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Abstract—We discuss an old distributed algorithm for reach- Il. THE AGREEMENTALGORITHM.

ing consensus that has received a fair amount of recent L . .
attention. In this algorithm, a number of agents exchange In the absence of communication delays, the algorithm is

their values asynchronously and form weighted averages with as follows. Each agent starts with a scalar value;(0).
(possibly outdated) values possessed by their neighbors. We The vectorz(t) = (z1(t),...,z,(t)) with the values held

overview existing convergence results, and establish some NeWhy the agents at time is updated according to the equation
ones, for the case of unbounded intercommunication intervals. -
z(t+1) = A(t)z(t), or

n
|. INTRODUCTION vi(t+1) = ai;(t)z;(t),
j=1

We consider a selV = {1,...,n} of agents that try to
reach agreement on a common scalar value by exchangiw@iere A(t) is a nonnegative matrix with entries;(t), and
tentative values and combining them by forming convexnd where the updates are carried out at some discrete
combinations. The motivation for such a scheme comes froaet of times which we will take, for simplicity, to be the
a variety of contexts involving distributed systems. For exnonnegative integers. We will assume that the row-sums of
ample, a number of sensors may wish to combine individuad(t) are equal to 1, so thad(¢) is a stochastic matrix. In
estimates of a certain variable or form an aggregate statistigarticular,z;(t+1) is a weighted average of the valuegt)
or a number of vehicles may wish to align their directiondield by the agents at time We are interested in conditions
of motion through interaction with their neighbors. that guarantee the convergence of eagft) to a constant,
The “agreement algorithm” considered here and its orighdependent of.
inal analysis is due to Tsitsiklis et al. [14]. The complete Throughout, we assume the following.
proof is in [13], and a simplified version is presented in theyss,mption 1. There exists a positive constamtsuch that:
text [3]. A related algorithm was later proposed by Vicsek eEa) ai(t) > a, for all i, t.
al. [15], as a m_odel of coopera_tlve behaw_or._ The subject he(\B) as; (1) € {0} U [a, 1], for all 4, j, t.
attracted considerable recent interest, within the context ?é) S ay(t) =1, for all , ¢.
flocking and multiagent coordination ([8], [4], [11], [9], [4], g=1"4 ’ ’
[12], [10]). A further special case, concerns the computation Intuitively, whenevera;;(¢) > 0, agentj communicates
of the exact average of the agents’ values (as opposed it current valuex;(¢) to agenti. Each agent updates its
reaching consensus on some intermediate value); see, eQyVn value, by forming a weighted average of its own value
[5] and references therein. and the values it has just received from other agents.
The remainder of this paper is organized as follows. In The communication pattern at each time step can be
Section 2, we present the basic model of interest. In Sectiglgscribed in terms of a directed grapht) = (V, E(1)),
3, we present convergence results in the absence of comnere (j,i) € E(t) if and only if a;;(t) > 0. A minimal
nication delays. In Section 4, we allow for communicatiorBSsumption, which is necessary for consensus to be reached,
delays and establish a new result: convergence, even wigauires that following an arbitrary timee and for any:, j,
unbounded intercommunication intervals, as long as soni@ere is a sequence of communications through which agent
weak form of symmetry is present. Section 5 provides somill influence (directly or indirectly) the value held by agent
brief concluding comments. J-
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Equal neighbor model: Here, consensus, as shown by Example 1 below (Exercise 3.1,
Uni(t), if j € Ny(t), in p. 517 pf [3]). In parucular, convergence t.o consensus

a;;(t) = {O/n ®) if i ¢ N'E g fails even in the special case of the equal neighbor model.

’ e The main idea is that the agreement algorithm can closely

where N;(t) = {j | (j.i) € E()} is the set of agenty  emulate a nonconvergent algorithm that keeps executing the
whose value is taken into account byt timet, andn;(f)  three instructionse; := 3, 73 := 79, T2 := x1, ONe after

is its cardinality. the other.

This model is a linear version of a model considere¢tyample 1.Let n = 3, and suppose that(0) = (0,0, 1).
by Vicsek et al. [15]. Note that here the constantof | et ¢, be a small positive constant. Consider the following
Assumption 1 is equal ta/n. sequence of events. Agent 3 communicates to agent 1; agent

Pairwise averaging model ([5]):This is the special case of 1 forms the average of its own value and the received value.
both the symmetric model and of the equal neighbor moddihis is repeated; times, where!; is large enough so that

in which, at each time, there is a set of disjoint pairs oft1(t1) > 1 —e1. Thus,z(t1) ~ (1,0,1). We now let agent 2
agents who communicate (bidirectionally) with each otheeommunicates to agent 8, times, where is large enough

If i communicates withj, thenz;(t + 1) = z;(t + 1) = SO thatzs(t1 +t2) < e1. In particular,z(t; +t2) ~ (1,0,0).
(zi(t) + z;(t))/2. Note that the sum, (t) +--- + z,(t) is We now repeat the above two processes, infinitely many
conserved; therefore, if consensus is reached, it has to betgnes. During thekth repetition,e; is replaced bye, (and

the average of the initial values of the nodes. t1,t2 get adjusted accordingly). Furthermore, by permuting
the agents at each repetition, we can ensure that Assumption

% is satisfied. After repetitions, it can be checked tha(t)

OWill be within 1 — €1 — - -+ — €, Of a unit vector. thus, if we
choose the, so thatzgo=1 er < 1/2, asymptotic consensus

Assumption 3. (Bounded intercommunication intervals) will not be obtained.

If ¢ communicates tg an infinite number of times [that is,

if (¢,7) € E(t) infinitely often], then there is som8 such

that, for allt, (i,j) € EGQ)UE(t+1)U---UE({t+ B —1).

The assumption below is referred to as “partial asynchr
nism” in [3]. We will see that it is sometimes necessary f
convergence.

On the other hand, in the presence of symmetry, the
bounded intercommunication interval assumption is unnec-
essary. This result is proved in [9] and [4] for the special
I1l. CONVERGENCE RESULTS IN THE ABSENCE OF case of the symmetric equal neighbor model and in [11],

DELAYS. [7], for the more general symmetric model. A more general

totic consensusif the following holds: for everyxz(0),  Theorem 2.Under Assumptions 1 and 2, and for the sym-

and for every sequencgA(t)} allowed by whatever as- metric model, the agreement algorithm guarantees asymp-
sumptions have been placed, there exists sorsach that igtic consensus.

lim;_, o x;(t) = ¢, for all 4.

Theorem 1. Under Assumptions 1, 2 (connectivity), and IV. PRODUCTS OF STOCHASTIC MATRICES AND
3 (bounded intercommunication intervals), the agreement CONVERGENCE RATE

algorithm guarantees asymptotic consensus.
9 9 ymp Theorem 1 and 2 can be reformulated as results on the

Theorem 1 subsumes the special cases of symmetry or édnvergence of products of stochastic matrices.

the equal neighbor model, and therefore subsequent conver- . N .
gence results and proofs for those cases. Corollary 1. Consider an infinite sequence of stochastic

Theorem 1 is presented in [14] and is proved in [13]: énatricesA.(O),A(l),A@)_,‘.., that satisfigs Assumptiqns 1
simplified proof, for the special case of fixed coefficient@nd 2. If either Assumption 3 (bounded intercommunication
can be found in [3]. The main idea, which applies to mostptervals_) is satisfied, OI"If we have a symmetric model, then
results of this type, is as follows. Let(t) = min; z;(f) 1€re exists a nonnegative vectosuch that
and M (t) = max; x;(t). Since eachA(t) is stochastic, it is
straightforward to verify thatn(¢) and M (t) are nondecreas-
ing and nonincreasing, respectively. It then suffices to Vem(Here 1is a column vector whose elements are all equal to
that the differencelM (t) — m(t) is reduced by a constant ne )’
factor over a sufficiently large time interval; the interval is™ "
chosen so that every agent gets to influence (indirectly) every According to Wolfowitz’s Theorem ([16]) convergence
other agent; by tracing the chain of such influences, amtcurs whenever the matrices are all taken from a finite set
using the assumption that each influence has a nontriviaf ergodic matrices, and the finite set is such that any finite
“strength” (our assumption that whenevgy (¢) is nonzero, product of matrices in that set is again ergodic. Corollary 1
it is bounded below byr > 0), the result follows. extends Wolfowitz’ theorem by not requiring the matrices

In the absence of the bounded intercommunication interval(t) to be ergodic, though it is limited to matrices with
assumption, the algorithm does not guarantee asymptopiositive diagonal entries.

lim A(A(t—1)--- A(1)A(0) = 1d”.



The presence of long matrix products suggests that con- V. CONVERGENCE IN THE PRESENCE OF DELAY.S

vergence to consensus in the linear iteration The model considered so far assumes that messages from
2(t +1) = A(H)z(t), one agent to anther are immedﬁately delivered. However, in
a distributed environment, and in the presence of commu-
with A(t) stochastic, might be characterized in terms of ajcation delays, it is conceivable that an agent will end up
joint spectral radius. The joint spectral radiggM) of @  averaging its own value with aoutdatedvalue of another
set of matricesM is a scalar that measures the maximaprocessor. A situation of this type falls within the framework
asymptotic growth rate that can be obtained by forming longf distributed asynchronous computation developed in [3].

products of matrices taken from the set: Communication delays are incorporated into the model as
. 1 follows: when agent, at time ¢, uses the value:; from

p(M) = limsup sup |M;, M, .. M, ||* . " X t?] vale o ook e .
hmsoo My Mg oo, My, €M another agent, that value is not necessarily the most recen

Thi fitv d td d on th d M one,z;(t), but rather an outdated one;(7}(t)), where0 <
IS quantity does not depend on the horm used. oreoveTr@(t) < t, and wherg—/(t)) represents communication and

X . ]
for any g > p(M) there exists & for which possibly other types of delay. In particular,(¢) is updated
|| M, ... M;,yl| < Cq" ||yl according to the following formula:
for all y and M;. € M. - i
i (t+1) = i (D) (7). 1
Stochastic matrices satisfydz|| < ||z|| ., andAl =1, zi(t+1) jz::la]( Ja; (7 (1)) @

and so they have a spectral radius equal to one. The product ) ) _

of two stochastic matrices is again stochastic and so t¥e make the following assumption on tht).

joint spectral radius of any set of stochastic matrices igssumption 4. (Bounded delays)a) If ai;j(t) = 0, then
equal to one. To analyze the convergence rate of produqtj’s(t) =1t

of stochastic matrices, we consider the dynamics induced py) lim,_. .. szj(t) = o0, for all 4, j.

the matrices on a space of smaller dimension. (c) 7i(t) =t, for all 4, t.

Consider a matrix? € R(»~1*" defining an orthogonal (d) There exists som8 > 0 such that — B+1 < 7i(t) < t,
projection on the space orthogonal 4pan{1}. We have for all 4, . t. !
P1=0, and||Pz||, = ||z||, wheneverz"1 = 0. Associated
to any A(t), there is a unique matrix’(t) € R»—1x(n-1)
that satisfiesPA(t) = A’(¢t)P. The spectrum ofd’(¢) is
the spectrum ofA(¢) after removing one multiplicity of the
eigenvaluel. Let M’ be the set of all matriced’(t).

Let v = 17z(t)/n be the mean value of the entries of
z(t), then

Assumption 4(a) is just a convention: whep(t) = 0, the
value offj(t) has no effect on the update. Assumption 4(b)
is necessary for any convergence result: it requires that newer
values ofz;(t) get eventually incorporated in the updates of
other agents. Assumption 4(c) is quite natural, since an agent
generally has access to its own most recent value. Finally,
Assumption 4(d) requires delays to be bounded by some
Px(t) — Pyl = Px(t) constantB,

_ if?t(i)ﬁ(?__ll)) o If,((g));(gzo) The next result, from [13], [14], is a generalization
' of Theorem 1. The idea of the proof is similar to the
Since(x(t) — y1)T1 = 0, we have one outlined for Theorem 1, except that we now de-
. fine m(t) = min; ming—s;_1,. +—p+12i(s) and M(t) =
l[x(t) = 71|y = [|P(z(t) = vD)|l, < Cq" [|z(0)]], max; nfaicszm,lwt,BH z;(s). Once mcgrg, one shgv)vs that
for someC and for anyq > p(M’). the differenceM (¢) — m(t) decreases by a constant factor
Assume now thatim;_,., z(t) = 1 for some scalar. after a bounded amount of time.

Because all matrices are stochasticmust belong to the thegrem 3. Under Assumptions 1-4 (connectivity, bounded
convex hull of the entries ok(t) for all . We therefore iniercommunication intervals, and bounded delays), the
have agreement algorithm with delays [cf. Eq. (1)] guarantees

l(t) = el|. < 2[J2(t) =71, < 2|[Pa(t) — Py,  aSymptotic consensus.

Theorem 3 assumes bounded intercommunication intervals
and bounded delays. The example that follows (Example
||z(t) — el <2Cq" [|z(0)]], . 1.2, in p. 485 of [3]) shows that Assumption 4(d) (bounded
delays) cannot be relaxed. This is the case even for a
symmetric model, or the further special case whi(e) has

However, for this bound to be nontrivial, all of the matrices ifEXactly four arcs(i, i), (j,), (i,), and (j,4) at any given
M need to be ergodic; indeed, in the absence of an ergodicﬂ{pe t, and the;e safisfy;; (t) = a;i(t) = 1/2, as in the
condition, the convergence of(t) need not be geometric, pairwise averaging model.

and will depend in general on the particular sequence @&xample 2. We have two agents who initially hold the
elements ofM. valuesz;(0) = 0 andz5(0) = 1, respectively. Let;, be an

and we may then conclude that

The joint spectral radius(M’) therefore gives a measure
of the convergence rate af(¢) towards its limit valuecl.



increasing sequence of times, with= 0 andt;; —tx — B) > of. This shows that there exists a time at which

oo. If tp, <t < tx11, the agents update according to property P; holds.
We continue inductively. Suppose that< n and that
zi(t+1) = (21(t) +w2(t))/2, PropertyP;, holds at some time Let S be a set of cardinality
ra(t+1) = (21(tr) + 22(t))/2. k containing indices for which m;(t) > o*Z, and letS°¢ be

i the complement of. Let 7 be the first time, greater than or
We will then havex,(f1) = 1 — e andaz(ti) = €1, equal tot, at whicha;; (1) # 0, for somej € S andi € S¢
wheree, > 0 can be made arbitrarily small, by choosing; ¢ "an ageng in 5 gets to influence the value of an agent

t large enough. More generally, between timeandty+1, ; jn ge). Such a time exists by the connectivity assumption
the absolute difference:; (t) —x2(t)| contracts by a factor of (Assumption 2).

1— 2¢;, where the corresponding contraction factbrs 2¢y, Note that between timesand =, the agentd in the set

apgma‘:h L. 1f the, are chose_n S0 thdll,, e, < oo, then S only form convex combinations between the values of the

IT5=:(1 — 2ex) > 0, and the disagreemeit, () — 2»(1)] agents in the se§ (this is a consequence of the symmetry

does not converge to zero. assumption). Since all of these values are bounded below by
According to the preceding example, the assumption af*Z, it follows that this lower bound remains in effect, and

bounded delays cannot be relaxed. On the other hand, t@tm,(7) > o*Z, forall £ € S.

assumption of bounded intercommunication intervals can be For timess > 7, and for every? € S, we havex,(s +

relaxed, in the presence of symmetry, leading to the following)) > ax(s), which implies thatz,(s) > o*BaP, for s €

generalization of Theorem 2, which is a new result. {T+1,...,7 + B}. Therefore,m,(r + B) > a*+tD5 for

all ¢ e S.

Theorem 4. Under Assumptions 1, 2 (connectivity), and . ) .
P ( ) Consider now an agerite S¢ for which a;;(7) # 0. We

4 (bounded delays), and for the symmetric model, thE
agreement algorithm with delays [cf. Eg. (1)] guarantee ave

asymptotic consensus. 2i(r+ 1) > ag (1) (73(r)) > ami(7) > QF B+
Proof. Let Using also the fact;(s+1) > ax;(s), we obtain thatn; (7+
M(t) = max{z;(t),z;(t—1),...,2;(t— B+ 1)}, B) > oFtDEB Therefore, at timer + B, we havek + 1
M) = max M(t), agents withm(r + B) > aF+DE (namely, the agents in
i S, together with agent). It follows that PropertyPy is
mi(t) = min{z;(t),z;(t —1),...,z:(t — B+ 1)}, satisfied at timer + B.
m(t) = minm(t). This inductive argument shows that there is a timat

which PropertyP,, is satisfied. At that timen;(7) > o2 for
An easy inductive argument, as in p. 512 of [3], showsll i, which implies thatn(7) > o™Z. On the other hand,
that the sequences:(¢t) and M(¢) are nondecreasing and M (7) < M(0) = 1, which proves thatV (r) — m(r) <
nonincreasing, respectively. The convergence proof rests on- o”?. g.e.d.

the following lemma. The symmetry condition(f, j) € E(t) iff (j,i) € E(t)]

Lemma 1: If m(¢) = 0 and M (¢t) = 1, then there exists a used in Theorem 4 is somewhat unnatural in the presence of
time 7 >t such thatM/ (1) — m(7) < 1 — a"B. communication delays, as it requires perfect synchronization

Given Lemma 1, the convergence proof is completed acg the updat.e times. A looser and more natural assumption
IS the following.

follows. Using the linearity of the algorithm, there exists a
time 7, such thatM (r1)—m(r) < (1—a™B)(M(0)—m(0)).  Assumption 5.There exists som& > 0 such that whenever
By applying Lemma 1, witht replaced byr;_,, and using (i, ) € E(t), then there exists somethat satisfiegt — 7| <
induction, we see that for every there exists a time;, B and(j,4) € E(7).

such thatM (7,) — m(m) < (1 — a"B)F(M(0) — m(0)),

which converges to zero. This, together with the monotoni% ent i sends its value to agent Agent i responds b
ity properties ofm(t) and M (t), implies thatm(t) and 9 gen. Agent P y

2 o . sending its own value to agemnt Both agents update their
M (t) converge to a common limit, which is equivalent to Lo . .
. values (taking into account the received messages), within
asymptotic consensus.g.e.d. ; . ;
a bounded time from receiving other agent’s value. In a

Assumption 5 allows for protocols such as the following.

Proof of Lemma 1: Fork = 1,...,n, we say that “Property realistic setting, with unreliable communications, even this
Py, holds at timet” if there exist at leask indicesi for which  loose symmetry condition may be impossible to enforce
m;(t) > kB, with absolute certainty. One can imagine more complicated

We assume, without loss of generality, tha{0) = 0 protocols based on an exchange of acknowledgments, but
and M (0) = 1. Then,m(t) > 0 for all ¢, because of the fundamental obstacles remain (see the discussion of the
monotonicity ofm(t). Furthermore, there exists sorh@and “two-army problem” in pp. 32-34 of [2]). A more realistic
somer € {—B + 1,—B +2,...,0} such thatz;(7) = 1. model would introduce a positive probability that some of
Using the inequalityr; (¢t + 1) > ax;(t), we obtainm;(7 + the updates are never carried out. (A simple possibility is to



assume that each;;(t), with ¢ # j, is changed to a zero,
independently, and with a fixed probability.) The convergence [1]
result that follows remains valid in such a probabilistic
setting (with probability 1). Since no essential new insights [2
are provided, we only sketch a proof for the deterministic 3]
case.

4
Theorem 5. Under Assumptions 1, 2 (connectivity), 4 )
(bounded delays), and 5, the agreement algorithm with delayd5]
[cf. Eq. (1)] guarantees asymptotic consensus. (6]

Proof. (Outline) A minor change is needed in the proof of
Lemma 1. In particular, we definB, as the event that there [7]
exist at leastk indices! for which m;(t) > o?*Z_ It follows

that P, holds at timet = 2B.

By induction, letP;, hold at timet, and letS be the set of 8]
cardinality £ containing indiced for which m;(¢) > o2*5.
Furthermore, let be the first time after timeéthata;; (1) # ]
0 where exactly one of, j is in S. Along the same lines as
in the proof of Lemma 1y (1) > o8 for | € S; since
x(t+ 1) > ax(t), it follows thatm, (7 + 2B) > o2k+DB  [10]
for eachl € S. By our assumptions, exactly one @f is in 14
Se.lf i e 8¢ thena(t + 1) > ay(7)x;(1i(7)) = o?FBH1
and consequently; (1 +2B) > a?B71a2kB+1 = o2(k+1)5, 112
If j € S¢ then there must exist a timg € {7 + 1,7 +
2,...,7+ B — 1} with a;;(7;) > 0. It follows that: i

mi(r+2B) > o PP 4 1) -
2 aT+QB_Tj_lO£(Ei(Tj)
> a7+2377j71aa7j77'a2k3 [14]
2(k+1)B
Therefore,P11 holds at timer + 2B and the induction is  [15]
complete. g.e.d.
VI. CONCLUDING REMARKS [16]

Many variations of the available convergence results and
of the new ones presented here are possible, by considering
additional sources of asynchronism, as well as probabilistic
(rather than deterministic) assumptions. The proof technique
introduced in [3] (based on the contraction of the difference
M (t)—m(t)) has so far been able to handle such variations.

One particular variation that has been investigated in the
recent literature is one where strong connectivity is relaxed:
some agents act as “leaders” and influence the values of the
other agents (the “followers”) but not vice versa. This is
similar to the setting considered in Chapter 6 of [3] where
leaders and followers correspond to the “computing” and
“noncomputing” processors of [3].

Let us also note that there is a related algorithm for
distributed load balancing [6], for which similar convergence
results are available (see Section 7.4 of [3]). The latter algo-
rithm has some commonalities with the pairwise averaging
model: the sum of the agents’ entries/loads is a long-term
invariant, although in the load balancing algorithm, some
of the load can be temporarily “in transit.” In particular,
the load balancing algorithm guarantees convergence to the
exact average of the initial values, even in the presence of
asynchronism, time delays, and dynamic topology changes.
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