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Summary. We consider the problem of decentralized detection in a sensor network
consisting of nodes arranged as a tree of bounded height. We characterize the opti-
mal error exponent under a Neyman-Pearson formulation, and show that the Type
II error probability decays exponentially with the number of nodes. Surprisingly, the
optimal error exponent is often the same as that corresponding to a parallel config-
uration. We provide sufficient, as well as necessary, conditions for this to happen.
We also consider the impact of failure-prone sensors or unreliable communications
between sensors on the detection performance. Simple strategies that nearly achieve
the asymptotically optimal performance in these cases are also developed.

1 Introduction

Consider a set of sensors, one of them designated as the fusion center. We
are given two hypotheses H0 and H1, with associated probability spaces. In
this paper, we consider only simple hypothesis testing, i.e., the probability
measures under both hypotheses are known to the network. The goal of the
network is to make a decision on the true hypothesis based on information
provided by observations made at each sensor node. This is commonly known
as the decentralized detection problem. Decentralized detection in sensor net-
works has attracted a lot of interest in recent years, because of new technolo-
gies (especially, the availability of low-cost sensing devices) and numerous
potential applications. The decentralized detection problem was first formu-
lated and studied by [3], which considers a “parallel configuration” whereby
each sensor makes an observation and sends a quantized version of that obser-
vation to a fusion center. The goal is to make a decision on the two possible
hypotheses, based on the messages received at the fusion center. The main
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difference between this scenario and the classical centralized decision system
is that the fusion center has no access to the raw observation made at each
sensor. Rather, a sensor transmits a summary of its observation via a trans-
mission function to the fusion center. (When the outputs of the transmission
functions are restricted to a finite alphabet, these are known as quantizers.)
The network aims to minimize the probability of error or some other cost
function at the fusion center, by choosing optimal transmission functions and
fusion rules. Various properties and variants of the decentralized detection
problem in a parallel configuration have been extensively studied over the
last twenty-five years; examples include the following: [4–8] study the prop-
erties of optimal fusion rules and quantizers at sensor nodes; [9] shows the
existence of optimal strategies, and proves that likelihood ratio quantizers
are optimal for a large class of problems including the decentralized detection
problem; and [10–14] consider constrained decentralized detection. The reader
is referred to [15, 16] for a survey of the work done in this area.

We are interested in networks operating in a regime of limited communi-
cation capabilities. Our focus on this regime reflects an emphasis on networks
consisting of many, small, and inexpensive devices that have limited battery
life and power, and cannot afford to communicate frequently or to transmit
a lot of data. Indeed, with abundant communication capabilities, the sensors
could just share all their measurements, in which case the network aspects
become immaterial, and we are faced with much easier, classical, centralized
information processing problems.

Suppose we have n sensors dispersed in a large geographical region. If
the sensors are organized in a parallel configuration (cf. the left-hand side
in Figure 1), some of the sensors may have to communicate to a far away
receiver. The energy expended for communicating can be reduced significantly
if the sensors are organized in an in-tree architecture, as in the right-hand
side in Figure 1, with sensors sending their messages first to an intermediate
aggregator. Moreover, all sensors, except the aggregators, in the right-hand
side figure expend approximately the same amount of energy if each uses the
same transmission function. This ensures that the lifetimes of the sensors are
uniform geographically (aggregators can be special nodes that have a larger
energy supply).

Special cases of the tandem configuration (sensors arranged in a serial net-
work), and some specific tree configurations have been studied in [17], where
it is shown that it is optimal for sensor nodes to employ likelihood ratio quan-
tizers. Tree configurations are also discussed in [6,18–23]. However, the exact
form of optimal strategies in tree configurations is difficult to derive. Never-
theless, to obtain necessary conditions for the optimal transmission functions
or fusion rule, one can analyze the problem using a person-by-person (PBP)
optimality approach. In such an analysis, all nodes’ transmission functions,
except for one particular node, are fixed. Then, one can derive the form of the
optimal transmission function at that particular node. Under a conditional
independence assumption, and when transmission functions are quantizers,
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Fig. 1. Two alternative architectures of a geographically dispersed sensor network.
The architecture on the left is known as a parallel configuration, while that on the
right is a tree configuration.

typical results show that likelihood ratio quantizers are PBP optimal. How-
ever, finding optimal quantizer thresholds requires the solution of a nonlinear
system of equations, with as many equations as there are thresholds. Closed
form formulae for the optimal thresholds used in the likelihood ratio quan-
tizers at each node are known only for trees with a small number of nodes;
e.g. [6] considers configurations with at most four sensor nodes. Therefore,
characterizing the overall performance is hard, even for networks of moderate
size.

Because of these difficulties, to obtain useful insights into the detection
performance of large scale networks, we resort to asymptotics. In the Neyman-
Pearson framework, one can focus on minimizing the error exponent

lim sup
n→∞

1

n
log βn, (1)

where βn is the Type II error probability at the fusion center and n is the
number of sensors, while keeping the Type I error probability less than some
given threshold. Suppose that fi(n), i = 1, . . . , N , are functions taking positive
values. Then, it is easy to see that

lim sup
n→∞

1

n
log

N
∑

i=1

fi(n) = lim sup
n→∞

1

n
log max

1≤i≤N
fi(n).

Therefore, by minimizing the error exponent (1), we also approximately min-
imize the probability of a “dominant” error event (one can think of a Type
II error event as the disjoint union of several smaller error events, one of
which has the highest probability of occurrence). In the asymptotic regime
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of large n, an efficient system design strives to minimize the probability of
the most likely of the “rare” error events, and this motivates a design that
minimizes (1). As we will see, studying the error exponent also makes the
problem tractable, and produces elegant results that provide useful insights
into the original problem.

The rest of this paper is organized as follows. We describe the basic model,
and introduce some concepts and notations in Section 2. In Section 3, we
characterize the performance of the parallel configuration, then in Section
4, we consider more general tree networks with bounded height. We study
the impact of sensor failures and unreliable communications on the detection
performance in Section 5. Finally, we offer some concluding remarks in Section
6.

2 The Basic Model

We now introduce the basic model, notations and assumptions made in this
paper. We consider a decentralized binary detection problem involving n − 1
sensors and a fusion center; we will be interested in the case when n increases
to infinity. We are given two probability spaces (Ω,F , P0) and (Ω,F , P1),
associated with two hypotheses H0 and H1. We use Ej to denote the expec-
tation operator with respect to Pj. Each node v observes a random variable
Xv taking values in some set X . Under either hypothesis Hj , j = 0, 1, the
random variables Xv are i.i.d., with marginal distribution PX

j .
Our main goal is to characterize the optimal performance (over all trans-

mission strategies) of a tree network of sensors, under an appropriate asymp-
totic performance criterion. We consider tree configurations with a bounded
height h. The parallel configuration is a special case of a tree, with height
h = 1. We first define formally a tree network below.

2.1 Tree Networks

We use a directed tree Tn = (Vn, En) to represent the sensor network. Here,
Vn is the set of nodes, of cardinality n, and En is the set of directed arcs of
the tree. One of the nodes (the “root”) represents the fusion center, and the
remaining n − 1 nodes represent the remaining sensors. We use the special
symbol f to denote the root of Tn. The arcs in En are oriented so that they
all point towards the root or the fusion center.

A node u is a predecessor of node v if there exists a directed path from u to
v. In this case, we also say that v is a successor of u. An immediate predecessor
of node v is a node u such that (u, v) ∈ En. An immediate successor is similarly
defined. Let the set of immediate predecessors of v be Cn(v). If v is a leaf node,
Cn(v) is naturally defined to be empty. The length of a path is defined as the
number of arcs in the path. The height of the tree Tn is the length of the
longest path from a leaf to the root, and will be denoted by hn.
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Since we are interested in asymptotically large values of n, we consider a
sequence of trees (Tn)n≥1. While we could think of the sequence as represent-
ing the evolution of the network as sensors are added, we do not require the
sequence En to be an increasing sequence of sets; thus, the addition of a new
sensor to Tn may result in some arcs being deleted and some new arcs being
added. We define the height of a sequence of trees to be h = supn≥1 hn. We
are interested in tree sequences of bounded height, i.e., h < ∞. For a tree
with height h, we say that a node is at level k if it is connected to the fusion
center via a path of length h − k. Hence the fusion center f is at level h.

Let ln(v) be the number of leaves of the sub-tree rooted at the node v.
Thus, ln(f) is the total number of leaves.

2.2 Strategies

Consider a node v, other than the fusion center f . The node v receives mes-
sages Yu,n from its immediate predecessors u ∈ Cn(v). Because of capacity or
other cost constraints, node v can only transmit a summary of its received
messages and its own observation Xv, if any. It uses a transmission function
γv to form its message Yv,n = γv(Xv, {Yu,n : u ∈ Cn(v)}). Let all messages be
symbols in a fixed alphabet T . Thus, if the number of immediate predecessors
of v is |Cn(v)| = d, then the transmission function γv maps X ×T d to T . We
also assume that for each d ≥ 0, we are given a set of transmission functions
Γ (d) that the sensor v can choose from. For convenience, we denote Γ (0) by
Γ . This is the set of transmission functions available to leaf nodes. We assume
that all transmissions are perfectly reliable, unless there is a statement to the
contrary.

The role of the fusion center f is to make a decision on the true hypothesis,
based on the messages it receives from its immediate predecessors. Suppose
that it has d immediate predecessors. Recall that in centralized Neyman-
Pearson detection, randomization can reduce the Type II error probability.
Hence, we assume that the fusion center has access to a random variable,
which is uniformly distributed in [0, 1], and independent of everything else.
The fusion center uses a randomized fusion rule γf : T d × [0, 1] 7→ {0, 1} to
make a decision. Let Yf,n be a binary-valued random variable indicating the
decision of the fusion center.

A strategy γ(n) consists of a collection of transmission functions, one for
each sensor, and a fusion rule for the fusion center. Strategies in which only the
leaves make observations will be of special interest to us. In such a scenario,
every other node v simply fuses the messages it has received, and forwards a
message Yv,n = γv({Yu,n : u ∈ Cn(v)}) to its immediate successor. We call a
strategy of this type a relay strategy. A tree network in which we restrict to
relay strategies will be called a relay tree. Finally, in a relay tree, nodes other
than the root and the leaves will be called relay nodes.
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2.3 Neyman-Pearson Hypothesis Testing

In Neyman-Pearson hypothesis testing, we require that the Type I error prob-
ability P0(Yf,n = 1) be no more than a given α ∈ (0, 1). A strategy γ(n) is said
to be admissible if it meets this constraint. We define β∗(Tn) as the infimum
of P1(Yf,n = 0), over all admissible strategies. Similarly, we define β∗

R(Tn) as
the infimum of P1(Yf,n = 0), over all admissible relay strategies. Typically,
β∗(Tn) or β∗

R(Tn) will converge to zero as n → ∞. Our goal is to determine if
such convergence takes place exponentially fast, and to characterize the Type
II error exponent, defined by

g∗ = lim sup
n→∞

1

n
log β∗(Tn), g∗R = lim sup

n→∞

1

ln(f)
log β∗

R(Tn).

For a relay tree, g∗R is defined using ln(f) instead of n due to the fact that only
the leaves make observations. Therefore, g∗R measures the rate of error decay
per observation. In the case of a parallel configuration, we use the special
notation g∗P to denote the error exponent.

For any γ ∈ Γ , let P
γ
j = PX

j ◦ γ−1 be the probability law of γ(X), and let
the Kullback-Leibler divergences be

x̄0,γ = E0

[

log
dP

γ
1

dP
γ
0

]

, x̄1,γ = E1

[

log
dP

γ
1

dP
γ
0

]

.

It is well known that x̄0,γ ≤ 0 ≤ x̄1,γ [24]. Moreover, both inequalities are
strict as long as the measures P

γ
j are not indistinguishable. We will make the

following assumptions throughout this paper. However, for our results to hold,
Assumption 2 can be weakened somewhat; see [25].

Assumption 1 The measures PX
0 and PX

1 are equivalent, i.e., they are ab-
solutely continuous w.r.t. each other. Furthermore, there exists some γ ∈ Γ
such that x̄0,γ < 0 < x̄1,γ .

Assumption 2 E0

[

log2 dPX
1

dPX
0

]

< ∞.

Suppose that the node v sends a message Yv,n = y to its immediate suc-
cessor. Let the log-likelihood ratio of the message sent by v be

Lv,n(y) = log
dP

(v)
1,n

dP
(v)
0,n

(y),

where dP
(v)
1,n/dP

(v)
0,n is the Radon-Nikodym derivative of the distribution of Yv,n

under H1 w.r.t. the distribution under H0. If the transmission alphabet T is
a discrete set, then this is just the ratio

log
P1(Yv,n = y)

P0(Yv,n = y)
.

We will make extensive use of the following class of transmission functions.
Recall that ln(v) is the number of leaves of the sub-tree rooted at node v.
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Definition 1 A (1-bit) Log-Likelihood Ratio Quantizer (LLRQ) with thresh-
old t for a non-leaf node v, with |Cn(v)| = d immediate predecessors, is a
binary-valued function on T d, defined by

LLRQd,t

(

{yu : u ∈ Cn(v)}
)

=

{

0, if x ≤ t,
1, if x > t,

where

x =
1

ln(v)

∑

u∈Cn(v)

Lu,n(yu).

Note that if a node v uses a LLRQ, it ignores its own observation Xv and
acts as a relay. If all non-leaf nodes use a LLRQ, we have a special case of a
relay strategy. We assume that LLRQs are available choices of transmission
functions for all non-leaf nodes. As we will see, LLRQs will play an important
role in our results.

Assumption 3 For all t ∈ R and d > 0, LLRQd,t ∈ Γ (d).

For simplicity, we define the sum of the log-likelihood ratios of the received
messages at node v, as follows:

Sn(v) =
∑

u∈Cn(v)

Lv,n(Yv,n).

3 The Parallel Configuration

We consider here the special case of a network with a parallel configuration.
The following proposition shows that the Type II error probability falls ex-
ponentially fast with the number of nodes n. Moreover, an asymptotically
optimal strategy consists of using identical transmission functions for each
sensor. A proof can be found in [26].

Proposition 1 If Assumptions 1-2 hold, then

g∗p = inf
γ∈Γ

x̄0,γ .

Moreover, the error exponent stays the same if we restrict all sensors to using
the same transmission function.

The quantity −x̄0,γ may be recognized as the Kullback-Leibler divergence,
which measures the “discrimination” between the two probability measures
P

γ
0 and P

γ
1 . Hence, the asymptotically optimal strategy is to choose a trans-

mission function that produces the greatest discrimination between the two
hypotheses.
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4 Tree Architectures

In this section, we consider general tree networks with a bounded height. Our
objective is to study g∗ and g∗R for different sequences of trees. Since the fusion
center of a parallel configuration can simulate a relay network (by carrying
out all the operations taking place at each relay node, internally in the fusion
center), we have

g∗P ≤ g∗R. (2)

Recall that ln(f) is the number of leaves in the network. Let

z = lim inf
n→∞

ln(f)

n

be the proportion of nodes that are leaves. By comparing the performance to
a centralized system where all raw observations are transmitted directly to
the the fusion center, and using a similar argument as above, we obtain the
first inequality in the expression below,

x̄0 = E0

[

log
dPX

1

dPX
0

]

≤ g∗ ≤ zg∗R. (3)

The second inequality follows because an optimal strategy is at least as good
as an optimal relay strategy; the factor z arises because we have normalized
g∗R by ln(f) instead of n.

In the following, we provide a method to propagate error bounds along a
tree network, and derive upper bounds similar to that in Cramér’s Theorem
for the parallel configuration [27]. We consider specifically a h-uniform tree,
defined as follows.

Definition 2 (h-uniform tree) A tree Tn is said to be h-uniform if the
length of every path from a leaf to the root is exactly h. A sequence of trees
(Tn)n≥1 is said to be h-uniform if there exists some n0 < ∞, so that for all
n ≥ n0, Tn is h-uniform.

It turns out that it is easier to work with h-uniform trees, and as shown
on page 11, a height uniformization procedure can be performed on any given
tree. Moreover, the detection performance of this height uniformized tree can-
not be better than the original tree.

4.1 Error Bounds for h-Uniform Relay Trees

We consider the special case of a 1-bit h-uniform relay tree, in which all
relay nodes at level k use a LLRQ with a common threshold tk. Let t(k) =
(t1, t2, . . . , tk), for k ≥ 1, and t(0) = ∅. For j = 0, 1, k ≥ 1, and λ ∈ R, we
define recursively
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Λj,0(γ; λ) = Λj,0(γ, ∅; λ) = log Ej

[(dP
γ
1

dP
γ
0

)λ]

,

Λ∗
j,k(γ, t(k)) = sup

λ∈R

{

λtk − Λj,k−1(γ, t(k−1); λ)
}

, (4)

Λj,k(γ, t(k); λ) = max
{

− Λ∗
1,k(γ, t(k))(j + λ), Λ∗

0,k(γ, t(k))(j − 1 + λ)
}

. (5)

Here, Λ∗
j,k(γ, t(k)) is the Fenchel-Legendre transform of Λj,k−1 [27], and can

be visualized as in Figure 2. We will be interested in the case where

x̄0,γ < 0 < x̄1,γ , (6)

t1 ∈ (x̄0,γ , x̄1,γ), (7)

tk ∈ (−Λ∗
1,k−1(γ, t(k−1)), Λ∗

0,k−1(γ, t(k−1))), for 1 < k ≤ h. (8)

The reader is referred to [1] for an argument that shows the above require-
ments on the thresholds tk to be feasible.

λ
0 1

{

Slope=−Λ∗

1,k−1(γ, t(k−1)) Slope=Λ∗

0,k−1(γ, t(k−1))

Λ∗

0,k(γ, t(k))

Slope=tk

Fig. 2. Typical plot of Λ0,k−1(γ, t(k−1); λ), k ≥ 2.

Proposition 2 below shows that the Type I and II error exponents are
essentially upper bounded by −Λ∗

0,h(γ, t(h)) and −Λ∗
1,h(γ, t(h)) respectively.

Note that we recover the classical Chernoff bound when the network has
height h = 1, i.e., the network is a parallel configuration. Let pn(v) be the
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total number of predecessors of v, i.e., the total number of nodes in the sub-
tree rooted at v, not counting v itself. Thus, pn(f) = n − 1. Recall that that
for a given h-uniform sequence of trees (Tn)n≥1, there exists a n0 such that
for all n ≥ n0, Tn is h-uniform.

Proposition 2 Fix some h ≥ 1, and consider an h-uniform sequence of trees.
Suppose that Assumptions 1-2 hold. Suppose that, for every n, every leaf node
uses the same transmission function γ ∈ Γ , which satisfies (6), and that every
level k node (k ≥ 1) uses a LLRQ with threshold tk, satisfying (7)-(8).

(i) For all nodes v of level k ≥ 1 and for all n ≥ n0,

1

ln(v)
log P1

(Sn(v)

ln(v)
≤ tk

)

≤ −Λ∗
1,k(γ, t(k)) +

pn(v)

ln(v)
− 1,

1

ln(v)
log P0

(Sn(v)

ln(v)
> tk

)

≤ −Λ∗
0,k(γ, t(k)) +

pn(v)

ln(v)
− 1.

(ii) Suppose that for all n ≥ n0 and for all level 1 nodes v, we have ln(v) ≥
N . Then, for all n ≥ n0, we have

1

ln(f)
log P1

(Sn(f)

ln(f)
≤ th

)

≤ −Λ∗
1,h(γ, t(h)) +

h

N
,

1

ln(f)
log P0

(Sn(f)

ln(f)
> th

)

≤ −Λ∗
0,h(γ, t(h)) +

h

N
.

4.2 Optimal Error Exponent

The following proposition shows that Type II error probabilities decay expo-
nentially (the error exponents are negative). The bounded height assumption
is crucial for this result. Indeed, for the case of a tandem configuration, the
error probability seems to decay at a sub-exponential rate [28]. The following
is proved in [29].

Proposition 3 Consider a sequence of trees of height h, and suppose As-
sumptions 1-3 hold. Then,

−∞ < g∗P ≤ g∗R < 0 and −∞ < x̄0 ≤ g∗ < 0.

From (2), we have g∗P ≤ g∗R, i.e., a relay network performs at best as well
as a parallel configuration. Next, we want to know when a relay network has
the same error exponent as a parallel configuration. A proof of the following
proposition can be found in [29].

Proposition 4 Consider a sequence of trees of height h in which z = 1.
Suppose that Assumptions 1-3 hold. Then,

g∗P = g∗ = g∗R.
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Furthermore, if the sequence of trees is h-uniform, the optimal error exponent
does not change even if we restrict to relay strategies in which every leaf uses
the same transmission function and all other nodes use a 1-bit LLRQ with the
same threshold.

Proposition 4 is surprising as it establishes that the performance of every
network possessing certain qualitative properties is comparable to that of a
parallel configuration. This result has important ramifications: suppose that
all nodes are restricted to be at most h hops away from the fusion center, then
a system designer can reduce the energy consumption (e.g., by employing a
h-hop spanning tree that minimizes the overall energy consumption), without
losing detection efficiency, as long as the number of nodes n is large, and
the proportion of leaf nodes is large. For example, consider the case of nodes
uniformly distributed in a square as in Figure 1, and suppose that the cost
of transmitting a message from one node to another is proportional to the
Euclidean distance between the nodes. It is well known that finding a h-hop
constrained Minimum Spanning Tree (MST) is NP-hard (see [30]). However,
heuristics that achieve a cost of the same order of magnitude as the h-hop
constrained MST can be employed to design a suitable network architecture
[31]. This involves dividing the square into suitable sub-squares, and it can be
verified that with high probability, as n → ∞, the network we obtain has the
property that z = 1.

If a sequence of trees is h-uniform and z = 1, it can be shown that the
following simple relay strategy ǫ-achieves the optimal error exponent:

1. all leaf nodes transmit with the same transmission function γ ∈ Γ , such
that x̄0,γ ≤ g∗P + ǫ/2;

2. all other nodes use a 1-bit LLRQ with the same threshold t = x̄0,γ + ǫ/2.

This is a convenient strategy since only leaf nodes need to make observa-
tions, while all the rest of the nodes act as relay nodes. Moreover, transmitting
only 1 bit is sufficient, and all relay nodes use the same 1-bit LLRQ. This may
be useful in situations where the nodes are simple, low-cost devices.

For a general sequence of trees with height h, we can perform a height
uniformization procedure to obtain an h-uniform sequence of trees as follows.
We let An ⊂ Vn be the set of nodes whose immediate predecessors include
leaves of the tree Tn.

Height Uniformization Procedure. Consider a tree Tn = (Vn, En) of
height h, and a node v that has at least one leaf as an immediate predecessor
(i.e., v ∈ An). Let Dn be the set of leaves that are immediate predecessors
of v, and whose paths to the fusion center f are of length k < h. Add h − k
nodes, {uj : j = 1, . . . , h − k}, to Vn; remove the edges (u, v), for all u ∈ Dn;
add the edges (u1, v), and (uj+1, uj), for j = 1, . . . , h − k − 1; add the edges
(u, uh−k), for all u ∈ Dn. This procedure is repeated for all v ∈ An. The
resulting tree is h-uniform. �
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It is clear that any strategy on the height uniform tree can be simulated
by a strategy on the original tree. Furthermore, it can be shown that the
height uniformization procedure preserves the property that z = 1 [29]. As
the height uniformized tree sequence cannot perform better than the original
tree sequence, using the strategy as described above for h-uniform trees is an
ǫ-optimal strategy for the original tree sequence.

Next, we want to consider when the sufficient condition z = 1 is also a
necessary condition for a relay network to have the same asymptotically opti-
mal performance as a parallel configuration. Non-trivial necessary conditions
for the equality g∗R = g∗P to hold are, in general, difficult to obtain, because
they depend on the nature of the transmission functions available to the sen-
sors. Suppose that sensors are allowed to simply forward undistorted all of the
messages that they receive, then the equality g∗R = g∗P holds trivially. Hence,
we need to impose some restrictions on the set of transmission functions avail-
able, as in the assumption that follows. Let Bn be the set of nodes all of whose
predecessors are leaves.

Assumption 4

(a) There exists a n0 ≥ 1 such that for all n ≥ n0, we have ln(v) > 1 for all
v ∈ Bn.

(b) Let X1, X2, . . . be i.i.d. random variables under either hypothesis Hj, each
with distribution PX

j . For k > 1, γ0 ∈ Γ (k), and γi ∈ Γ , i = 1, . . . , k,

let ξ = (γ0, . . . , γk). Let νξ
j be the distribution of γ0(γ1(X1), . . . , γk(Xk))

under hypothesis Hj. We assume that

g∗P = inf
γ∈Γ

x̄0,γ < inf
ξ∈Γ (k)×Γ k

1

k
E0

[

log
dνξ

1

dνξ
0

]

, (9)

for all k > 1.

Assumption 4 holds in most cases of interest. There is no loss of gener-
ality in assuming part (a), because if in a relay tree we have ln(v) = 1 for
some v ∈ Bn, we can remove the predecessor of v, and treat v as a leaf sen-
sor. As for part (b), it is easy to see that the L.H.S. of (9) is always less
than or equal to the R.H.S., hence we have only excluded those cases where
(9) holds with equality. We are essentially assuming that when the messages
γ1(X1), . . . , γk(Xk) are summarized (or quantized) by γ0, there is some loss
of information, as measured by the associated Kullback-Leibler divergences.

Proposition 5 Suppose that Assumptions 1-4 hold. Then, g∗R = g∗P iff z = 1.

5 Unreliable Networks

So far, we have assumed that all nodes are error-free, and all communications
are reliable. We next study the impact of failure-prone sensors and unreliable
communications on the detection performance.
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5.1 Sensor Failures

We model the case of sensor failures by using a random number of nodes. Vari-
ants of the decentralized detection problem with a random number of nodes
distributed in a parallel configuration have been studied in [32–34]. In [32]
and [34], the authors consider the case of spatially correlated signals, and an-
alyze the detection performance of a simple but suboptimal strategy. In [33],
the objective is not to find an optimal transmission strategy. Rather, the au-
thors assume that nodes in a parallel configuration make i.i.d. observations
under either hypothesis, quantize their observations using some known quan-
tizer that is identical for all nodes, and use a special multiple access protocol
called Type-Based Random Access (TBRA) (in all problems so far, we have
implicitly assumed some sort of orthogonal multiple access protocol in which
messages from different nodes do not corrupt one another, whereas in TBRA,
messages are combined additively over the transmission medium). In this sec-
tion, our goal is to characterize the asymptotically optimal performance for
tree networks with bounded height, and to develop an optimal transmission
strategy, assuming i.i.d. observations and the usual orthogonal multiple access
protocol. The results in this section are a summary of those in [2].

To model sensor failures, we construct a random tree as in a Galton-
Watson process, but with a limited ‘time span’ of h (which corresponds to
our tree having a height h). We start with the fusion center f , and let the
number of immediate predecessors of f be a random variable Nf = |C(f)|,
with distribution law µh. Then, we let each node v in the random set C(f)
have Nv = |C(v)| immediate predecessors, where Nv has marginal law µh−1.
We continue this process until the level 0 nodes are reached. Hence, each level
k node v (with k ≥ 1) has Nv immediate predecessors, where Nv is a random
variable with law µk. Furthermore, we also assume that all these random
variables are independent, and independent of the hypothesis. We call such a
random tree a GW-tree.

We want to model a dense network, therefore we consider the case when
each of the laws µk, k = 1, . . . , h, has asymptotically large mean. Let λk be
the mean of µk. We let λ∗ = min1≤k≤h λk increase to infinity, by allowing the
laws µk to vary accordingly. However, we require that the distributions satisfy
the following assumption.

Assumption 5 Let Ñk be random variables with distribution µk, k = 1, . . . , h.
We have

E[Ñ2
k ] = (1 + o(1))λ2

k, (10)

where o(1) stands for a term that goes to 0 as λk → ∞.

It is easy to check that both the Poisson distribution and Binomial dis-
tribution satisfy the above assumption. Under Assumption 5, Chebychev’s
inequality shows that the distribution of Ñk is clustered around its mean.
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Lemma 1 For all η > 0, P(|Ñk/λk − 1| > η) → 0 as λk → ∞.

Let β∗
GW be the infimum of the Type II error probability, with the mini-

mization taken over all strategies (to be more precise, we have to consider a
family of strategies, see [2]), subject to the constraint that the Type I error
probability is not more than α ∈ (0, 1). Our goal is to characterize the optimal
error exponent

lim sup
λ∗→∞

1

λ(h)
log β∗

GW ,

where λ(h) =
h
∏

k=1

λk is the expected number of nodes.

Let the log-likelihood ratio of the received messages at v be Sv. Motivated
by the ǫ-optimal strategies for non-random tree networks, it is natural to
define the following class of transmission policies.

Definition 3 A transmission function for a level k node v is called a Mean-
normalized Log-Likelihood Ratio (MLLR) quantizer at level k with threshold t
if

Yv =

{

0, if Sv/λ(k) ≤ t,
1, otherwise.

Again, we assume that MLLR quantizers are valid quantizers for each
node.

Assumption 6 Every node of level k ≥ 1 has access to MLLR quantizers.

In the case where there are no sensor failures, i.e., Nv = λk a.s. for all non-
leaf nodes v, Proposition 4 shows that the Type II error probability decays
exponentially fast with λ(h), at rate g∗P . The proposition below shows that
this remains true for a GW-tree.

Proposition 6 Suppose that Assumptions 1, 2, 5 and 6 hold. Then, for all
α ∈ (0, 1), the optimal error exponent of a GW-tree of height h is given by

lim
λ∗→∞

1

λ(h)
log β∗

GW = g∗P . (11)

Furthermore, for any ǫ ∈ (0,−g∗P ), and any large enough λ∗, the following
strategy satisfies the Type I error probability constraint, and its error exponent
is bounded above by g∗P + ǫ:

(i) each leaf uses the same transmission function γ ∈ Γ , with x̄0,γ ≤ g∗P +
ǫ/2 < 0; and

(ii) for k ≥ 1, every level k node uses a MLLR quantizer with threshold
tk = x̄0,γ + ǫ/2h−k+1.
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Consider the scenario where each node in the network may fail, indepen-
dently, with some probability p. A network of n failure-prone sensors cannot
be better (on the average) than a network of np failure-proof sensors. However,
in the limit of large n, Proposition 6 shows that the asymptotically optimal
performance of both networks is essentially the same.

5.2 Unreliable Communications

We now consider the case where each sensor in a tree of height h is constrained
to sending one bit to its immediate successor, and the channel between any two
nodes is a binary symmetric channel (BSC) with known crossover probability
η ∈ (0, 1/2). Suppose that (Tn)n≥1 is a h-uniform tree sequence. For simplicity,
we discuss only relay strategies in this section. For every non-leaf node v, we
assume that |Cn(v)| ≥ cn, for some cn → ∞ as n → ∞. This models a
dense sensor network with bounded height h. We again consider the problem
of minimizing the Type II error exponent, with the Type I error constrained
to be no larger than α ∈ (0, 1). However, in this case, the appropriate error
exponent to consider, as we will see later in Proposition 8, is

lim sup
n→∞

1

|Cn(f)|
log β∗(Tn),

where we have normalized the error exponent by |Cn(f)|, the number of im-
mediate predecessors of the fusion center, instead of the total number of nodes
n.

Consider an immediate predecessor u of the node v. The node u transmits a
1-bit message Yu,n = yu over the BSC to node v. Let Ȳu,n = ȳu be the received
message at node v. We now define LLRQs as in Definition 1, but with respect
to the received messages Ȳu,n, i.e., the likelihood ratios are replaced with the
Radon-Nikodym derivative of the distribution of Ȳu,n under H1 with respect
to that under H0.

Let us first consider the simple case when h = 1, i.e., the parallel config-
uration. For each γ ∈ Γ and j = 0, 1, we define the probability measures Q

γ
j

on the space {0, 1} as follows. Let

Q
γ
j ({0}) = (1 − η)Pγ

j ({0}) + ηP
γ
j ({1}),

Q
γ
j ({1}) = (1 − η)Pγ

j ({1}) + ηP
γ
j ({0}).

Then, the following proposition is a consequence of Proposition 1.

Proposition 7 Suppose that Assumptions 1-3 hold. For h = 1, and all α ∈
(0, 1), the optimal error exponent is

lim
n→∞

1

|Cn(f)|
log β∗(Tn) = inf

γ∈Γ
EQ

γ
0

[

log
dQ

γ
1

dQ
γ
0

]

,
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where EQ
γ
0 is the expectation operator under Q

γ
0 . Furthermore, there is no

loss in optimality if we restrict all the leaf nodes in Cn(f) to using the same
transmission function γ ∈ Γ .

The optimal error exponent in the case h ≥ 2 is markedly different from
that in Proposition 7. Let Bern(η) denote the Bernoulli distribution on {0, 1}
that takes the value 1 with probability η. The following proposition is proved
in [2].

Proposition 8 Suppose that Assumptions 1-3 hold. For h ≥ 2, and for all
α ∈ (0, 1), the optimal error exponent is

lim
n→∞

1

|Cn(f)|
log β∗(Tn) = −

(

η log
η

1 − η
+ (1 − η) log

1 − η

η

)

= −D(η) < 0, (12)

where D(η) is the Kullback-Leibler divergence function of Bern(1 − η) w.r.t.
Bern(η).

Again, it can be shown that a strategy that ǫ-achieves the optimal error
exponent is the following:

(i) All leaves use the same transmission function γ ∈ Γ , where γ is chosen
so that P0(γ(X) = 0) 6= P1(γ(X) = 0).

(ii) Every level 1 node uses a LLR with threshold 0.
(iii) All other nodes use the majority rule: send a 1 if and only if more than

half of the received messages are equal to 1.
(iv) The fusion center uses a LLR with threshold t = −D(η) + ǫ.

Compared to the result in Proposition 3, the above proposition shows that
the detection performance of a h-uniform relay tree network of height at least
2, in the presence of unreliable communications, is significantly worse than
that of a similar network with reliable communications. Indeed, in the case
of unreliable communications, the error probability decays exponentially fast
with |Cn(f)|, instead of n.

6 Conclusion

We have considered Neyman-Pearson decentralized detection in sensor net-
works with tree architectures of bounded height. Although the problem of
finding exact optimal strategies, and hence of characterizing the optimal de-
tection performance, for a fixed number of nodes n is computationally in-
tractable, the asymptotically optimal performance is surprisingly the same
as the well-known detection performance of the parallel configuration, under
most practical cases of interest. Indeed, when the leaf nodes dominate, a tree
network with bounded height has the same error exponent as a parallel con-
figuration. Under a mild condition, the property that leaf nodes dominate
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the network is also shown to be a necessary condition for achieving the same
optimal error exponent as the parallel configuration.

We have only considered the Neyman-Pearson criterion in this paper. A
similar analysis is possible within a Bayesian framework. It is shown in [35]
that error probabilities also decay exponentially fast in a Bayesian setting.
However, the same performance as the parallel configuration can no longer be
achieved.

We also discussed the impact of sensor failures and unreliable communi-
cations on detection performance. Our results provide a useful insight into
the performance of height uniform tree sequences. Suppose that all nodes can
only send 1-bit messages, and every node, except the leaf nodes, has the same
number of immediate predecessors cn. A network can operate in two modes,
in a ‘sensor failure’ mode and in an ‘unreliable communications’ mode. In
the ‘sensor failure’ mode, if a sensor determines that its message cannot be
received reliably by its intended recipient, it remains silent instead of transmit-
ting. In the ‘unreliable communications’ mode, it transmits its 1-bit message
regardless. Our results indicate that in the ‘sensor failure’ mode, the error
probability decays exponentially with ch

n, whereas in the ‘unreliable commu-
nications’ mode, it decays exponentially with cn. Therefore, it is better for
the network to operate in the ‘sensor failure’ mode, when the height of the
tree network is greater than one.

Several issues remain outstanding, and are areas for further research. Our
results are valid in the large n regime; however, a significantly larger number
of nodes may be needed before a relay network can approximate, in a certain
sense, the performance of a parallel configuration. Another issue is that al-
though the error exponents are the same, the ratio β∗(Tn)/β∗

P , where β∗
P is

the optimal error probability of the parallel configuration, could be diverg-
ing to infinity as n increases. Therefore, it is of interest to study the exact
asymptotics of this problem. Finally, the case where sensor observations are
correlated remains a difficult problem. For the case of correlated sensor obser-
vations in parallel configurations, the reader is referred to [36, 37] for recent
results.
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