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Abstract. We prove that several global properties (global convergence,
global asymptotic stability, mortality, and nilpotence) of particular classes
of discrete time dynamical systems are undecidable. Such results had
been known only for point-to-point properties. We prove these proper-
ties undecidable for saturated linear dynamical systems, and for con-
tinuous piecewise affine dynamical systems in dimension three. We also
describe some consequences of our results on the possible dynamics of
such systems.

1 Introduction

This paper studies problems such as the following: given a discrete time dy-
namical system of the form xt+1 = f(xt), where f : Rn → Rn is a saturated
linear function or, more generally, a continuous piecewise affine function, decide
whether all trajectories converge to the origin.

We show in our main theorem that this global convergence problem is un-
decidable. The same is true for three related problems: Stability (is the dynam-
ical system globally asymptotically stable?), Mortality (do all trajectories go
through the origin?), and Nilpotence (does there exist an iterate fk of f such
that fk ≡ 0?).

It is well-known that various types of dynamical systems, such as hybrid sys-
tems, piecewise affine systems, or saturated linear systems, can simulate Turing
machines, see e.g., [15, 12, 16, 18]. In these simulations, a machine configuration
is encoded by a point in the state space of the dynamical system. It then fol-
lows that point-to-point properties of such dynamical systems are undecidable.
For example, given a point in the state space, one cannot decide whether the
trajectory starting from this point eventually reaches the origin. The results de-
scribed in this contribution are of a different nature since they deal with global
properties of dynamical systems.



Related undecidability results for such global properties have been obtained
in our earlier work [3], but for the case of discontinuous piecewise affine sys-
tems. The additional requirement of continuity imposed in this paper is a severe
restriction, and makes undecidability much harder to establish. Surveys of de-
cidability and complexity results for dynamical systems are given in [1], [12] and
[8].

Our main result (Theorem 1) is a proof of Sontag’s conjecture [7, 19] that
global asymptotic stability of saturated linear systems is not decidable. Saturated
linear systems are systems of the form xt+1 = σ(Axt) where xt evolves in the
state space Rn, A is a square matrix, and σ denotes componentwise application
of the saturated linear function σ : R → [−1, 1] defined as follows: σ(x) = x for
|x| ≤ 1, σ(x) = 1 for x ≥ 1, σ(x) = −1 for x ≤ −1. These dynamical systems
occur naturally as models of neural networks [17, 18] or as models of simple
hybrid systems [20, 5, 2].

Theorem 1 is proved in three main steps. First, in Section 4, we prove that any
Turing machine can be simulated by a saturated linear dynamical system with
a strong notion of simulation. (Turing machines are defined in Section 3.) Then,
in Section 5, using a result of Hooper, we prove that there is no algorithm that
can decide whether a given continuous piecewise affine system has a trajectory
contained in a given hyperplane. Finally, we prove Theorem 1 in Section 6.

In light of our undecidability result, any decision algorithm for the stability
of saturated linear systems will be able to handle only special classes of systems.
In the full version of this paper [4] we consider two such classes: systems of the
form xt+1 = σ(Axt) where A is a nilpotent matrix, or a symmetric matrix. We
show that stability remains undecidable for the first class, but is decidable for
the second.

Saturated linear systems fall within the class of continuous piecewise affine
systems and so our undecidability results equally apply to the latter class of sys-
tems. More precise statements for continuous piecewise affine systems are given
in Section 7. Finally, some suggestions for further work are made in Section 8.

For some of our results we give complete proofs. For others we provide only
a sketch, or we refer to the full version of the paper [4].

2 Dynamical systems

In the sequel, X denotes a metric space and 0 some arbitrary point of X, to be
referred to as the origin. When X ⊆ Rn, we assume that 0 is the usual origin
of Rn. A neighborhood of 0 is an open set that contains 0. Let f : X → X be a
function such that f(0) = 0. We say that f is:

(a) globally convergent if for every initial point x0 ∈ X, the trajectory xt+1 =
f(xt) converges to 0.

(b) locally asymptotically stable if for any neighborhood U of 0, there is another
neighborhood V of 0 such that for every initial point x0 ∈ V , the trajectory
xt+1 = f(xt) converges to 0 without leaving U (i.e., x(t) ∈ U for all t ≥ 0
and limt→∞ xt = 0).



(c) globally asymptotically stable if f is globally convergent and locally asymp-
totically stable.

(d) mortal if for every initial point x0 ∈ X, there exists t ≥ 0 with xt = 0. The
function f is called immortal if it is not mortal.

(e) nilpotent if there exists k ≥ 1 such that the k-th iterate of f is identically
equal to 0 (i.e., fk(x) = 0 for all x ∈ X).

Nilpotence obviously implies mortality, which implies global convergence; and
global asymptotic stability also implies global convergence. In general, this is all
that can be said of the relations between these properties. Note, however, the
following simple lemma, which will be used repeatedly.

Lemma 1. Let X be a metric space with origin 0, and let f : X → X be a
continuous function such that f(0) = 0. If f is nilpotent, then it is globally
asymptotically stable. Moreover, if X is compact and if there exists a neighbour-
hood O of 0 and an integer j ≥ 1 such that f j(O) = {0}, the four properties
of nilpotence, mortality, global asymptotic stability, and global convergence are
equivalent.

Proof. Assume that f is nilpotent and let k be such that fk ≡ 0. Let U and V be
two neighborhoods of 0. A trajectory starting in V never leaves

⋃k−1
i=0 f i(V ). By

continuity, for any U one can choose V so that f i(V ) ⊆ U for all i = 0, . . . , k−1.
A trajectory originating in such a V never leaves U . This shows that f is globally
asymptotically stable.

Next, assume that X is compact and that f j(O) = {0} for some neighbor-
hood O of 0 and some integer j ≥ 1. It suffices to show that if f is globally con-
vergent, then it is nilpotent. If f is globally convergent, then X =

⋃
i≥0 f−i(O).

By compactness, there exists p ≥ 0 such that X =
⋃p

i=0 f−i(O). We conclude
that fp+j(X) = {0}. ��

A function f : Rn → Rn′
is piecewise affine if Rn can be represented as

the union of a finite number of subsets Xi where each set Xi is defined by the
intersection of finitely many open or closed halfspaces of Rn, and the restriction
of f to each Xi is affine. Let σ : R → R be the continuous piecewise affine
function defined by: σ(x) = x for |x| ≤ 1, σ(x) = 1 for x ≥ 1, σ(x) = −1
for x ≤ −1. Extend σ to a function σ : Rn → Rn, by letting σ(x1, . . . , xn) =
(σ(x1), . . . , σ(xn)). A saturated affine function ( σ-function for short) f : Rn →
Rn′

is a function of the form f(x) = σ(Ax + b) for some matrix A ∈ Qn′×n and
vector b ∈ Qn′

. Note that we are restricting the entries of A and b to be rational
numbers so that we can work within the Turing model of digital computation.
A saturated linear function ( σ0-function for short) is defined similarly except
that b = 0. Note that the function σ : Rn → Rn is piecewise affine, with the
polyhedra Xi corresponding to the different faces of the unit cube [−1, 1]n, and
so is the linear function f(x) = Ax. It is easily seen that the composition of
piecewise affine functions is also piecewise affine and therefore σ-functions are
piecewise affine.

Our main result is the following theorem.



Theorem 1. The problems of determining whether a given saturated linear func-
tion is (i) globally convergent, (ii) globally asymptotically stable, (iii) mortal, or
(iv) nilpotent, are all undecidable.

Notice that deciding the global asymptotic stability of a saturated linear
system is a priori no harder than deciding its global convergence, because the
local asymptotic stability of saturated linear systems is decidable. (Indeed, a
system xt+1 = σ(Axt) is locally asymptotically stable if and only if the system
xt+1 = Axt is, since these systems are identical in a neighborhood of the origin.
Furthermore, a linear system is locally asymptotically stable if and only if all of
its eigenvalues have magnitude less than one [21].) In fact, we conjecture that for
saturated linear systems, global convergence is equivalent to global asymptotic
stability. This equivalence is proved for symmetric matrices in the full version of
the paper. If this conjecture is true, it is not hard to see that the equivalence of
mortality and nilpotence also holds.

Theorem 1 has some “purely mathematical” consequences. For instance:

Corollary 1. For infinitely many integers n, there exists a nilpotent saturated
linear function f : Rn → Rn such that f2n 	≡0.

Of course, in this corollary, 2n can be replaced by any recursive function of n.
In contrast, if f : Rn → Rn is a nilpotent linear function, then fn ≡ 0. As a
side remark, we note that it can be shown that this is not only true for linear
functions, but also for polynomials and even more generally for real analytic
functions.

We conclude this section with two positive results: globally asymptotically
stable saturated linear systems are recursively enumerable and so are saturated
linear systems that have a nonzero periodic trajectory. The first observation is
due to Eduardo Sontag, the second is due to Alexander Megretski.

Theorem 2. The set of saturated linear systems that are globally asymptotically
stable is recursively enumerable.

Theorem 3. The set of saturated linear systems that have a nonzero periodic
trajectory is recursively enumerable.

The proofs of these results are based on elementary arguments, they can be
found in the full version of the paper. Combining these two observations with
Theorem 1, we deduce that there exist saturated linear systems that are not
globally asymptotically stable and have no nonzero periodic trajectories.

Corollary 2. There exist saturated linear systems that are not globally asymp-
totically stable and have no nonzero periodic trajectory.

3 Turing machines

A Turing machine M [14, 13] is an abstract deterministic computer with a finite
set Q of internal states. It operates on a doubly-infinite tape over some finite



alphabet Σ. The tape consists of squares indexed by an integer i, −∞ < i < ∞.
At any time, the Turing machine scans the square indexed by 0. Depending
upon its internal state and the scanned symbol, it can perform one or more of
the following operations: replace the scanned symbol with a new symbol, focus
attention on an adjacent square (by shifting the tape by one unit), and transfer
to a new state.

The instructions for the Turing machine are quintuples of the form

[qi, sj , sk, D, ql]

where qi and sj represent the present state and scanned symbol, respectively,
sk is the symbol to be printed in place of sj , D is the direction of motion (left-
shift, right-shift, or no-shift of the tape), and ql is the new internal state. For
consistency, no two quintuples can have the same first two entries. If the Turing
machine enters a state-symbol pair for which there is no corresponding quintuple,
it is said to halt.

Without loss of generality, we can and will assume that Σ = {0, 1, . . . , n−1},
Q = {0, 1, . . . , m− 1}, n, m ∈ N, and that the Turing machine halts if and only
if the internal state q is equal to zero. We refer to q = 0 as the accepting state.

The tape contents can be described by two infinite words w1, w2 ∈ Σω,
where Σω stands for the set of infinite words over the alphabet Σ: w1 consists of
the scanned symbol and the symbols to its right; w2 consists of the symbols to
the left of the scanned symbol, excluding the latter. The tape contents (w1, w2),
together with an internal state q ∈ Q, constitute a configuration of the Turing
machine. If a quintuple applies to a configuration (that is, if q 	= 0), the result
is another configuration, a successor of the original. Otherwise, if no quintuple
applies (that is, if q = 0), we have a terminal configuration. We thus obtain a
successor function �: C → C, where C = Σω × Σω × Q is the set of all con-
figurations (the configuration space). Note that � is a partial function, as it is
undefined when q = 0. A configuration is said to be mortal if repeated applica-
tion of the function � eventually leads to a terminal configuration. Otherwise,
the configuration is called immortal . We shall say that a Turing machine M is
mortal if all configurations are mortal, and that it is nilpotent if there exists an
integer k such that M halts in at most k steps starting from any configuration.

Theorem 4. A Turing machine is mortal if and only if it is nilpotent.

Proof. A nilpotent Turing machine is mortal, by definition. The converse will fol-
low from Lemma 1. In order to apply that lemma, we endow the configuration
space of a Turing machine with a topology which makes its successor function
� continuous, and its configuration space (X, d) compact. This is a fairly stan-
dard construction and we refer the reader to the full version of the paper for a
complete description. The constructed function � is identically equal to 0 in a
neighborhood of 0. We therefore conclude from Lemma 1 that if M is mortal,
then it must be nilpotent. ��

The next result is due to Hooper and will play a central role in the sequel.



Theorem 5 ([13]). The problem of determining whether a given Turing ma-
chine is mortal is undecidable.

In other words, one cannot decide whether a given Turing machine halts for
every initial configuration. Equivalently, one cannot decide whether there exists
an immortal configuration.

4 Turing machine simulation

A σ∗-function is a function obtained by composing finitely many σ-functions.
It is well known that Turing machines can be simulated by piecewise affine
dynamical systems [15, 16, 18]. Moreover, this simulation can be performed with
a σ∗-function (see the full version of the paper for the details of the construction
of this function).

Lemma 2 ([15, 16, 18]). Let M be a Turing machine and let C = Σω×Σω×Q
be its configuration space. There exists a σ∗-function gM : R2 → R2 and an
encoding function ν : C → [0, 1]2 such that the following diagram commutes:

C
�−−−−→ C

ν

� �ν

R2 gM−−−−→ R2

(i.e. gM (ν(c)) = ν(c′) for all configurations c, c′ ∈ C with c � c′).

We extend this results by proving that any Turing machine can be simulated
by a dynamical system in a stronger sense.

Lemma 3. Let M be a Turing machine and let C = Σω × Σω × Q be its con-
figuration space. Then, there exists a σ∗-function gM : R2 → R2, a decoding
function ν′ : [0, 1]2 → C, and some subsets N∞ ⊂ N 1 ⊂ [0, 1]2, N 1

¬acc ⊂ N 1

such that the following conditions hold:

1. gM (N∞) ⊆ N∞ and ν′(N∞) = C.
2. N 1

¬acc (respectively N 1) is the Cartesian product of two finite unions of closed
intervals in R. N 1

¬acc is at a positive distance from the origin (0, 0) of R2.
3. For x ∈ N 1, the configuration ν′(x) is nonterminal if and only if x ∈ N 1

¬acc.
4. The following diagram commutes:

C
�−−−−→ C

ν′
� �ν′

N 1
¬acc

gM−−−−→ [0, 1]2

(i.e. ν′(x) � ν′(gM (x)) for all x ∈ N 1
¬acc).



Intuitively, ν′ is an inverse of the encoding function ν of Lemma 2, in the
sense that ν′(ν(c)) = c holds for all configurations c. The set N∞ is the image
of the function ν, consisting of those points x ∈ [0, 1]2 that are unambiguously
associated with valid configurations of the Turing machine. The set N 1 consists
of those points that lie in some set Bα,β,q and therefore encode an internal state
q, a scanned symbol α, and a symbol β to the left of the scanned one. (However,
not all points in N 1 are images of valid configurations. Once it encounters a
“decoding failure” our decoding function ν′ sets the corresponding tape square,
and all subsequent ones to the zero symbol.) Finally, N 1

¬acc is the subset of N 1

associated with the nonterminal internal states q 	= 0. See the full paper for
complete details.

Using Lemma 3 and Theorem 5, we can now prove:

Theorem 6. The problems of determining whether a given (possibly discontin-
uous) piecewise affine function in dimension 2 is (i) globally convergent, (ii)
globally asymptotically stable, (iii) mortal, or (iv) nilpotent, are all undecidable.

The undecidability of the first three properties was first established in [3]. That
proof was based on an undecidability result for the mortality of counter machines,
instead of Turing machines.

Proof. We use a reduction from the problem of Theorem 5. Suppose that a
Turing machine M is given. Denote by g′M the discontinuous function which is
equal to the function gM of Lemma 3 on N 1

¬acc, and which is equal to 0 outside
of N 1

¬acc.
Since 0 is at a positive distance from N 1

¬acc, we have a neighborhood O of
0 such that g′M (O) = {0}. By Lemma 1, all four properties in the statement of
the theorem are equivalent.

Assume first that M is mortal. By Theorem 4, there exists k such that M
halts on any configuration in at most k steps. We claim that g′M

k+1([0, 1]2) =
{0}. Indeed, assume, in order to derive a contradiction, that there exists a tra-
jectory xt+1 = g′M (xt) with xk+1 	= 0. Since g′M is zero outside N 1

¬acc, we have
xt ∈ N 1

¬acc for t = 0, . . . , k. By the commutative diagram of Lemma 3, the se-
quence ct = ν′(xt) (t = 0, . . . , k + 1) is a sequence of successive configurations
of M . This contradicts the hypothesis that M reaches a terminal configuration
after at most k steps. It follows that g′M satisfies properties (i) through (iv).

Conversely, suppose that M has an immortal configuration: there exists an
infinite sequence ct of non-terminal configurations with ct � ct+1 for all t ∈ N.
By condition 1 of Lemma 3, there exists x0 ∈ N∞ with ν′(x0) = c0. We claim
that the trajectory xt+1 = g′M (xt) is immortal: using condition 2 of Lemma 3,
it suffices to prove that xt ∈ N 1

¬acc for all t. Indeed, we prove by induction on
t that xt ∈ N 1

¬acc ∩ N∞ and ν′(xt) = ct for all t. Using condition 3 of Lemma
3, the induction hypothesis is true for t = 0. Assuming the induction hypothesis
for t, condition 1 of Lemma 3 shows that xt+1 ∈ N∞. Now, the commutative
diagram of Lemma 3 shows that ν′(xt+1) = ct+1, and condition 3 of Lemma 3
shows that xt+1 ∈ N 1

¬acc. This completes the induction. Hence, g′M is not mortal,
and therefore does not satisfy any of the properties (i) through (iv).



5 The hyperplane problem

We now reach the second step of our proof. Using the undecidability result of
Hooper for the mortality of Turing machines, we prove that it cannot be decided
whether a given piecewise affine system has a trajectory that stays forever in a
given hyperplane.

Theorem 7. The problem of determining if a given σ∗-function f : R3 → R3

has a trajectory xt+1 = f(xt) that belongs to {0} × R2 for all t is undecidable

Proof. We reduce the problem of Theorem 5 to this problem.
Suppose that a Turing Machine M is given. Consider the σ∗-function f :

R3 → R3 defined by

f(x1, x2, x3) =
(

σ(σ(ZN 1
¬acc

(x2, x3)))
gM (x2, x3)

)

where gM is the function constructed in Lemma 3 and ZN 1
¬acc

is a σ∗-function
that is equal to zero for x ∈ N 1

¬acc and is otherwize positive (an explicit con-
struction of this function is provided in the full version of the paper). Note that
in the definition of the function f we use a nested application of the function σ.
This is to ensure that the definition of f involves an equal number of applications
of the σ function on all its components.

Write (x1, . . . , xd) for the components of a point x of Rd.
We prove that f has a trajectory xt+1 = f(xt) with x1

t = 0 for all t, if and
only if Turing machine M has an immortal configuration.

Suppose that f has such a trajectory. Since ZN 1
¬acc

, and hence σ(σ(ZN 1
¬acc

)),
is strictly positive outside of N 1

¬acc, we must have (x2
t , x

3
t ) ∈ N 1

¬acc for all t ≥ 0.
By the commutative diagram of Lemma 3, the sequence ν′(x2

t , x
3
t ), t ∈ N, is a

sequence of successive configurations of M . By condition 3 of Lemma 3, none of
these configurations is terminal, i.e. c0 = ν′(x2

0, x
3
0) is an immortal configuration

of M .
Conversely, assume that M has an immortal configuration, that is, there

exists an infinite sequence of nonterminal configurations with ct � ct+1. The
argument here is the same as in the proof of Theorem 6. By condition 1 of
Lemma 3, there exists a point (x2

0, x
3
0) ∈ N∞ with ν′(x2

0, x
3
0) = c0. Consider the

sequence defined by (x2
t+1, x

3
t+1) = gM (x2

t , x
3
t ) for all t. Since gM (N∞) ⊆ N∞,

we have (x2
t , x

3
t ) ∈ N∞ for all t ≥ 0. Using the assumption that configuration

ct is nonterminal and condition 3 of Lemma 3, we deduce that (x2
t , x

3
t ) ∈ N 1

¬acc

for all t ≥ 0, which means precisely that the sequence xt = (0, x2
t , x

3
t ), t ∈ N, is

a trajectory of f . ��

6 Proof of the main theorem

We now reach the last step in the proof, which consists of reducing the problem
of Theorem 7 to the problems of Theorem 1.



Recall that a σ-function is a function of the form f(x) = σ(Ax + b) and a
σ0-function is a function of the form f(x) = σ(Ax). A composition of finitely
many σ0-functions is called a σ∗

0-function.

Lemma 4. The problems of determining whether a given σ∗
0-function R4 → R4

is (i) globally convergent, (ii) globally asymptotically stable, (iii) mortal, or (iv)
nilpotent, are all undecidable.

Proof. The problem of Theorem 7 can be reduced to the mortality problem
for σ∗

0-functions. The construction is such that the σ∗
0-function is equal to zero

in an neighborhood of the origin (see the full paper for the construction of the
function). It therefore follows from Lemma 1 that for this function, the properties
(i)-(iv) are equivalent. These four properties are therefore undecidable. ��

We can now prove Theorem 1.

Proof. (of Theorem 1) We reduce the problems in Lemma 4 to the problems in
Theorem 1.

Let f : R4 → R4 be a σ∗
0-function of the form f = fk ◦fk−1 ◦ . . .◦f1 for some

σ0-functions fj(x) = σ(Ajx), where fj : Rdj−1 → Rdj with d0, d1, . . . , dk ∈ N,
and d0 = dk = 4.

Let d = d0 + d1 + · · · + dk, and consider the saturated linear function f ′ :
Rd → Rd defined by f ′(x) = σ(Ax) where

A =




0 0 . . . 0 Ak

A1 0 . . . 0 0
0 A2 . . . 0 0
...

... 0 0
0 0 . . . Ak−1 0




Clearly, the iterates of this function simulate the iterates of the function f .
Suppose that f ′ is mortal (respectively nilpotent, globally convergent, glob-

ally asymptotically stable). Then, the same is true for f : indeed, when xt+1 =
f(xt) is a trajectory of f , the sequence (xt, f1(xt), . . . , fk−1 ◦ . . . ◦ f1(xt)) is a
subsequence of a trajectory of f ′.

Conversely, let x′
t+1 = f ′(x′

t) be a trajectory of f ′. Write x′
t = (y1

t , . . . , yk
t )

with each of the yj in Rdj−1 . For every t0 ∈ {0, . . . , k − 1} and j ∈ {1, . . . , k},
the sequence t �→ yj

t0+kt is a trajectory of f . This implies that the sequence yj
t ,

t ∈ N is eventually null (respectively, converges to 0) if f is mortal (respectively,
globally convergent). For the same reason, the global asymptotic stability of f
implies that of f ′; and if fm ≡ 0 for some integer m, we have (f ′)km ≡ 0. ��

7 Continuous piecewise affine systems

We proved in Theorem 6 that it cannot be decided whether a given discontinuous
piecewise affine system of dimension 2 is globally convergent, globally asymp-
totically stable, mortal, or nilpotent. We do not know whether these problems



remain undecidable when the systems are of dimension 1.

For continuous systems, we can prove the following.

Theorem 8. For continuous piecewise affine systems in dimension 3, the four
properties of global convergence, global asymptotic stability, mortality, and nilpo-
tence are undecidable.

Proof. The system built in the proof of Lemma 4 is of dimension 4. The con-
struction can be adapted to a system of dimension 3. See the full paper. ��

The following proposition is proved in [3].

Theorem 9. For continuous piecewise affine systems in dimension 1, the prop-
erties of global convergence, global asymptotic stability, and mortality are decid-
able.

One can also show that nilpotence is decidable for this class of systems. Thus,
all properties are decidable for continuous piecewise affine systems in dimension
1, and are undecidable in dimension 3. The situation in dimension 2 has not
been settled.

Global properties of f : Rn → Rn n = 1 n = 2 n = 3
Piecewise affine ? Undecidable Undecidable
Continuous piecewise affine Decidable ? Undecidable

8 Final remarks

In addition to the two question marks in the table of the previous section, several
questions which have arisen in the course of this work still await an answer:

1. Does there exist some fixed dimension n such that nilpotence (or mortality,
global asymptotic stability and global convergence) of saturated linear sys-
tems of dimension n is undecidable? A negative answer would be somewhat
surprising since there would be in that case a decision algorithm for each n,
but no single decision algorithm working for all n.

2. It would be interesting to study the decidability of these four properties for
other special classes of saturated linear systems, as we have already done
for nilpotent and symmetric matrices. For instance, is global convergence or
global asymptotic stability decidable for systems with invertible matrices?
(Note that such a system cannot be nilpotent or mortal.) Are some of the
global properties decidable for matrices with entries in {−1, 0, 1}?

3. For saturated linear systems, is mortality equivalent to nilpotence? Is global
convergence equivalent to global asymptotic stability? (This last equivalence
is conjectured in Section 2.) We show in the full version of the paper that
these equivalences hold for systems with symmetric matrices.



4. For a polynomial map f : Rn → Rn mortality is equivalent to nilpotence;
these properties are equivalent to the condition fn ≡ 0, and hence decidable.
It is however not clear whether the properties of global asymptotic stability
and global convergence are equivalent, or decidable.

5. Does there exist a dimension n such that for any integer k there exists a
nilpotent saturated linear system f : Rn → Rn such that fk 	≡ 0? Note that
this question (and some of the other questions) still makes sense if we allow
matrices with arbitrary real (instead of rational) entries.
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