
over all admissible strategies. Our objective is to characterize
the optimal error exponent lim supn→∞(1/n) log β∗n, under
different feedback architectures.

Let g∗p be the optimal error exponent of the parallel config-
uration in which there is no feedback from the fusion center,
i.e., each sensor k sends a message (γk(Xk), δk(Xk)) to the
fusion center. From [30], the optimal error exponent is

g∗p = − sup
(γ,δ)∈Γ2

E0 [log `01(γ(X1), δ(X1))].

Let g∗sf and g∗f be the optimal error exponents for the se-
quential feedback and full feedback architectures respectively.
Since the sensors can ignore some or all of the feedback
messages from the fusion center, we have

g∗f ≤ g∗sf ≤ g∗p . (1)

We will show that under appropriate but mild assumptions,
the inequalities in (1) are equalities. Hence, from an asymp-
totic view point, both sequential and full feedback results in no
gain in detection performance. This is in line with the results in
[29], which shows that feedback does not improve the optimal
error exponent in a daisy chain architecture. We first show an
instructive result that will guide us in the main proofs.

Lemma 1: Suppose that βn is the Type II error probability
of a given strategy. If R > 0 and

lim sup
n→∞

P0(L(n)
01 > nR) < 1− α,

then

lim inf
n→∞

1

n
log βn ≥ −R.

Proof: We have

βn = P1(Yf = 0)

= E0

[
exp(−L(n)

01 )1{Yf=0}

]
≥ E0

[
exp(−L(n)

01 )1{Yf=0,L(n)
01 ≤nR}

]
≥ e−nRP0(Yf = 0,L(n)

01 ≤ nR).

Therefore,

P0(Yf = 0,L(n)
01 ≤ nR) ≤ βnenR.

This upper bound yields

1− α ≤ P0(Yf = 0) ≤ βnenR + P0(L(n)
01 > nR)

and
1

n
log βn +R ≥ 1

n
log(1− α− P0(L(n)

01 > nR)).

The lemma then follows by letting n→∞.
Theorem 1: Suppose Assumptions 1-2 hold. Then, the op-

timal error exponent for the sequential feedback architecture
is g∗sf = g∗p . Moreover, there is no loss in optimality if

sensors ignore the feedback messages from the fusion center,
and all sensors are constrained to using the same quantization
function.

Proof: From (1), we have g∗sf ≤ g∗p . To show the reverse
inequality, we will first upper bound E0[Lk01(Wk) | Wk] by
R = −g∗p , and then apply Lemma 1 to obtain a lower bound
for g∗sf . We have for all w,

E0

[
Lk01(Wk) |Wk = w

]
= E0 [log `01(γk(Xk), δwk (Xk)) |Wk = w]

≤ sup
(γ,δ)∈Γ2

E0 [log `01(γ(X1), δ(X1))]

= R. (2)

From Assumption 2, there exists some constant a > 0 such
that

var0(Lk01(Wk)) ≤ E0

[
E0

[(
Lk01(Wk)

)2 |Wk

]]
≤ a. (3)

Recall that Wk = (Y1, . . . , Yk−1), so we have, for m < k,

E0

[
(Lm01(Wm)− E0[Lm01(Wm) |Wm])

· (Lk01(Wk)− E0[Lk01(Wk) |Wk])
]

= E0

[
(Lm01(Wm)− E0[Lm01(Wm) |Wm])

· E0

[
Lk01(Wk)− E0[Lk01(Wk) |Wk] |Wk

]]
= 0. (4)

Let ε > 0. From Chebychev’s inequality, together with (2),
(3), and (4), we obtain

P0

(
L(n)

01 > n(1 + ε)R
)

≤ P0

(
n∑
k=1

(L(n)
01 − E0[Lk01(Wk) |Wk]) > nεR

)
≤ a

nε2R2
.

Letting n→∞, we get

lim
n→∞

P0

(
L(n)

01 > n(1 + ε)R
)

= 0.

Therefore, applying Lemma 1, we have g∗sf ≥ (1+ε)g∗p . Since
ε was chosen arbitrarily, we have g∗sf ≥ g∗p , and the proof is
now complete.

Next, we consider the full feedback architecture. The same
architecture has been studied in [27], using the method of
types. In the following, we show the same result as [27], i.e.,
there is no gain from the feedback messages asymptotically,
but without the constraint that the feedback messages have an
alphabet that grows at most subexponentially fast.

For technical reasons, we will require the following addi-
tional assumption.

Assumption 3: Let b(λ) = logE0[exp(λ log `01(X1))].
There exists s > 0 such that b(s) <∞.

Note that since b(·) is non-decreasing on [0, s] (see Lemma
2.2.5 of [32]) , and therefore Assumption 3 implies that b(λ) <
∞ for all λ ∈ [0, s].
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Suppose that a strategy sequence has been fixed. Let
ϕn(λ) = logE0[exp(λL(n)

01 /n)]. The Fenchel-Legendre trans-
form of ϕn is Φn(t) = supλ∈R{λt − ϕn(λ)}. We first show
some properties of ϕn, and use these properties together with
Lemma 1 to prove that similar to the sequential feedback
architecture, feedback does not improve the asymptotic per-
formance of a full feedback architecture. Denote by ϕ′n(λ)
the derivative of ϕn w.r.t. to λ.

Lemma 2: Suppose Assumption 3 holds, and let s be as in
the assumption. Suppose λ ∈ [0, s). Then, for n > 1, we have
0 ≤ ϕn(λ) ≤ nb(λ/n), 0 ≤ ϕ′n(λ) ≤ C1, and 0 ≤ ϕ′′n(λ) ≤
C2 for some constants C1, C2 > 0, independent of the strategy
used and λ. Furthermore, ϕ′n(0) ≤ −g∗p for all n.

Proof: Since ϕn is a convex function [32] with ϕn(−1) =
ϕn(0) = 0, ϕn(λ) ≥ 0 for λ ≥ 0. Using Jensen’s inequality,
we obtain

1

n
ϕn(λ) =

1

n
logE0

[
exp(λL(n)

01 /n)
]

≤ 1

n
logE0 [exp((λ/n) log `01(X1, . . . , Xn))]

=
1

n

n∑
k=1

logE0 [exp((λ/n) log `01(Xk))]

= b(λ/n) <∞. (5)

From (5), it can be shown that ϕn is twice differen-
tiable throughout [0, s) (see e.g. Example A.5.2 of [33]).
To simplify the notation in the following proof, let `(n)

01 =
`01(Y1, . . . , Yn, Z1, . . . , Zn) and `01,n = `01(X1, . . . , Xn).
Since ϕn(λ) ≥ 0, we have

ϕ′n(λ) =
1

n
e−ϕn(λ)E0

[
e(λ/n)L(n)

01 L(n)
01

]
≤ 1

n
E0

[
(`

(n)
01 )λ/n log `

(n)
01

]
=

1

n
E1

[
(`

(n)
01 )λ/n+1 log `

(n)
01

]
≤ 1

n
E1

[
φ(`

(n)
01 )
]
, (6)

where φ(x) = (xλ/n+1 log x)1{x≥1} is a convex function.
Since `(n)

01 = E1[`01,n|F ], where F is the σ-field generated
by Yk and Zk, k = 1, . . . , n, we get from Jensen’s inequality
that the R.H.S. of (6) is bounded above by

1

n
E1 [φ(`01,n)]

≤ 1

n
E0

[
(`01,n)λ/n| log `01,n|

]
≤ 1

n
E0

[
(`01,n)λ/n

n∑
k=1

| log `01(Xk)|

]

= E0

[
(`01(X1))λ/n| log `01(X1)|

]
E0

[
(`01(X1))λ/n

]n−1

≤ E0

[
(`01(X1))2λ/n

]1/2E0

[
log2 `01(X1)

]1/2
· E0

[
(`01(X1))(1−1/n)λ

]
(7)

where the last equality is because the Xi are i.i.d., and the last
inequality follows from the Cauchy-Schwarz inequality and
Jensen’s inequality. From Assumption 3, the R.H.S. of (7) is

bounded by some constant C1, independent of n and λ. The
proof for the bound on the second derivative is similar, and
is omitted. Finally, the bound for ϕ′n(0) = (1/n)E0

[
L(n)

01

]
follows from the same proof as for (2). The proof of the lemma
is now complete.

Lemma 3: Suppose Assumptions 1-3 hold, and t > r =
lim supn→∞ ϕ′n(0). Then, there exist N0 and η > 0 such that
for all n ≥ N0, Φn(t) ≥ η.

Proof: Let ε = t − r > 0, and let λ =
min{s/2, ε/(2C2)} > 0. Then, from Lemma 2, we have
ϕn(λ) ≤ (ϕ′n(0) + λC2)λ. There exists N0 such that for all
n ≥ N0, ϕ′n(0) ≤ r + ε/4. Therefore, we get

ϕn(λ) ≤ (r + 3ε/4)λ

= (t− ε/4)λ.

Therefore, Φn(t) ≥ λt − ϕn(λ) ≥ ελ/4. The proof of the
lemma is now complete.

Finally, we can prove the following result.
Theorem 2: Suppose Assumptions 1-3 hold. Then, in the

full feedback architecture, there is no loss in optimality if
sensors ignore the feedback messages from the fusion center,
i.e., g∗f = g∗p . Moreover, there is no loss in optimality if
all sensors are constrained to using the same quantization
function.

Proof: Let ε > 0 and t = −(1 + ε)g∗p . From Lemma 2,
lim supn→∞ ϕ′n(0) ≤ −g∗p . Applying the Chernoff bound and
Lemma 3, we have for n sufficiently large,

1

n
logP0

(
L(n)

01 > nt
)
≤ −Φn(t) ≤ −η,

where η > 0 is as chosen in Lemma 3. Therefore we can apply
Lemma 1 to get g∗f ≥ (1 + ε)g∗p . Taking ε → 0 and applying
(1), we obtain the theorem.

B. Bayesian Formulation

Let the prior probability of hypothesis Hj be πj > 0, j =
0, 1. Given a strategy, the probability of error at the fusion
center is Pe = π0P0(Yf = 1) + π1P1(Yf = 0). Let P ∗e be the
minimum probability of error, over all strategies. We seek to
characterize the optimal error exponent

lim sup
n→∞

1

n
logP ∗e .

From [30], the optimal error exponent for the parallel config-
uration without any feedback is given by

E∗p = inf
(γ,δ)∈Γ2

min
λ∈[0,1]

logE0 [exp(λ log `10(γ(X1), δ(X1)))].

Similar to the Neyman-Pearson case, we let E∗sf and E∗f denote
the optimal error exponent for the sequential feedback and
full feedback architectures respectively. We first study the full
feedback architecture, and infer results about the sequential
feedback architecture.

Let ψn(s) = logE0

[
exp(sL(n)

10 )
]

and Ψn(t) =

sups∈R{st − ψn(s)}. We will require the following results
in our proofs.

Lemma 4: Suppose Assumptions 1 and 2 hold.



5

(i) For all s ∈ [0, 1], we have E0 [log `10(X1)] ≤
ψ′n(s)/n ≤ E1 [log `10(X1)].

(ii) Let t be such that for all n, there exists sn ∈ (0, 1) with
ψ′n(sn) = t. Then, there exists a constant C such that
for all n, we have ψ′′n(sn) ≤ nC.

(iii) For all s ∈ [0, 1], we have ψn(s) ≥ nE∗p .
Proof: (Outline) Claims (i) and (ii) follow from calculus.

We omit their proofs here. In the following, we show claim
(iii). Let λ̄ = λ/n and Y n1 = (Y1, . . . , Yn). We have

ψn(λ) = logE0

[
(`10(Y n1 ))λ̄

· E0

[ n∏
k=1

(`10(Zk|Yk,Wk))λ̄
∣∣∣ Y n1 ]]. (8)

Recall that Zk = δWk

k (Xk), where Wk = (Y k−1
1 , Y nk+1) in the

full feedback configuration. Consider the inner expectation on
the R.H.S. of (8). For ε > 0, we have

E0

[
n∏
k=1

(`10(Zk|Yk,Wk))λ̄
∣∣∣ Y n1

]

= E0

[
n∏
k=1

(`10(δWk

k (Xk)|Yk))λ̄
∣∣∣ Y n1

]

=

n∏
k=1

E0

[
(`10(δWk

k (Xk)|Yk))λ̄
∣∣∣ Y n1 ]

≥
n∏
k=1

(
E0

[
(`10(δYk

k (Xk)|Yk))λ̄
∣∣∣ Yk]− ε) ,

where δYk

k ∈ Γ is a function depending on the value of Yk,
and is such that

E0

[
(`10(δYk

k (Xk)|Yk))λ̄
∣∣∣ Yk]

≤ inf
δ∈Γ

E0

[
(`10(δ(Xk)|Yk))λ̄

∣∣∣ Yk]+ ε.

From (8), we obtain

ψn(λ) ≥ logE0

[
(`10(Y n1 ))λ̄

·
n∏
k=1

(
E0

[
(`10(δYk

k (Xk)|Yk))λ̄
∣∣∣ Yk]− ε) ]

=

n∑
k=1

logE0

[
(`10(Yk))λ̄

·
(
E0

[
(`10(δYk

k (Xk)|Yk))λ̄
∣∣∣ Yk]− ε) ]

≥
n∑
k=1

log
(
E0

[
(`10(Yk, δ

Yk

k (Xk)))λ̄
]
− ε
)
, (9)

where we used the inequality E0

[
(`10(Yk))λ̄

]
≤ 1 in (9).

Recall that Yk = γk(Xk). We can define ξk ∈ Γ2 such that
ξk(Xk) = (γk(Xk), δk(Xk)), where δk(Xk) = δuk (Xk) iff
γk(Xk) = u ∈ T . From (9), we obtain the bound

ψn(λ) ≥
n∑
k=1

log
(
E0

[
(`10(ξk(Xk)))λ̄

]
− ε
)

≥ n log

(
inf
ξ∈Γ2

E0

[
(`10(ξ(X1)))λ̄

]
− ε
)

Since ε is arbitrary, we have

ψn(λ) ≥ n inf
ξ∈Γ2

logE0

[
(`10(ξ(X1)))λ̄

]
≥ nE∗p ,

and the lemma is proved.
Theorem 3: Suppose Assumptions 1 and 2 hold. Then E∗f =

E∗p . Moreover, there is no loss in optimality if sensors are
constrained to using the same quantization function, which
ignore the feedback messages from the fusion center.

Proof: It is clear that E∗f ≤ E∗p . To show the reverse
bound, we make use of Proposition 1. Let the conditional
probability of error under Hj be Pn,j for j = 0, 1. Let
s∗n = arg mins∈(0,1) ψn(s) so that ψ′n(s∗n) = 0. From Propo-
sition 1, we have

max
j=0,1

Pn,j ≥
1

4
exp

(
ψn(s∗n)−

√
2ψ′′n(s∗n)

)
≥ exp(ψn(s∗n)− C

√
n)

≥ exp(nE∗p − C
√
n)

where C is some constant. In the above, the penultimate
inequality follows from Lemma 4(ii), and the last inequality
from Lemma 4(iii). Letting n→∞, we have

lim sup
n→∞

1

n
logPe = lim sup

n→∞

1

n
log max

j=0,1
Pn,j

≥ E∗p .

This implies that E∗f ≥ E∗p , and the theorem is proven.
Since the sequential feedback configuration can perform no

better than the full feedback architecture, and no worse than
the parallel configuration, we have the following result.

Theorem 4: Suppose Assumptions 1 and 2 hold. Then
E∗sf = E∗p . Moreover, there is no loss in optimality if sensors
are constrained to using the same quantization function, which
ignore the feedback messages from the fusion center.

IV. CONCLUSION

We have studied the two-message feedback architecture, in
which each sensor has access to compressed summaries of
some or all other sensors’ first messages to the fusion center.
In the sequential feedback architecture, each sensor has access
to the first messages of those sensors that communicate with
the fusion center before it. In the full feedback architecture,
each sensor has access to the first messages of every other
sensor. In both architectures, and under both the Neyman-
Pearson and Bayesian formulations, we show that the optimal
error exponent is not improved by the feedback messages. Our
results suggest that in the regime of a large number of sensors,
the performance gain due to feedback does not justify the
increase in communication and computation costs incurred in
a feedback architecture.

Future research directions include studying the effect of
feedback in architectures where all sensors send only one
message to the fusion center, and where a group of sensors
has access to the messages of the other sensors. Other more
complex feedback architectures like hierarchial networks with
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feedback messages from one level to the next are also impor-
tant future research directions. We would also like to consider
the impact of feedback on distributed multiple hypothesis
testing and parameter estimation.
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