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Abstract

We prove that the continuous-time discrete-agent system studied in [1] admits a unique solution
for almost all initial conditions.

We consider the following continuous-time model: each of n agents, labeled 1, . . . , n, maintains a real
number xi(t), which is a continuous function of time, and evolves according to

xi(t) = xi(0) +

∫ t

0

∑

j:|xi(τ)−xj(τ)|<1

(xj(τ) − xi(τ)) dτ. (1)

We say that x̃ ∈ ℜn is a proper initial condition of (1) if:
(a) There exists a unique x : ℜ+ → ℜn : t → x(t) satisfying (1), and such that x(0) = x̃.
(b) The subset of ℜ+ on which x is not differentiable is at most countable, and has no accumulation
points.
(c) If xi(t) = xj(t) holds for some t, then xi(t

′) = xj(t
′), for every t′ ≥ t.

We then say that the solution x is a proper solution of (1). We provide in this note a detailed proof of
the following theorem.

Theorem 1. Almost all x̃ ∈ ℜn are proper initial conditions, that is, the set of non-proper initial
conditions has zero Lebesgue measure.

1 Constructing a solution

Let us fix the number of agents n, and for each graph G({1, . . . , n}, E) define XG ⊆ ℜn as the subset in
which |xi − xj | < 1 if (i, j) ∈ E, and |xi − xj | > 1 if (i, j) 6∈ E. (Note that XG is an open set.) When
restricted to any given XG, our system (1) is equivalent to the linear time-invariant differential equation

ẋi =
∑

j:(i,j)∈E

(xj − xi), (2)

which admits a unique solution for any initial condition. This system can be more compactly rewritten
as ẋ = −LGx, where LG is the Laplacian matrix of the graph G.

Consider an initial condition x̃ and suppose that it belongs to XG0
for some G0. We construct a

solution to (1) as follows. First, let x0 : ℜ+ → ℜn be the unique solution of ẋ(t) = −LG0
x(t) for which
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x0(0) = x̃, and let t0 = 0. Then, for successive values of k, starting with k = 0, and given tk and x(tk),
do the following:

If xk(t) ∈ XGk
for all t > tk, then

Set x(t) = xk(t) for all t > tk
Stop (success)

else
Let tk+1 = mint>tk

{t : xk(t) ∈ ∂XGk
}

Set x(t) = xk(t) for all t ∈ (tk, tk+1]

If x(tk) belongs to the boundary of more than two sets XG

Stop (failure)
End if

Let Gk+1 be such that x(tk) ∈ ∂XGk
∩ ∂XGk+1

Let xk+1 be the unique solution of ẋk+1 = −LGk+1
xk+1 for which xk+1(tk+1) = x(tk+1)

If there exists some ǫ > 0 such that xk+1(t) ∈ XGk+1
for all t ∈ (tk+1, tk+1 + ǫ) then

increment k and start the next iteration
else Stop (failure)

End if

We say that the procedure fails if it stops on one of the two “stop” commands labeled with “(failure)”,
and succeeds otherwise. Observe that if it succeeds, it either produces (i) an increasing finite sequence
t0, t1, . . . , tM , and a function x defined for all positive t, or (ii) an infinite increasing sequence t0, t1, . . .,
and a function x defined on the interval [0, limk→∞ tk). This interval will not cover the entire time axis
if the sequence of tk converges to a finite limit. In any case, one can verify that the function x produced
is a solution to the system (1) on its domain of definition, [0, limk→∞ tk).

In the sequel, we use ei to denote the vector in ℜn whose ith entry is equal to one, with all other
entries equal to zero.

2 Problematic points

We now define a set of problematic points on the boundaries of the sets XG and show that, provided that
the procedure described above never encounters such a problematic point, it produces a proper solution.
We say that a point x ∈ ℜn is problematic if it belongs to the boundary of more than two sets XGi

or if
the following three conditions are satisfied.

(a) x ∈ XG1
∩ XG2

for some G1, G2. These graphs necessarily differ only by the presence/absence of
one edge, which we denote by (i, j).

(b) (ei − ej)
T LG1

x = 0.
(c) (ei − ej)

T LG1
6= 0.

We denote by P the set of problematic points. Observe that P ⊆
⋃

G ∂XG. The following lemma
characterizes the change of the agent velocities when crossing the boundary between sets.

Lemma 1. Let G¬(i,j) be a graph in which i and j are not connected, G(i,j) = G¬(i,j) ∪ {(i, j)}, and
x ∈ ∂XG¬(i,j)

∩ ∂XG(i,j)
such that xi > xj. We have

−eT
i LG¬(i,j)

x = −eT
i LG(i,j)

x + 1 −eT
j LG¬(i,j)

x = −eT
j LG(i,j)

x − 1.

Proof. Since xi > xj and x ∈ ∂XG¬(i,j)
∩ ∂XG(i,j)

, we have xi − xj = 1. The result follows because by
the definition of LG,

−et
iLG(i,j)

x = −eT
i LG¬(i,j)

x + (xj − xi)

−et
jLG(i,j)

x = −eT
j LG¬(i,j)

x + (xi − xj)
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Lemma 2. If the procedure described in Section 1 never encounters a problematic point (i.e., if x(tk) 6∈ P ,
for all k), it succeeds.

Proof. Consider step k + 1 of the procedure, and suppose that x(tk+1) is not problematic. We will show
that the procedure does then not fail at that step. The first reason for which it could fail is if x(tk+1)
belongs to the boundary of more than two sets XG. This would however contradict our assumption that
x(tk+1) is not problematic. The other possible reason for failure is that there is no ǫ > 0 for which
xk+1(t) ∈ XGk+1

for all t ∈ (tk+1, tk+1 + ǫ), where xk+1 is the solution of ẋk+1 = −LGk+1
xk+1 with

xk+1(tk+1) = x(tk+1).
Since x(tk+1) is not problematic, it belongs to the closure of only two sets XGk

and XGk+1
and is at a

positive distance from all other sets Gk and Gk+1, that differ in only one edge (i, j). We assume without
loss of generality that xi(tk+1) > xj(tk+1).

Let us first assume that the edge (i, j) is present in Gk and absent in Gk+1. The boundary is ∂XGk+1

is locally described by xi − xj = 1. Any x close to x(tk+1) is in XGk+1 if xi − xj > 1, and in XGk
if

xi −xj < 1. If there is no ǫ > 0 such that xk+1(t) ∈ XGk+1
for all t ∈ (tk+1, tk+1 + ǫ), the differentiability

of xk+1 implies that

0 ≥
d

dt

(

xk+1
i (tk+1) − xk+1

j (tk+1)
)

= −(ei − ej)
T LGk+1

x(tk+1). (3)

On the other hand, for t ∈ (tk, tk+1), x(t) = xk(t) is by construction in XGk
, and it follows then from the

continuity of x and the definition of that set that xk
i (t) − xk

j (t) < 1 holds on this interval. As a result,

−(ei − ej)
T LGk

x(tk+1) =
d

dt

(

xk
i (t) − xk

j (t)
)

∣

∣

∣

t=tk+1

= lim
t↑tk+1

xk
i (t) − xk

j (t) − 1

t − tk
≥ 0, (4)

which by Lemma 1 implies that −(ei − ej)
T LGk

x(tk+1) ≥ 2, contradicting (3).
A contradiction can also be obtained, by a similar argument, in the case where (i, j) is absent in Gk

and present in Gk+1. Therefore, the procedure succeeds at every step k.

The proof above only uses the condition that no x(tk) belongs to the boundary of more than two
sets; under this condition, the procedure succeeds and we obtain existence of solutions, even if other
problematic points are encountered, satisfying the three conditions (a)-(c). Ruling out this latter kind
of problematic points, however, is essential in order to prove uniqueness of solutions, as will become
apparent in the proof of the next lemma.

Lemma 3. If the procedure described in Section 1 never encounters a problematic point (i.e., if x(tk) 6∈ P ,
for all k), the function x that it produces is the unique solution of (1) on the domain of definition of x.

Proof. By Lemma 2, if the procedure never encounters a problematic point, it succeeds and creates a
function x that, on its domain of definition, solves (1), and a sequence (t0, t1, . . . ). Suppose now, to
obtain a contradiction, that there exists another function y that solves (1) on the same domain, with
y(0) = x(0). Let t∗ be the largest time such that x(t) = y(t) holds for all t ∈ [0, t∗].

Observe first that there cannot exist any ǫ > 0 and graph G such that x(t), y(t) ∈ XG for all
t ∈ (t∗, t∗ + ǫ). Indeed, on such an interval, both x and y would be solutions to ż = −LGz with
z(t∗) = x(t∗), and would thus be identically equal, in contradiction with the definition of t∗. Since x and
y are continuous, this implies in particular that x(t∗) must belong to the boundary of (at least) two sets
XG,XG′ and therefore that t∗ = tk for some k.

By assumption, x(tk) is not a problematic point and is thus at positive distance from all sets except
XGk−1

and XGk
, and Gk−1 and Gk only differ by the presence or absence of one edge (i, j). Suppose

without loss of generality that xi(tk) > xj(tk), and consider the case where (i, j) is present in Gk−1 but
not in Gk. Note that (ei − ej)

T LGk−1
6= 0, because otherwise xi(t)−xj(t) would be constant on [tk−1, tk]

and x would never reach the boundary of XGk
. Using the argument that led to (3) we must have

−(ei − ej)
T LGk−1

x(tk) = lim
t↑tk

d

dt
(xi(t) − xj(t)) ≥ 0. (5)
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Thus x(tk) satisfies conditions (a) and (c) for being problematic. Since x(tk) is not problematic, it must
violate condition (b), and we obtain −(ei − ej)

T LGk−1
x(tk) > 0. Using then the argument that led to

(4), we obtain that
−(ei − ej)

T LGk
x(tk) > −(ei − ej)

T LGk−1
x(tk) > 0.

Since y satisfies the integral equation (1), it can be seen that

lim inf
t↓t∗

(ei − ej)
T ·

y(t) − y(tk)

t − tk
≥ min

{

− (ei − ej)
T LGk−1

x(tk), −(ei − ej)
T LGk

x(tk)
}

> 0.

This implies that there exists some ǫ > 0 such that for t ∈ (tk, tk + ǫ), both x(t) and y(t) lie in Gk, which
we have shown above to be impossible since t∗ = tk.

A symmetrical argument applies to the case where (i, j) is absent from Gk−1 and present in Gk.

There remains to prove that the unique solution x is defined for all t > 0. We have seen that this was
the case if the sequence t0, t1, . . . produced by the procedure of Section 1 is finite, and that x was defined
on the union of the intervals [tk, tk+1] if the sequence is infinite. We now show that infinite sequences
(t0, t1, . . . ) necessarily diverge, and thus that

⋃

k≥0[tk, tk+1] = ℜ+.

Lemma 4. Suppose that the procedure described in Section 1 never encounters a problematic point (i.e.,
that x(tk) 6∈ P , for all k), and produces an infinite sequence of transition times t0, t1, . . .. Then, this
sequence diverges, and therefore there exists a unique solution x, defined for all t ≥ 0.

Proof. Since the sequence t1, t2, . . . of transition times is infinite, a nonempty set of agents is involved in
an infinite number of transitions, and there exists a time T after which every agent involved in a transition
will also be involved in a subsequent one. Consider now a transition occurring at s1 > T and involving
agents i and j. We denote by ẋi(s

−
1 ) and ẋi(s

+
1 ) the limits limt↑s1

ẋi(t) and limt↓s1
ẋi(t) respectively. (Note

that these limits exist because away from boundary points, the function x is continuously differentiable.)
Suppose without loss of generality that xi > xj . We consider two cases. (i) Suppose that i and j

are connected before time s1 but not after. The update equation (1) implies that ẋi(s
+
1 ) = ẋi(s

−
1 ) −

(xj(s1)−xi(s1)). Noting that xi(s1)−xj(s1) = 1, we conclude that that ẋi(s
+
1 ) = ẋi(s

−
1 )+1. Moreover,

xi − xj must have been increasing just before s1, so that ẋi(s
−
1 ) ≥ ẋj(s

−
1 ). (ii) Suppose now that i and

j are connected after s1 but not before. Then, ẋj(s
+
1 ) = ẋj(s

−
1 ) + 1, and since xi − xj must have been

decreasing just before s1, we must have ẋj(s
−
1 ) ≥ ẋi(s

−
1 ). In either case, there exists an agent k1 ∈ {i, j}

for which ẋk1
(s+

1 ) = max{ẋi(s
−
1 ), ẋj(s

−
1 )}+ 1. It follows from s1 > T that this agent will get involved in

some other transition at a further time. Call s2 the first such time.
The definition (1) of the system implies that in between transitions, |ẋi(t)| ≤ n for all agents. Using

(1) again, this implies that |ẍi(t)| ≤ 2n2 for all t at which i is not involved in a transition. Therefore,
ẋk1

(s−2 ) ≥ ẋk1
(s+

1 )−2n2(s2−s1) = xi(s
−
1 )+1−2n2(s2−s1). Moreover, by the same argument as above,

there exists a k2 for which ẋk2
(s+

2 ) = ẋk1
(s−2 ) + 1 ≥ xi(s

−
1 ) + 2 − 2n2(s2 − s1). Continuing recursively,

we can build an infinite sequence of transition times s1, s2, . . . (a subsequence of t1, t2, . . . ), such that for
every m,

ẋkm
(s+

m) ≥ ẋi(s
−
1 ) + m − 2n2(sm − s1).

holds for some agent km. Since all velocities are bounded by n, this implies that sm − s1 must diverge as
m grows, and therefore that the sequence t1, t2, . . . of transition times diverges.

The proof of Lemma 4 also provides an explicit bound on the number of transitions that can take
place during any given time interval. The following proposition summarizes the results of this section.

Proposition 1. If x̃ ∈ ℜn \ (
⋃

G ∂XG) is not a proper initial condition, then the procedure of Section 1
will reach some problematic point x(tk) ∈ P ⊆

⋃

G ∂XG.

Proof. It follows from Lemmas 2, 3 and 4 that if x̃ does not satisfy condition (a) or (b) for being proper,
the procedure of Section 1 fails at some problematic point. Observe now that any x̃ satisfying condition
(a) for being proper also satisfies condition (c). To see this, suppose that x is a solution of (1) with
x(0) = x̃, and that xi(t) = xj(t) holds for some t, but not for some latter t′ > t. One can then build
another solution by switching xi and xj after time t. It follows that x is not a unique solution of (1), and
x̃ does not satisfy condition (a) for being proper.
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Note that the absence of a problematic transition point is sufficient but not a necessary condition for
x̃ to be proper. In particular, the initial condition x̃ = 1

2 (−1,−1, 0, 1, 1) is a problematic point because
it belongs to the closure of more than two sets. There holds indeed |x̃1 − x̃4| = |x̃1 − x̃5| = |x̃2 − x̃4| =
|x̃2 − x̃5| = 1. However, one can verify that Eq. (1) has a unique and proper solution x(t) = x̃e−5t.

3 Measure of the set of non-proper initial conditions

We now show that unless x̃ belongs to a certain zero measure set, the procedure starting with x̃ never
encounters a problematic point. We denote by µ the natural measure on the n − 1 dimensional set
⋃

G ∂XG, and begin by proving that µ(P ) = 0. The proof consists of showing that P is the union of
(n − 2)-dimensional affine spaces.

Lemma 5. The set P of problematic points measure has zero measure in
⋃

G ∂XG.

Proof. Observe first that the points that belong to the boundary of more than two sets necessarily satisfy
xi − xj = ±1 and xp − xq = ±1, with at least one of p or q different from i and j. The set of these
points is thus included in a finite union of (n− 2)-dimensional affine spaces, and has zero measure in the
(n − 1)-dimensional set

⋃

G ∂XG.
Consider now a point x satisfying the three conditions (a)-(c) for being problematic. Condition (a)

implies that xi − xj = ±1 for some i, j. Moreover, it follows from condition (b) that (ei − ej)
T LG1

x = 0
holds for some graph G1. Condition (c) implies that the set of points satisfying the last equality is
a (n − 1)-dimensional space. The latter set is clearly not identical to the (n − 1)-dimensional affine
space defined by xi − xj = ±1, so that their intersection, if it exists, is an affine space of dimension
n− 2. Therefore, the set of points x satisfying the three conditions (a)-(c) is included in a finite union of
(n − 2)-dimensional sets, and thus has zero measure in

⋃

G ∂XG.

Let P0 = P , and for every k > 0, let Pk be the set of points in y ∈
⋃

G ∂XG for which there exists G

and t∗ > 0 such that:
a) y ∈ ∂XG,
b) e−LGty ∈ XG, for all t ∈ (0, t∗),
c) e−LGt∗y ∈ Pk−1.
Thus, Pk is the set of points, on some boundary, from which we can reach a problematic point after k

transitions. Points in Pk, as well as their pre-images are the only ones that can eventually lead to a
problematic point and therefore destroy properness. This is stated in the next lemma, which does not
require further proof. Note that eLGt is the transition matrix under the inverse dynamics.

Lemma 6. If x̃ ∈ ℜn is not a proper initial condition, then either x̃ ∈
⋃

G ∂XG or

x̃ ∈
⋃

G

{

eLGty : t ∈ ℜ+, y ∈
⋃

k

Pk

}

(6)

In order to show that the set in (6) also has a zero measure, and complete the proof of Theorem 1,
we will use Proposition 2 below, which is proved in Section 1.

Let H0,H1 be two affine subspaces in ℜn, and let A be a n × n matrix. We define a partial function
g : H0 → H1 as follows. If there exists a time t > 0 such that:
(i) y = eAtx ∈ H1,
(ii) eAt′x 6∈ H1 for all t′ ∈ (0, t),
we let g(x) = y. Otherwise, g(x) is left undefined. In words, if starting from x ∈ H0, the solution of
the differential equation ẋ = Ax eventually hits H1, then g(y) is the first point in H1 that lies on the
trajectory.

Proposition 2. Suppose that H0 and H1 have dimension n−1, and that H1 is not a subspace (i.e., does
not contain the zero vector). If X ⊆ H0 has zero measure (in H0), then g(X) has zero measure (in H1).

5



Lemma 7. We have µ(
⋃

k Pk) = 0, and the set

⋃

G

{

eLGty : t ∈ ℜ+, y ∈
⋃

k

Pk

}

has thus zero measure in ℜn.

Proof. We have proved in Lemma 5 that µ(P0) = 0. We now assume that µ(Pk) = 0; we will prove that
µ(Pk+1) = 0. Observe first that

Pk, Pk+1 ⊆
⋃

G

∂XG =
⋃

i,j

{x ∈ ℜn : xi − xj = 1}.

Consider two (possibly identical) hyperplanes Hi,j ,Hp,q defined by xi − xj = 1 and xp − xq = 1.
Fix a graph G and let gi,j,p,q,G be a function defined on the largest possible subset of Hi,j , which

maps x to a particular y ∈ Hp,q if there exists a tx such that y = eLGtxx ∈ Hp,q and eLGtx 6∈ Hp,q for all
t ∈ (0, tx).

By the definition of gi,j,p,q,G and Pk+1, if y ∈ Hp,q ∪ Pk+1, then there exists a graph G, indices i, j,
and x ∈ Hi,j such that y = gi,j,p,q,G(x). Therefore,

Pk+1 ⊆
⋃

i,j,p,q,G

Hp,q ∩ gi,j,p,q,G(Pk ∩ Hi,j).

Since µ(Pk) = 0, Proposition 2 implies that µ(Pk+1) = 0. The induction is complete and shows that
µ(Pk) = 0 for all k. Therefore, the countable union of all Pk also has zero measure in the n−1 dimensional
set

⋃

G ∂XG. It follows that
⋃

G

{

eLGty : t ∈ ℜ+, y ∈
⋃

k

Pk

}

has zero measure in ℜn.

Together with Lemma 6, this last result completes the proof of Theorem 1.

4 Proof of Proposition 2

The proof will make use of the following two facts:

(F1) Let B be an open subset. Suppose that the function f : B → ℜn is infinitely differentiable and has
nonsingular Jacobian at every x ∈ B. If S ⊆ B has positive Lebesgue measure, then so does f(S).

(F2) Let B be an open subset. Suppose that the function f : B → ℜn is infinitely differentiable. If
S ⊆ B has zero Lebesgue measure, then so does f(S).

The first fact is true because the mapping f is locally a diffeomorphism, and the Jacobian formula for
the transformation of measures applies. The second fact can be found, for example in [2] (Lemma 10.2,
p. 243).

The (n− 1)-dimensional affine subspace H1 is necessarily of the form {x : p′x = c}, for some constant
c 6= 0, and some unit length vector p. Suppose first that p′Ax = 0 for every x ∈ H1. Since H1 is an affine
subspace, of dimension n− 1, but is not a subspace (does not contain the origin), H1 contains n linearly
independent vectors. It follows that p′A = 0. This implies that p′x is constant along any trajectory of
the differential equation ẋ = Ax. In particular, any trajectory that starts outside H1 will never reach
H1. In this case, the map g is undefined, for every x ∈ H0. We can therefore assume from now on that
there exists some x ∈ H1 for which p′Ax 6= 0.

Consider now the set [0,∞) × H0, which can be identified with a halfspace in ℜn, and endowed with
(n-dimensional) Lebesgue measure. Consider the C∞ mapping h defined by

h : [0,∞) × H0 → ℜn : (t, x) → eAtx.
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The image h(X) of that mapping, to be denoted by Q, is the set of all points in ℜn reachable from X.
Since X has zero measure in H0, it follows (from Fubini’s theorem) that [0,∞) × X has zero measure.
Using Fact (F2), it follows that Q, has zero (n-dimensional) Lebesgue measure.

Suppose now, in order to derive a contradiction, that g(X) has positive ((n−1)-dimensional) measure
in H1. Consider the subspace on which p′Ax = 0. Since p′A 6= 0, this is a proper subspace. The
intersection of this subspace with the affine space H1 (which does not contain the origin) is a set of
dimension at most n − 2. Therefore, this intersection has zero measure in H1. After removing this zero
measure set, we are left with a positive measure subset of g(X) on which p′Ax 6= 0. Without loss of
generality, assume that there is a positive measure subset of g(X) on which p′Ax is positive. It follows
that we can find some δ > 0, such that the set

g(X) ∩ {x : p′Ax > 2δ}

has positive measure (in H1). By a routine argument, and using the continuity of p′Ax as a function of
x, we can find an open cube in ℜn, to be denoted by B, on which p′Ax > δ and whose intersection with
g(X) has positive measure (in H1).

Fix a small constant η > 0. Consider the mapping s : (−η, η) × (B ∩ H1) → ℜn, that maps (t, x) to
eAtx. Because of the transversality condition p′Ax > δ, and by taking η sufficiently small, it is not hard
to show that the Jacobian of this mapping is nonsingular. It follows from Fact (F1), that the mapping s

maps positive measure sets to positive measure sets. Consider the set [0, η) × g(X); since g(X) ∩ B has
positive measure (in H1), it follows that [0, η) × g(X) has positive measure. Therefore, the set

D = s
(

[0, η) × g(X)
)

= {eAtx : t ∈ [0, η), x ∈ g(X)},

has positive measure (in ℜn). Recall now that every point in g(X) is reachable from X. This implies
that points in D are also reachable from X. But then, as shown earlier, the measure of D must be zero.
This is a contradiction and concludes the proof of the proposition.
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