
Footloose: A Case for Physical Eventual Consistency and Selective Conflict
Resolution

Justin Mazzola Paluska David Saff Tom Yeh Kathryn Chen
MIT Computer Science and Artificial Intelligence Laboratory

{jmp,saff,tomyeh,kchen25}@mit.edu

Abstract

Users are increasingly inundated with small devices with
communication and storage capabilities. Unfortunately, the
user is still responsible for reconciling all of the devices
whenever a change is made. We present Footloose, a user-
centered data store that can share data and reconcile con-
flicts across diverse devices. Footloose is an optimistic sys-
tem based on physical eventual consistency—consistency
based on the movement of devices—and selective conflict
resolution—which allows conflicts to flow through devices
that cannot resolve the conflict to devices the can. Using
these techniques, Footloose can present consistent views of
data on the devices closest to the user without user interac-
tion.

1. Introduction

The way in which many people kept the data that is im-
portant to their lives changed with the introduction of the
personal computer, which offered a centralized repository
for data that might otherwise be scattered in file folders, ad-
dress books, or just a person’s memory. In the last few years,
there has been explosion of personal peripherals, includ-
ing PDAs, digital cameras, cell phones, MP3 players, laptop
and palmtop computers, wireless pagers, and more. Each
of these devices is synchronized regularly with the “Home
PC”. Hence, the Home PC is responsible for making sure
that the data from a peripheral is both persisted and consis-
tent with other devices in the system. It ensures that working
with the peripheral is the same as working with any other
device in the system.

We believe that current trends show that as the number
and variety of mobile peripheral devices grow, and as expec-
tations of mobility increase, it will no longer be adequate to
expect for consistency to be maintained by one-to-one syn-
chronizations directly with a Home PC. Rather, we envision
that the device communication topology will look much like
Figure 1. Wireless communication standards like Bluetooth

will allow a cell phone, PDA, and laptop to talk directly to
each other, and users will expect this bandwidth to be used
even when they are away from their Home PC for extended
periods of time. A computer at the user’s work, and perhaps
even in her car, may never come into direct network con-
tact with the Home PC. We also imagine a market for de-
vices like what we call a BlueBox (such as HP Labs Per-
sonal Server [8]), a Bluetooth-enabled large storage device
small enough to be carried everywhere, and with limited
processing capability.

All of these trends indicate that consistency will have to
be maintained through the one-to-one interactions of many
devices, of which the Home PC is just one. We present
the design and initial implementation of Footloose, a user-
centered data store that manages data across diverse de-
vices. Footloose is aimed at applications centered around
a single user. Data stored in Footloose can be modified by
any device the user owns . Furthermore, Footloose ensures
that the changes are reflected in all devices interested in the
change see the change as long as long as they communicate
with at least one other device that knows about the change.
Correspondingly, devices uninterested in the change pass
the data along in order to help the interested devices con-
verge on a single data state.

Footloose introduces two ideas to maintain the user’s
data store:

1. physical eventual consistency on a human time-scale,
and

Figure 1. A typical set of devices and communi-
cation pathways

2. application-based selective conflict resolution.
Physical eventual consistency is a protocol that uses
physical proximity of devices to enhance consistency.
Application-based selective conflict resolution allows ap-
plications distributed among some of the devices to com-
municate, even if at any given point, two devices disagree
on a piece of data. It is also the enabling technology be-
hind physical eventual consistency. Together, the two meth-
ods allow devices to carry all kinds of data—consistent,
inconsistent, and tentative—for all applications on all de-
vices without restraint.

2. Environment and Design Strategy

Two scenarios give an overview of the kind of interac-
tions we expect in a device-oriented world and want to sup-
port in Footloose. These will also help explain the particu-
lar choices we made.

In the first scenario, Alyssa calls Ben before work on
his cell phone with her new number. His phone memorizes
the phone number using caller ID and stores it in its phone-
book. As Ben gets ready for work, he puts his cell phone
near his briefcase with his PDA. The cell phone notices that
the PDA is within wireless range and passes on Alyssa’s
new number to the PDA before Ben takes his briefcase to
work while leaving his personal cell phone at home. Once
at work, Ben leaves his PDA on his desk. Again, it finds that
his computer is in wireless range and further passes on the
new number to his desktop personal information manager
(PIM). Here, all of the devices deal with contact informa-
tion so it is consequently reasonable for them to synchro-
nize themselves when they come in contact.

In the second scenario, Louis purchases an item online
at work and enters his purchase in a financial planner. His
work computer knows that his home computer keeps track
of this information for Louis and would like to propagate
this data to it. However, Louis home computer is off and
cannot be reached. Fortunately, Louis’s cell phone is within
wireless range of the work computer. The work computer
connects to the cell phone and determines that it is likely
to see Louis’s home computer, so the work computer trans-
fers the purchase information to the cell phone. When Louis
returns home that evening, as Louis checks his e-mail, the
cell phone in his pocket comes within wireless range of the
desktop and transfers the new purchase to the home com-
puter. Here, the cell phone acts merely as a carrier of finan-
cial information it has no need or ability to understand.

The first scenario is somewhat possible using today’s
tools [19, 7, 20]. However, a user must manually initiate
synchronization or manually copy data. Footloose makes
this completely automatic. The second scenario is not pos-
sible with current devices—most small devices only store
data they understand and have no way to act as a carrier for

other devices. Footloose enables the second situation, again,
in a completely automatic manner.

2.1. Design Assumptions

An obvious problem in the above two situations is keep-
ing data consistent among the various devices. Consistency
among distributed hosts is not a new problem. Historically,
replicated file systems have attempted to maintain user data
with varying degrees of consistency [6, 5, 11]. Some sys-
tems have also tackled other kinds of data stores, such as
calendars, with varying degrees of success[17, 2]. A com-
mon thread among replicated file systems—and especially
those geared toward mobility—is optimism. Such systems
allow anybody to make updates at any time and reconcile
conflicts later.

Since we want to enable the user to make updates at any
time, Footloose is an optimistic system. However, devices
in Footloose live a different environment than the clients of
any of the above systems. Specifically, we assume that:

1. Connections between devices are fleeting, but form a
connected graph over time.

2. Applications run on many devices that may not directly
talk over time.

3. Not every device has the resources to understand all of
the data types in the system or resolve conflicts.

4. Devices have a finite amount of storage.
We envision a typical inter-device connection to be like that
of a Bluetooth “personal area network.” Furthermore, we
target the class of applications where the user is the main
“writer” or updater, such as PIMs. In return, Footloose will
provide a guarantee of “no lost updates” to an interested
distributed application and eventual convergence on a sin-
gle data state.

The first two assumptions and the target application class
led us to choose a variant of eventual consistency we term
physical eventual consistency to manage our data. The lat-
ter two assumptions helped us reason about our data man-
agement and routing protocols and also our conflict resolu-
tion algorithms.

2.2. Physical Eventual Consistency

As both scenarios show, Footloose works in a primar-
ily disconnected network environment. Therefore, to make
any useful progress, it is obliged to make optimistic updates.
The associated consistency model is eventual consistency—
data will converge on a single state given enough update
messages passed among participating devices [17]. A ma-
jor detraction of optimistic systems is that there is often no
bound on the amount of inconsistency in the system at any
given time.

Figure 2. At any given time, the horizontal bars
represent devices near the user. Synchronizations
are the vertical dotted lines. As long as there is a
data path between devices over time, Footloose
will maintain data consistency.

However, we argue that for user-centered applications,
consistency is closely related to how a user interacts with
devices in the system and what inter-device interactions the
user allows. As devices become “digital jewelry” worn by
users, interactions are limited by how physically close two
devices come. No matter how large the number of devices
gets, the human user will still be the center of the system
and data consistency is maintained for her sake. The user is
also the primary source of updates. Together, these obser-
vations mean that as consistency is maintained in an ad-hoc
way between devices, the device closest to the user will con-
tain the most up-to-date data and hence will have the lowest
amount of inconsistent data.

Therefore, we claim that as long as
1. at any given time, one device is closest to the user and
2. the outgoing closest device and an incoming closest

device can communicate,
a user’s data and updates can be maintained perfectly using
eventual consistency. These claims are analogous to a re-
lay race where the baton is a particular update and the rac-
ers are devices. In the relay, the baton is usually close to one
racer except for brief transfer points, but in the end makes it
all the way across the track to the final runner. In Footloose,
we allow the device carrying the data to change and guaran-
tee that the updates to data will propagate through all of the
devices.

For example, Figure 2 shows devices close to the user
over some time period and relevant synchronizations that
propagate state. The figure is a connected graph over time—
it is possible to reach any of the devices from the initial
starting point by traveling forward (right) in time or up and
down between devices. As long as the user keeps any one
of her devices physically with her at any given time, then

given our claim that the outgoing closest device and incom-
ing closest device can communicate, a connected graph is
formed. On such a graph, an update on one device will travel
through the user’s devices and eventually arrive at her inter-
ested devices.

Unfortunately, sometimes relay racers drop their batons
and, correspondingly, sometimes incoming and outgoing
closest devices do not always have the chance to fully
communicate changes. For example, if Ben left both his
PDA and his cell phone at home, Alyssa’s number does not
get propagated to Ben’s office computer. In this situation,
none of the updates on the home devices could have had
the chance to propagate to the home devices—the data ba-
ton was dropped. What is worse, is that Ben could change
Alyssa’s number on his office computer, potentially leaving
two new versions of Alyssa’s number among his devices.
In terms of Figure 2, we have a disconnected graph of de-
vices and there is no way to get to certain devices by go-
ing forward in time. In this case, Footloose may not present
a perfect view of the user’s data, but still allows updates to
be made. Going back to Ben’s scenario, in the likely event
that Ben brings either his cell phone or his PDA to the of-
fice or vice versa, it will bring from home all of the home
updates and bring back home all of the office updates, al-
lowing Footloose to propagate Alyssa’s number and recon-
cile any other differences among all of the devices. Hence,
after this step, Footloose can continue normally, with a re-
connected graph.

We detail the algorithms for propagating device data in
Section 3.

2.3. Selective Conflict Resolution

Optimistic systems are useless without methods to re-
solve conflicts. Indeed, the forgetful Ben of the previous
paragraph may have changed Alyssa’s number differently
on the temporarily disjoint sets of devices. In the distributed
file system world, there are only a few data types (files, file
metadata, and directories) and every participant in the sys-
tem understands these types, so it is reasonable to expect all
participants to be able to file conflicts. Bayou [2] extends
this and allowed arbitrary types to be resolved based on ap-
plication preferences. However, Bayou requires resolution
abilities at every node since conflicts must be resolved as
soon at they hit the Bayou network. Unfortunately, we do
not assume that Footloose’s devices have the power to re-
solve such conflicts.

Instead, we use selective conflict resolution. Devices in
Footloose may be computationally weak, so we divide de-
vices into two broad classes, smart devices and dumb de-
vices. This classification is on a per-application basis, so
what may be a smart device to one application can be a
dumb device to another and vice versa. Smart devices have

an application conflict-resolver and are able to resolve con-
flicts between updates. Dumb devices cannot resolve con-
flicts. However, dumb devices can store and forward data in
the hopes that a smart device will resolve the conflict. In the
Alyssa and Ben scenario, all of the devices are smart since
they all have contact information applications and could
be called upon to resolve a contact information conflict. In
Louis’s situation however, his two computers are smart, but
his cell phone is dumb since it can only act as a shuttle of fi-
nancial information. The applications installed on a device
determine the selection of conflicts it can resolve. All de-
vices can let all other updates to opaquely flow through the
system.

2.4. Footloose

Footloose ties together physical eventual consistency and
selective conflict resolution with routing heuristics to pro-
vide an environment where applications can share data
among many devices. Specifically, Footloose gives appli-
cations the Footloose Store (FLS), a typed key-value map in
which to store shared data. This structure is general enough
to allow applications to build their own data types though
we also provide synchronization callbacks if applications
want to use their own data structures. Footloose takes care
of moving the data inside the FLS between devices and no-
tifying applications when there are conflicts. Applications
merely have to use the store and be able to handle conflicts
if they want to use Footloose.

The two sections that follow describe the architecture of
Footloose in more detail and evaluate the implementation of
Footloose in simulation. Afterwards, we present our inspi-
ration for Footloose through related work. Finally, we close
with Footloose’s limitations and changes we plan to make
in the future.

3. Footloose Architecture and Data Struc-
tures

Footloose has three main responsibilities: storing data,
shuttling data between devices, and maintaining data con-
sistency. As such, the implementation breaks into modules
and data structures corresponding to these responsibilities.
Figure 3 illustrates the breakdown. Applications store data
in Footloose by communicating with the Footloose Store
(FLS) using UpdateEvents, RecordIds, and Wishes.
Each device in Footloose has an FLS structure containing
some of the shared data. The FLS allows Footloose to im-
plement selective conflict resolution. The FLS communi-
cates with the Footloose Protocol Daemon (FPD) to read
new data from other devices. The new data is gleaned from
other devices during synchronizations during brief connec-
tion times. Since physical eventual consistency combines

Figure 3. Major components in Footloose.

device communication, data routing, and consistency guar-
antees, these responsibilities are handled wholly by the
FPD using StatusVectors. Each device runs a FPD.

3.1. The FLS, RecordIds, and UpdateEvents

Applications that wish to share data among many de-
vices using Footloose place UpdateEvents in the
FLS. Each time an UpdateEvent is added to the
FLS, the FLS increments its counter variable. This
counter is local to the device and serves only as a mea-
sure of age—this “age” is used by the FPD for rout-
ing. Each UpdateEvent in the FLS represents a change
from one specific data state to another—in other words,
a UpdateEvent is the result of a data write. Appli-
cations name specific pieces of data with RecordIds.
New data is created by updating the UpdateEvent as-
sociated with a RecordId from null while it is
deleted by updating it to null. In the process of creat-
ing data, the FLS tags data with an application-specific
type. This type is used by the FPD to route data. When ap-
plications query the FLS, it only reports back with
UpdateEvents that have not been updated by other
UpdateEvents. Hence, from the application’s stand-
point, the FLS is nothing more than a mutable mapping of
RecordIds to UpdateEvents.

We chose this programming interface because it pro-
vides a simple way to allow applications to detect con-
flicts, to make conflicts opaque to Footloose, and to en-
sure that no updates are lost. Conflict detection is almost
trivial: whenever a RecordId maps to more than one
valid UpdateEvent, there is a conflict. Conflict resolu-
tion is therefore similarly easy: the application that reads
the UpdateEvents in conflict resolves the conflict by de-
termining which UpdateEvent is actually correct and up-
dating the RecordId to a new UpdateEvent represent-
ing the “winner” UpdateEvent. Note that this is an en-
tirely application-based process since the FLS itself simply

stores UpdateEvents without regard to RecordId. Us-
ing UpdateEvents rather than standard creates, writes,
and deletes ensures that we could identify every change
in a uniform way rather than having to peek inside the
UpdateEvent to determine changes. These last two prop-
erties make the conflict status of UpdateEvents opaque
to Footloose itself. Hence, any device can deal with any
UpdateEvent in a uniform way, enabling selective con-
flict resolution.

We realize that the UpdateEvent paradigm may not
naturally fit many applications. Therefore, we allow appli-
cations to maintain their own data stores and caches out-
side of Footloose by registering with the FLS. In return, the
FLS notifies the application whenever new UpdateEvents
have arrived from a synchronization with another device so
it can update its own structures. In order to maintain con-
sistency, before a synchronization, the FLS also tells the
application when it must reconcile conflicts and flush ex-
ternal data back to Footloose. In the end, instead of con-
tinually using UpdateEvents, applications can use ex-
ternal data structures and simply provide a summary of
UpdateEvents when Footloose needs them. As a further
benefit, this mechanism also gives us a framework for sup-
porting legacy applications. Though we have not yet devel-
oped one, a wrapper could sit between the legacy applica-
tion and the FLS to interpret the FLS’s callbacks. It can then
update the legacy application using its native API.

3.2. Wishes and Device Interest

Every installed application on a smart device registers
with the FLS the types of data that it will put in the FLS and
the kinds of data that it wants to read from the FLS. These
types match the types associated with the data on creation.
We call these registrations wishes since they represent the
kind of data that the application desires to see. A device that
has registrations is interested in the data types of its regis-
trations. Footloose uses device interest to make routing de-
cisions, as outlined in the next section. In Ben’s phone num-
ber scenario, all of the devices are interested in data of type
“contact information” so whenever two devices communi-
cate they know to pass along Alyssa’s phone number.

Interest registrations live inside the FLS, and conse-
quently are shared among all of the devices. Further-
more, every device registers an interest in the interests
of other devices. This means that, as devices communi-
cate, they exchange their knowledge of the interests of
other devices using Footloose itself. Over time, as the regis-
trations propagate, each device builds a database of the in-
terests of other devices, which is used by the FPD to
route UpdateEvents. This knowledge share enables
Louis’s scenario. The two end computers have regis-
tered their interest in financial data, while the cell phone

has no such interest. However, the cell phone has commu-
nicated with the two computers, and as such, knows that it
can carry financial data to the home computer. The knowl-
edge share also reduces configuration—users merely have
to use data and Footloose determines where it should go.

3.3. The FPD and StatusVectors

The FPD is responsible for implementing physical even-
tual consistency and no lost updates. Like Ficus, it does this
using a variation of Parker’s version vectors [15] we call
StatusVectors. The FPD propagates updates by figur-
ing out which UpdateEvents a partner device needs to
see and sending only them. Though this required adding
a few more states to the StatusVectors and compli-
cated update algorithms, we chose this over a flood ap-
proach since devices have limited storage and communica-
tions resources.

The FPD maintains extra metadata in the FLS for
every UpdateEvent in a StatusVector. The
StatusVector contains a one-byte element for ev-
ery device in the system, indicating this FPD’s understand-
ing of the state of this UpdateEvent on every other
device. This element may take on one of six values, indi-
cated by single-character codes:
• *: Uninterested. No application on this device has reg-

istered a wish for this UpdateEvent
• N: Not seen. This device has not seen this
UpdateEvent.

• V: Valid. This device believes this UpdateEvent con-
tains a valid value.

• I: Invalid. This device knows that this
UpdateEvent is invalid, having been updated
by another UpdateEvent.

• K: Killable. This device knows that all devices know
that this UpdateEvent is invalid.

• G: Gone. This device no longer has this
UpdateEvent.

The values other than * form a strict ordering from N (least
knowledge) to G (most knowledge).

3.3.1. StatusVector Use StatusVectors are
used in two different ways by the FPD. First, they indi-
cate whether two devices need to communicate about a
given UpdateEvent. Second, they indicate when an
UpdateEvent can finally be garbage collected by the
FLS.

If device A is sending events to device B, its FPD will
first determine which set S of devices that B represents a
good route to. We currently use the heuristic that B is a good
route to another device C if B saw C at a later FLS counter
number than A did. A’s FPD searches through its FLS for
UpdateEvents where

D1 D2 D3 Event

1 VNN D1 creates record
2 VVN VVN D1 synchs with D2

3 VVN VVV VVV D2 synchs with D3

4 VVV VVV VVV D1 synchs with D2

5 VVV VVV VVI D3 updates record
6 VVV VII VII D2 synchs with D3

7 KKI KKI VII D1 synchs with D2

8 KKI D2 synchs with D3

9 D1 synchs with D2

Figure 4. The status vectors stored at three de-
vices over the lifetime of a single UpdateEvent.

• some device D in S is interested in the
UpdateEvent and

• D knows less about the UpdateEvent than A.
Only records that match this criteria are sent to B.

As discussed in the Ficus paper, invalid
UpdateEvents cannot be garbage collected by the sys-
tem immediately. If they were, it would be impossible to de-
termine whether the absence of an UpdateEvent in a
given FLS meant that it was invalid, and had been deleted
at that node, or valid, but never seen by that FLS. This in-
formation is crucial for eventual consistency protocols on
devices with limited storage capabilities. Thus, we fol-
low Ficus’ example in having a two-phase deletion
protocol and can provide the no lost updates guaran-
tee.

Each time a StatusVector is updated at an interested
device, it is advanced using the rules shown below:

1. This device’s element is set to the maximum element
in the StatusVector, showing that this device is
now aware of the UpdateEvent’s new overall sta-
tus.

2. If all elements are either I or *, set the element for this
device to K.

3. If all elements are either K or *, purge this element
from the FLS.

4. If all elements are either V or *, and this is a deletion
update, set the element for this device to K.

Thus, once an FPD knows that all other devices know
that an UpdateEvent is killable, it can safely purge
it. After this point, it will report no knowledge of the
UpdateEvent. If another device sees that this device has
purged the UpdateEvent, it may also purge it, since it
knows from the K element that the UpdateEventwas kil-
lable.

Figure 4 is an example of these rules in action as ap-
plied to a single UpdateEvent U . Step 1 is the creation
of U and steps 2-4 show the propagation of the creation.

In step 5, D3 updates the RecordId U represents from
U to U ′. This means that at D3, U is invalid since U ′ has
taken its place. Consequently, D3 marks its view of U with
an I. Step 6 shows the propagation of the invalid status. At
step 7, D1 is the last device to be notified of the invalida-
tion. This means that the UpdateEvent is considered kil-
lable; the status bytes can be advanced to K. Finally, steps 8
and 9 show devices purging killable UpdateEvents.

These rules do not apply at uninterested devices. A de-
vice that is not interested in an UpdateEvent may purge
it at any time without affecting the correctness of the proto-
col. The only reason that device would have seen the event
is that it is on the path between two interested devices, and
the transmitting devices will at some point “re-transmit”.

3.3.2. StatusVector Updates StatusVectors for
an UpdateEvent are updated by the FLS in the course
of standard application writes and by the FPD during syn-
chronization. For every UpdateEvent U received by the
FPD of device A, U’s StatusVector is merged into
A’s FLS. The merged StatusVector is computed by
taking the pairwise maximum of the StatusVector at
each device, and advancing according to the rules in sec-
tion 3.3.1. When the merge process results in modification
to the StatusVector, the modified UpdateEvent is
then sent back to the FPD of device B for merging. This
process continues until A and B converge on a coherent
status of the StatusVector. If synchronization is inter-
rupted during this process, the devices revert to their old
StatusVectors.

3.4. Conflicts and Correctness

Footloose guarantees “no lost updates.” The proof that
Footloose maintains this is that Footloose will not delete a
record until all interested devices have seen that record and
marked it as invalid. If the StatusVector advancement
rules are the only means of purging an UpdateEvent,
then this property ensures that no updates get lost.

Unfortunately, uninterested devices can purge unin-
teresting data whenever they need to. However, as long
as an update eventually makes it through, such purges
only slow down the rate at which updates are propa-
gated. This is again due to the fact that interested devices
will not purge an event until it knows that all inter-
ested devices have seen the event: one device cannot know
the StatusVector values of another interested de-
vice unless there has been some pathway at some time
between it and the other device. Furthermore, since Foot-
loose reverts changes when an UpdateEvent’s com-
munication is interrupted, it is not possible for the
UpdateEvent and its StatusVectors to become out
of sync. Therefore, if an interested device knows that an-
other device thinks an UpdateEvent is killable, we

know that this assessment is correct and can rely on
the StatusVector advancement rules. The first de-
vice will keep retransmitting the UpdateEvent to the
uninterested device since it will still think the uninter-
ested device is a route to the other interested devices until
it hears about better routes.

Conflicts are handled easily by Footloose. Recall that a
conflict occurs when one RecordId maps to more than
one valid UpdateEvent. Going back to our first sce-
nario, suppose that Alyssa’s phone number is stored un-
der RecordId A. Originally, all devices agree on a sin-
gle UpdateEvent UA for A containing the value 1 on
all of the devices. When she calls with her new number,
2, Ben’s cell phone creates an UpdateEvent UB with
value 2 that invalidates UA. Suppose that Ben leaves his
cell phone and PDA at home. At work he gets another call
from Alyssa with an even newer phone number, 3, and en-
ters it on his work computer. The work computer creates an
UpdateEvent UC with value 3 that also invalidates UA.
As Ben brings his devices back and forth, they will even-
tually each get a copy of UB and UC . UA will get purged
since it is invalid as far as all are concerned. Then suppose
that Ben accesses Alyssa’s number on his cell phone. The
FLS returns two UpdateEvents for the RecordId A.
The cell phone notices this and notifies Ben that there are
two possible numbers for Alyssa; in return he chooses that
3 is the correct number. The phone then invalidates both UB

and UC in favor of a new update event UD with value 3. As
these UpdateEvents get shared, UB and UC will be even-
tually purged and UD will persist.

We realize there are situations where conflicts can per-
sist for a long period of time, for example, if two devices
resolve a conflict in opposite directions. However, we do
not attempt to fix this: conflict resolution is the sole respon-
sibility of applications, not Footloose.

4. Initial Implementation and Evaluation

We have built an initial implementation of Footloose
and a simple phone number application that uses Footloose.
Both are written in Java.

4.1. Experience writing an application

Our phone number application has a command-line in-
terface allowing the user to insert name/phone number
pairs, and then lookup, edit, and delete the inserted pairs.

The application took only 100 lines of Java code, of
which about a quarter deal with the FLS. Of these, only
the conflict resolution method (one line) is code that would
not need to be written to use this application on top of any
other distributed data structure. Footloose behaved as ex-

pected when the application was tested, and generated no
additional debugging effort.

4.2. Performance Evaluation

4.2.1. Simulation Framework Since Footloose is de-
signed for environments in which disconnection is more
the rule than the exception, the rate at which data propa-
gates throughout the network depends much more on the
rate at which devices come into proximity with each other
than on the base network speed. To make sure that syn-
chronization can be effective even during brief encoun-
ters, it is important that the number of messages sent be
kept low. Wall-clock time is not important because we ex-
pect the data transfered to be small and also because
wall clock time is insignificant compared to discon-
nection time. Therefore, to measure the performance
of our protocols, we created a framework that accu-
rately measures the number of synchronizations and mes-
sages, while not accurately reflecting the actual amount
of wall-clock time required for a given synchroniza-
tion.

Rather than run over the network, our framework sim-
ulates each device with a Java object running in its own
thread. A mock link layer emulates wireless connections
by maintaining each device’s neighborhood and forward-
ing messages between devices. We chose a simple simula-
tion technique for the order in which synchronizations oc-
cur. The devices are assigned to nodes in a connected graph.
At each time element, one edge in the graph is selected at
random, and the devices assigned to the nodes adjacent to
that edge are added to the same neighborhood, synched with
each other, and then taken apart again. We do this to sim-
ulate a user bouncing among different devices in the worst
possible way. In terms of our scenarios, imagine Ben ran-
domly bringing two devices close, letting them synchronize,
then bringing them apart, without holding a single device
for a long period of time.

We used five different graph topologies: a clique, a ring,
a line, a star, and a random tree. In addition to the topol-
ogy, we adjusted the number of “smart” devices, the num-
ber of “dumb” devices, and the number of UpdateEvents
that fit into each dumb device’s FLS. Dumb devices have
only Footloose installed. Smart devices also have a single
application installed. A dumb device must be connected to
at least two other devices: otherwise, it would never partic-
ipate in message passing.

For each simulation, each smart device was primed
with 10 random events (creates, updates, or deletes). The
random-synchronization simulation then proceeded un-
til all devices agreed on the state of all events (a con-
sistent state). To ignore overhead from initial system
setup of wishes, we then repeated this process, and mea-

sured the number of synchronizations and the number of
UpdateEvent messages (called “updates” in the fig-
ures) sent in this second phase. Note that for n smart de-
vices, 10n events are generated, which lead to at least
10n

2 necessary updates in a perfect, fully-connected sys-
tem. Each data point is the average of five consecutive
runs.

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r

of
 U

pd
at

es

Number of Devices

Clique
Line
Star
Tree
Ring

Figure 5. Updates required to reach eventual con-
sistency, by topology and number of devices.

2 3 4 5 6 7 8
0

20

40

60

80

100

120

N
um

be
r

of
 S

yn
cs

Number of Devices

Clique
Line
Star
Tree
Ring

Figure 6. Synchronizations required to reach
eventual consistency, by topology and number of
devices.

4.2.2. Results Figure 5 shows the results for updates to
reach eventual consistency. Notice that, as might be ex-
pected, consistency is reached most quickly in the clique
and star topologies, and least quickly in the line topology,
which contains the longest paths between two nodes. The
number of updates for cliques is larger than it might be in
a system that takes such strong connectivity as the com-
mon case: the routing table stored at each device is a tree,
meaning that some messages are sent to third parties that
could have been delivered directly. However, the number of
updates required for the line topology is only two or three
times as much as that required for the clique, even though

50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

Buffer Size

of

 S
yn

cs

3 devices
4 devices
5 devices

Figure 7. Synchronizations required to reach con-
sistency given limited device capacity.

the paths are five or six times as long. This shows that Foot-
loose’s performance does not vary drastically even on very
different network topologies. Therefore, Footloose can be
expected to perform well on dynamic topologies created as
users roam between devices.

Figure 6 shows the same experiments, this time with
number of synchronizations required to reach consistency.
This time, the graphs in the best cases (star, tree, and ring)
are nearly linear, whereas the line and tree graphs show
more susceptibility to the random distribution of our simu-
lation: although it should only require 2n synchronizations
to bring a line to consistency, this requires these synchro-
nizations to be perfectly ordered from one endpoint down
to the other and back, which takes longer to happen ran-
domly as the length of the line gets longer. However, if a
user devices can connect to each other as the user moves
between them, we believe that a better update order will be
easier to come by and Footloose will approach the 2n lower
bound.

We also evaluated the impact on communication effi-
ciency of the number and capacity of dumb nodes in the
network. We placed two smart devices on either end of a
line of dumb devices, and varied the number and FLS sizes
of the dumb nodes. Figure 7 shows the number of synchro-
nizations required to reach consistency in this system. (The
number of devices shown includes the smart endpoints.)
The time to consistency depends on the number of dumb
nodes, certainly, but is independent of the FLS size of the in-
tervening devices to a point—not shown—where the dumb
devices were too small to even hold the wishes of other de-
vices, in which case synchronization failed. Hence, Foot-
loose can work on devices with only a small amount of
memory to spare to other applications.

5. Related Work

Perhaps the most relevant work is Roma [18]. Roma is
based on transferring and synchronizing metadata to in-

form the user of the state of her data on all of her devices.
Roma enables the user to issue directives saying, for exam-
ple, “propagate changes,” and have the directive be imple-
mented. Roma relies on a centralized database and assumes
that the user will always have such a device with her. Up-
dates flow from the database. We make the assumption that
users will always have a device with them—rather than a
specific one–and instead assume that devices can commu-
nicate when the user transitions between the two: in other
words, we allow update knowledge to flow through the en-
tire device network. This distinction shows up in our con-
sistency models and guarantees. Roma will inform the user
where the most recent copy of a piece of data even if it does
not have the data on hand. Footloose, in contrast, has no
system-wide knowledge of the locations of the most recent
pieces of data, but tries to propagate updates (and poten-
tial conflicts) as fast as possible to avoid the situation to be-
gin with.

Outside of Roma, we took a back to basics view when
designing Footloose, as such we relied heavily on the con-
sistency ideas of the database and distributed filesystems
fields. An early review [14] proved useful in comparing
many of DFSes. However, Footloose works in an environ-
ment where a network connection is a luxury, so we had to
discard pessimistic systems like Coda [11] for optimistic
ones. Though we did not aim for ACID guarantees, [13]
helped us better understand the problems of optimism in
a very constrained environment.

Two optimistic file systems, Ficus [5] and Bayou [2],
helped shape our thinking as we developed Footloose. Both
are designed for connected environments, but allow work
during partitions. From Ficus we gained an early implemen-
tation of our StatusVectors, one copy availability, and
“no lost updates.” Bayou provides application-level conflict
resolution: conflicts are resolved by attaching conflict reso-
lution code to every piece of data. In addition to the com-
munication overhead inherent in transporting conflict reso-
lution code, we cannot guarantee that all Footloose devices
can actually run their resolution code. Therefore, we devel-
oped selective conflict resolution.

There have been several attempts to port DFSes to mobile
environments. Rumor [6] most closely matches the goals of
Footloose since it keeps the policies of Ficus and allows two
peer machines to reconcile differences and gossip updates
from other peers. However, in order to reduce the number
of update messages, updates are routed in a fixed ring. Foot-
loose, in contrast, works with a dynamic network topology
and allows messages to propagate any which way.

Other systems provide for eventual consistency and ar-
gue that inconsistency can be tolerated within certain time
boundaries. One example is Porcupine [17]. Inconsistency
in Porcupine is meant to last for a few seconds, while in
Footloose, data can be inconsistent for as long as it takes the

user to move between devices. However, this is not a prob-
lem. E-mail generates most updates in Porcupine and so
Porcupine must work a timescale of seconds or less. Users
generate updates in Footloose, so inconsistency can be tol-
erated as long as inconsistent parts of the system are not in
the forefront of the user’s experience.

Since Footloose can store arbitrary data types, a compar-
ison to systems like OceanStore [12] or Distributed Data
Structures (DDS)[4] is not unwarranted. OceanStore pro-
vides a backwards-compatible file-like API and uses strate-
gies like erasure codes, both of which we are considering
for future versions of Footloose. Footloose fundamentally
differs from both OceanStore and DDS since Footloose dis-
tributes data among all participants in the system rather than
among a select set of servers.

Group communication systems like Lotus Notes [10] or
Horus [21] deal with many of the same issues as Foot-
loose. Horus focuses on application development and at-
tempts to make distributed applications modular, rather than
our focus on the user side of the picture. Lotus Notes al-
lows optimism by branching objects into different streams
that get recombined later on. Though similar to watching
UpdateEvents, streams replicate the entire object and are
more resource intensive, which would not work in our envi-
ronment.

Though we chose a variation of version vectors to de-
tect conflicts this was not without reservation. We also con-
sidered causal histories. Recently, a new kind of causal his-
tory, Hash Histories [9], have been published claiming to
cause fewer false conflicts and use space proportional to
the number of updates rather than the number of devices.
Footloose needs to encode routing information with the
StatusVectors, so information proportional in size to
the number of devices is needed anyway and Hash Histo-
ries do not provide savings. We are currently researching
dynamic version vectors schemes [16] to allow our imple-
mentation to work with dynamically changing device sets.

Finally, some recent research [1, 3, 22] has tried to quan-
tify the amount of inconsistency in optimistic systems. In
fact, the papers introduce systems that provide controls that
let an application specify how consistent it wants its data.
Unfortunately, when consistency bounds are overshot, the
systems prevent updates, which would prevent progress in
Footloose.

6. Future Work

We have several directions in which we would like to
take Footloose. First, we would like to move our implemen-
tation to Java-capable handheld computers and cellular tele-
phones. This way we can test real user reactions to Foot-
loose since physical eventual consistency is based on user

motion and we do not have good traces of user and device
movements.

There are also limitations in our current implementa-
tion that we would like to remove. For example, since we
cannot dynamically change the number of devices in our
StatusVectors, we limit the number of devices in the
system. We would also like to provide tools for application
developers that allow them to create complex data struc-
tures out of UpdateEvents. These would include a tool to
make directory-like structures, which we found we needed
as we created more complex applications. Finally, we do not
have a comprehensive security framework for Footloose;
this needs to be remedied in order to make Footloose use-
ful outside of our small workgroup.

7. Conclusion

Footloose provides a consistent view of user data across
mobile devices with disparate computational power. This
is accomplished using two techniques. The first, physical
eventual consistency, allows us to limit inconsistency by
leveraging the fact that users will often have at least one
device in their reach at most times. We propagate updates
through the communication links formed when two devices
come close to each other. Conflicts that arise are recon-
ciled by applications. However, unlike other systems, con-
flicts can flow through devices that cannot reconcile them to
those that can, further increasing the quality of shared data.
These contributions are important as the number of mobile
devices in our world increases.

References

[1] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly
unreliable, replicated peer-to-peer systems. In Proceedings
of the 23rd International Conference on Distributed Comput-
ing Systems, 2003.

[2] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and B. B. Welch. The bayou architecture: Sup-
port for data sharing among mobile users. In Proceedings
IEEE Workshop on Mobile Computing Systems & Applica-
tions, pages 2–7, Santa Cruz, California, 8-9 1994.

[3] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
pages 173–182, 1996.

[4] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable,
distributed data structures for internet service construction,
2000.

[5] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, Jr., G. J.
Popek, and D. Rothmeir. Implementation of the Ficus Repli-
cated File System. In Proceedings of the Summer 1990
USENIX Conference, pages 63–72, 1990.

[6] R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and
G. J. Popek. Rumor: Mobile data access through optimistic

peer-to-peer replication. In ER Workshops, pages 254–265,
1998.

[7] HotSync Synchronization Protocol. http://www.palm.com.
[8] Compaq personal server project.

http://crl.research.compaq.com/ projects/ personalserver/.
[9] B. B. Kang, R. Wilensky, and J. Kubiatowicz. The hash his-

tory approach for reconciling mutual inconsistency. In Pro-
ceedings of the 23rd IEEE International Conference on Dis-
tributed Computing Systems, 2003.

[10] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozie, and L. Greif.
Replicated document management in a group communica-
tion system. In Proceedings of the Conference on Computer
Supported Cooperative Work, 1988.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the coda file system. In Thirteenth ACM Symposium
on Operating Systems Principles, volume 25, pages 213–
225, Asilomar Conference Center, Pacific Grove, U.S., 1991.
ACM Press.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In Proceedings of ACM AS-
PLOS. ACM, November 2000.

[13] H. Kung and J. T. Robinson. On optimistic methods for con-
currency control. ACM Transactions on Database Systems,
6(2):213–226, June 1981.

[14] E. Levy and A. Silberschatz. Distributed file systems: Con-
cepts and examples. ACM Computing Surveys, 22(4), De-
cember 1990.

[15] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and
C. Kline. Detection of mutual consistency in distributed
systems. IEEE Transactions on Software Engineering, May
1983.

[16] D. Ratner, P. Reiher, and G. J. Popek. Dynamic version vec-
tor maintenance. Technical Report CSD-970022, UCLA De-
partment of Computer Science, 1997.

[17] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
availability, and performance in porcupine: a highly scalable,
cluster-based mail service. Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles, Decem-
ber 1999.

[18] E. Swierk, E. Kiciman, N. Williams, T. Fukushima,
H. Yoshida, V. Laviano, and M. Baker. The roma personal
metadata service. MONET special issue of best papers from
WMCSA 2000, 7(5), October 2002.

[19] SyncML. http://www.syncml.org.
[20] A. Tridgell and P. Mackerras. The rsync algorithm. Techni-

cal Report TR-CS-96-05, Australian National University.
[21] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flex-

ible group communication system. Communications of the
ACM, 39(4), April 1996.

[22] H. Yu and A. Vahdat. Design and Evaluation of a Continu-
ous Consistency Model for Replicated Services. In Proceed-
ings of the 4th Symposium on Operating Systems Design and
Implementation, pages 305–318, October 2000.

