
Coordination and Control of UAV Fleets using

Mixed-Integer Linear Programming

by

John Saunders Bellingham

Bachelor of Applied Science
University of Waterloo, 2000

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2002

c© John Saunders Bellingham, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce

and distribute publicly paper and electronic copies
of this thesis document in whole or in part.

Author .

Department of Aeronautics and Astronautics
August 9, 2002

Certified by .

Jonathan P. How
Associate Professor

Thesis Supervisor

Accepted by .
Edward M. Greitzer

Professor of Aeronautics and Astronautics

Chair, Department Committee on Graduate Students

2

Coordination and Control of UAV Fleets using

Mixed-Integer Linear Programming

by

John Saunders Bellingham

Submitted to the Department of Aeronautics and Astronautics
on August 9, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis considers two important topics in the coordination and control of fleets of UAVs;
the allocation and trajectory design problems. The first allocates waypoints to individual
vehicles in the fleet, and includes constraints on vehicle capability, waypoint visitation, and
visit timing. Formulations of the allocation problem are presented to find minimum mission
completion time and maximum stochastic expectation of mission benefit. The trajectory
design problem provides a minimum time reference trajectory to the goal, while avoiding
obstacles in the environment and obeying a limited turning rate.
Mixed-Integer Linear Programming (MILP) is applied to both problems in order to inte-

grate discrete and continuous decisions, making into one optimization program. The MILP
allocation program’s cost function is evaluated using estimated trajectory parameters, which
come from approximated paths. This partially decouples the allocation and trajectory design
problems, and detailed trajectories can later be designed for the selected waypoint sequences.
This significantly reduces the allocation solution time, with negligible loss in performance.
The stochastic formulation is shown to recover sophisticated attrition reduction strategies.
MILP is applied to the trajectory design problem within a receding horizon control frame-

work. The optimization uses a novel terminal penalty which approximates the cost to go
to the goal, and is cognizant of intervening obstacles. This approach provides trajectories
that are within 3% of optimal with significantly less computational effort, while avoiding
entrapment in concave obstacles. This trajectory designer is modified to guarantee its sta-
bility, and the resulting controller is capable of planning trajectories in highly constrained
environments, without large increases in computation time.
The approaches presented here successfully solve the allocation and trajectory design

problems, offering good performance and computational tractability.

Thesis Supervisor: Jonathan P. How
Title: Associate Professor

3

4

Acknowledgments

This research was funded in part under DARPA contract # N6601-01-C-8075 and Air Force

grant # F49620-01-1-0453.

5

6

Contents

1 Introduction 15

1.1 The UAV Trajectory Design Problem . 16

1.1.1 Summary of Previous Work on UAV Trajectory Design 16

1.1.2 Outline of Trajectory Design Approach 18

1.2 The Allocation Problem . 19

1.2.1 Summary Previous Work on the Allocation Problem 21

1.2.2 Outline of Allocation Problem Approach 23

2 Receding Horizon Control Trajectory Design 25

2.1 Introduction . 25

2.2 Fixed Horizon Minimum Time Controller 26

2.3 Simple Terminal Cost Formulation . 28

2.4 Improved Receding Horizon Control Strategy 30

2.4.1 Control Architecture . 30

2.4.2 Computation of Cost Map . 32

2.4.3 Modified MILP Problem . 35

2.5 Results . 36

2.5.1 Avoidance of Entrapment . 36

2.5.2 Performance . 37

2.5.3 Computation Savings . 38

2.5.4 Hardware Testing Results . 40

7

2.5.5 Planning with Incomplete Information 41

2.6 Conclusions . 45

3 Stable Receding Horizon Trajectory Design 47

3.1 Review of Stability Analysis Techniques . 48

3.2 Stable Receding Horizon Trajectory Designer 52

3.2.1 Terminal Constraint Set . 53

3.2.2 The Tree of Trajectory Segments . 54

3.2.3 Stability Analysis . 57

3.3 MILP Formulation of Controller . 58

3.3.1 Tangency Constraint . 60

3.3.2 Selection of Unit Vectors in P . 62

3.3.3 Arc Length Approximation . 64

3.3.4 Linearized Terminal Penalty . 66

3.4 Simulation Results . 67

3.4.1 Operation of the Trajectory Designer 67

3.4.2 Trajectory Design in Highly Constrained Environments 68

3.4.3 Design of Long Trajectories . 70

3.4.4 Rate of Decrease of Terminal Penalty 72

3.5 Conclusions . 73

4 Minimum Time Allocation 75

4.1 Introduction . 75

4.2 Problem Formulation . 76

4.3 The Allocation Algorithm . 78

4.3.1 Overview . 78

4.3.2 Finding Feasible Permutations and their Costs 79

4.3.3 Task Allocation . 82

4.3.4 Modified Cost: Total Mission Time 83

8

4.3.5 Timing Constraints . 84

4.4 Simulations . 85

4.4.1 Simple Allocation Example . 85

4.4.2 Large-Scale Comparison to Fully Coupled Approach 86

4.4.3 Complex Allocation Problem . 89

4.5 Conclusions . 90

5 Maximum Expected Score Allocation 93

5.1 Introduction . 93

5.2 Optimization Program Formulations . 94

5.2.1 Purely Deterministic Formulation . 95

5.2.2 Deterministic Equivalent of Stochastic Formulation 97

5.2.3 Stochastic Formulation . 98

5.3 Results . 103

5.3.1 Nominal Environment . 103

5.3.2 High Threat Environments . 104

5.3.3 Results on Larger Problem . 104

6 Conclusions 109

6.1 Contributions to the Trajectory Design Problem 109

6.2 Contributions to the Allocation Problem . 110

6.3 Future Work . 111

9

10

List of Figures

1-1 Schematic of a Typical Mission Scenario 20

2-1 Trajectory Planned using φ2 as Terminal Penalty 30

2-2 Resolution Levels of the Planning Algorithm 31

2-3 Effect of Obstacles on Cost Values . 34

2-4 Trajectories Designed with φ3 as Terminal Penalty 37

2-5 Effects of Plan Length on Arrival Time and Computation Time 38

2-6 Cumulative Computation Time vs. Complexity 39

2-7 Sample Long Trajectory Designed using Receding Horizon Controller . . . 40

2-8 Planned and Executed Trajectories for Single Vehicle 41

2-9 Planned and Executed Trajectories for Two Vehicles 42

2-10 Trajectory Planning with Incomplete Information 43

2-11 Detection of Obstacle . 43

2-12 Reaction to Obstacle . 43

2-13 Resulting Trajectory Planned with Incomplete Information 43

2-14 Sample Long Trajectory Planned with Incomplete Information 44

3-1 Resolution Levels of the Stable Receding Horizon Trajectory Designer . . . 52

3-2 A Tree of Kinodynamically Feasible Trajectories to the Goal 55

3-3 The Trajectory Returned by Find-Connecting-Segment 57

3-4 The Vectors Involved in the Tangency Constraints 59

3-5 Trajectory between States Returned by Find-Connecting-Segment . . 63

11

3-6 Comparison of Upper Bounding Function ‖ˆ̇x(N)− ˆ̇xc‖1 to |θ|. 64

3-7 Plans of the Stable Trajectory Designer . 68

3-8 Trajectory Examples in Highly Constrained Environment 69

3-9 Tree of Trajectory Segments for Long Trajectory 71

3-10 Sample Long Trajectory Designed by Stable Controller 71

3-11 Rate of Decrease of Stable Controller’s Terminal Penalty 72

4-1 Task Assignment and Trajectory Planning Algorithm 78

4-2 Distributed Task Assignment and Trajectory Planning Algorithm 80

4-3 Visibility Graph and Shortest Paths for the Allocation Problem 80

4-4 Simple Unconstrained Allocation Example 87

4-5 Simple Allocation Example with Added Capability Constraint 87

4-6 Simple Allocation Example with Added Timing Constraint 87

4-7 Simple Allocation Example with Added Obstacle 87

4-8 Comparison of Partially Decoupled and Fully Coupled Approaches 88

4-9 Large Allocation Problem . 90

5-1 Example Purely Deterministic Allocation 96

5-2 Example Deterministic Equivalent Allocations 99

5-3 Piecewise Linear Approximation of the Exponential Function 101

5-4 Example Maximum Expected Score Allocation 102

5-5 Expected Score of Incumbent Solution vs. Time 106

5-6 Example Large Allocation Problem . 107

12

List of Tables

3.1 Cumulative Solution Times for Long Trajectories 70

4.1 Computation Time for Small Allocation and Trajectory Design Problems . . 88

4.2 Computation Time for Random Allocation and Trajectory Design Problems 89

5.1 Results of Several Formulations in Probabilistic Environment 104

5.2 Expected Scores in More Threatening Environments 105

5.3 Probabilities of Reaching High Value Target in More Threatening Environ-

ments . 105

13

14

Chapter 1

Introduction

This thesis examines coordination and control of fleets of Unmanned Aerial Vehicles (UAVs).

UAVs offer advantages over conventional manned vehicles in many applications [3]. They

can be used in situations too dangerous for manned vehicles, such as eliminating anti-aircraft

defenses. Without being weighed down by systems required by a pilot, UAVs can also stay

aloft longer on surveillance missions. While the roles and capabilities of UAVs are growing,

current UAV control structures were conceived of with limited roles in mind for these vehicles,

and operate separately from the command hierarchies of manned units. It is necessary to

improve on this control structure in order to fully exploit the expanding capabilities of UAVs,

and to enable them to act cohesively with manned and unmanned vehicles.

One approach to improving the UAV control structure is to provide planning and op-

erational tools to UAV controllers for performing and task assignment for the fleet, and

trajectory design to carry out these assignments. The control structure would then evaluate

the overall fleet performance during operation, reacting quickly to changes in the environment

and the fleet. These tools would allow operators to plan more complex missions function-

ing at a faster tempo. This thesis applies operations research and control system theory to

the task assignment and trajectory optimization problems as a basis for such tools. These

problems will now be described in greater detail.

15

1.1 The UAV Trajectory Design Problem

A significant aspect of the UAV control problem is the optimization of a minimum-time

trajectory from the UAV’s starting point to its goal. This trajectory is essentially planar,

and is constrained by aircraft dynamics and obstacle avoidance. This optimization problem

is difficult because it is non-convex due to the presence of obstacles, and because the space

of possible control actions over a long trajectory is extremely large [23]. Simplifications that

reduce its dimensionality while preserving feasibility and near-optimality are challenging.

1.1.1 Summary of Previous Work on UAV Trajectory Design

Two well-known methods that have been applied to this problem are Probabilistic Road

Maps [14] (PRMs) and Rapidly-exploring Random Trees [17] (RRTs). PRMs are applied to

reach a goal by adding small trajectory segments to larger, pre-computed routes. The RRT

method extends a tree of trajectory segments from the starting point until the goal is reached.

Each of the trajectory segments is found by selecting a point in the state space at random,

and then connecting the closest point in the existing tree to this point. This technique has

been further developed by applying quadratic optimization to trajectory segments before

adding them to the RRT [13]. These methods all use some degree of randomness to sample

the space of control actions, which makes tractable a category of problems with relatively

high dimension. However, an accompanying effect is that the optimality of the resulting

trajectories is limited by selecting the best from randomly sampled options. This may not

be a disadvantage when feasibility is the important criterion, but if optimality is important,

then randomized techniques may not be appropriate.

Another approach to trajectory design “smoothes” a path made up of straight line seg-

ments into a flyable trajectory that is dynamically feasible [21, 15]. This approach typically

first constructs a Voronoi diagram of an environment in which anti-aircraft defenses are to

be avoided. The Voronoi diagram is a network of connected edges that are positioned to

maximize the distance from the two nearest anti-aircraft sites. Graph search techniques can

16

be applied to find a path through the defenses. The combination of Voronoi diagrams and

graph search provides a computationally tractable approach to planning minimum radar

exposure paths.

These straight line segment paths through the Voronoi diagram can be smoothed by

inserting fillets to construct the turning path of the vehicle at line segments intersections [21,

18, 28]. Smoothing can also be performed by replacing straight line segments with cubic

splines [15]. These approaches do not account for obstacles in the environment, and cannot

directly incorporate these constraints. While the fillet and spline construction technique are

simple to apply and computationally tractable, they do not perform the smoothing optimally.

These techniques can also cause difficulties when the straight line path constrains short edges

joined by tight angles, making the straight line path difficult to smooth.

MILP has also been applied to trajectory design. MILP extends linear programming to

include variables that are constrained to take on integer or binary values. These variables can

be used to add logical constraints to the optimization problem [8, 33]. Obstacle avoidance

can be enforced with logical constraints by specifying that the vehicle must be either above,

below, left or right of an obstacle [29, 27, 26]. To improve the computational tractability of

this approach, the MILP trajectory optimization is applied within a receding horizon control

framework [29].

In general, receding horizon control (also called Model Predictive Control) designs an

input trajectory that optimizes the plant’s output over a period of time, called the planning

horizon. The input trajectory is implemented over the shorter execution horizon, and the

optimization is performed again starting from the state that is reached. This re-planning

incorporates feedback to account for disturbances and plant modeling errors. In this problem

setting, computation can be saved by applying MILP in a receding horizon framework to

design a succession of short trajectories instead of one long trajectory, since the computation

required to solve a MILP problem grows nonlinearly with its size.

One approach to ensuring that the successively planned short trajectories actually reach

the goal is to minimize some estimate of the cost to go from each plan’s end, or terminal

17

point, to the goal. If this terminal penalty exactly evaluated the cost-to-go, then the receding

horizon solution would be globally optimal. However, it is not obvious how to find an accurate

estimate of the cost-to-go from an intermediate trajectory segment’s terminal point without

optimizing a detailed trajectory all the way to the goal, losing the benefits of receding

horizon control. The approach suggested in [29] uses an estimate of the distance-to-go from

the plan’s endpoint to the goal that was not cognizant of obstacles in this interval, and

led to the aircraft becoming trapped behind obstacles. Control Lyapunov Functions have

been used successfully as terminal penalties in other problem settings [11], but these are also

incompatible with the presence of obstacles in the environment.

1.1.2 Outline of Trajectory Design Approach

Chapter 2 of this thesis presents a receding horizon trajectory designer which avoids entrap-

ment. It applies MILP to optimize the trajectory, and receding horizon control to rationally

reduce the size of the decision space. A novel terminal penalty is presented which resolves

many of the difficulties associated with previous terminal penalties for trajectory design in

the presence of obstacles. This cost-to-go estimate is based on a path to the goal that avoids

obstacles, but is made up of straight line segments. This estimate takes advantage of the fact

that long range trajectories tend to resemble straight lines that connect the UAVs’ starting

position, the vertices of obstacle polygons, and the waypoints. The resulting trajectories

are shown to be near-optimal, to require significantly less computational effort to design,

and to avoid entrapment by improving the degree to which the terminal penalty reflects a

flyable path to the goal. However, this straight line path contains heading discontinuities

where straight line segments join, so the vehicle would not be able to follow this path exactly.

Furthermore, it is possible that no dynamically feasible path exists around the straight line

path. This can drive the system unstable by leading the vehicle down a path to the goal

that is dynamically infeasible.

Chapter 3 presents a modified receding horizon controller and proves its stability. This

modification ensures that cost-to-go estimates are evaluated only along kinodynamically

18

feasible paths. This is guaranteed by adding appropriate constraints on admissible terminal

states. This chapter applies the receding horizon stability analysis methods presented in

Ref. [1] and generalized in Ref. [7]. This trajectory designer is demonstrated to be capable

of planning trajectories in highly constrained environments with a moderate increase in

computation time over the unstable receding horizon controller.

The optimization problems presented in this thesis are formulated as MILPs. MILP is

an ideal optimization framework for the UAV coordination and control problem, because

it integrates the discrete and continuous decisions required for this application. The MILP

problems are solved using AMPL [9] and CPLEX [10]. AMPL is a powerful language for

expressing the general form of the constraints and cost function of an optimization program.

MATLAB is used to provide the parameters of a problem instance to AMPL, and to in-

voke CPLEX to solve it. Applying commercial software to perform the optimization allows

concentration on the formulation, rather than the search procedure to solve it, and allows

advances in solving MILPs to be applied as they become available.

1.2 The Allocation Problem

Before trajectories can be designed for the UAVs in the fleet, the control architecture solves an

allocation problem to determine a sequence of waypoints for each vehicle to visit. An example

of a fleet coordination scenario is shown in Fig. 1-1. In the simplest form of the waypoint

allocation problem, every waypoint must be visited while avoiding obstacles. Additional

constraints can be added to this problem to capture different types of waypoints representing

sites at which to collect sensor information, high value targets which must be destroyed, or

anti-aircraft defenses whose destruction might increase the probability of mission success.

Only a subset of the fleet might be capable of visiting each waypoint. Timing constraints

can be added to enforce simultaneous, delayed or ordered arrival at waypoints. Designing a

detailed overall coordination plan for this mission can be viewed as two coupled decisions.

Tasks that achieve the fleet goals must be assigned to each team member, and a path must be

19

• Vehicles:

• Waypoints:

• No Fly Zones:

• Capabilities:

x

yW
ay

po
in

ts

Fig. 1-1: Schematic of a typical mission scenario for a UAV fleet with numerous waypoints,
No Fly Zones and capabilities

designed for each team member that achieves their tasks while adhering to spatial constraints,

timing constraints, and the dynamic capabilities of the aircraft. The coordination plan is

designed to minimize some mission cost, such as completion time or probability of failure.

Consideration of each of the fleet coordination decisions in isolation shows that they

are computationally demanding tasks. For even moderately sized problems, the number of

combinations of task allocations and waypoint orderings that must be considered for the team

formation and task assignment decisions is very large. For the relatively simple coordination

problem shown in Fig. 1-1, there are 1296 feasible allocations, and even more possible ordered

arrival permutations. Coupling exists between the cost of visiting a particular waypoint and

the other waypoints visited by the same vehicle, since the length of the trajectory between

them depends on their order. There is also considerable uncertainty in this problem; there

20

is a probability that a UAV will be destroyed by anti-aircraft defenses during its mission,

and the waypoint location information may be uncertain and incomplete. The problem of

planning kinematically and dynamically constrained optimal paths, even for one aircraft, is

also a very high dimension nonlinear optimization problem due to its size and non-convexity,

as described in Section 1.1.1. Furthermore, each UAV trajectory is coupled to all other UAV

trajectories by collision avoidance constraints.

As difficult as each of these decisions is in isolation, they are in fact strongly coupled

to each other. The optimality of the overall coordination plan can be strongly limited

by incompatible team partitioning or unsuitable task allocation. However, the cost to be

minimized by these decisions is a function of the resulting detailed trajectories. While it is

not clear how to partition teams and allocated tasks without full cost information, evaluating

the cost of all options would require designing detailed trajectories for an exponential number

of possible choices.

1.2.1 Summary Previous Work on the Allocation Problem

This coupling has been handled in one approach [24] by forming a large optimization problem

that simultaneously assigns the tasks to vehicles and plans corresponding detailed trajec-

tories. This method is computationally intensive, but it is guaranteed to find the globally-

optimal solution to the problem and can be used as a benchmark against which approximate

techniques can be compared.

Recent research has examined several aspects of the UAV allocation problem. Tabu

search has been successfully applied to find near optimal coordination plans for many UAVs

and many waypoints which minimize total flight time [16] and the expectation of waypoint

visitation value [12]. These approaches include fixed time windows for visiting individual

waypoints, but do not include constraints on relative timing of waypoint visits and do not

capture the ability of one UAV to decrease risk to another UAV by destroying a threatening

SAM site. A stochastic formulation of allocating weapons to targets has also been stud-

ied [22]. In this problem formulation, a set of weapons can be fired at a set of available

21

targets, but some targets may be discovered in the future. To maximize the expectation

of destroyed target value over the entire engagement, a stochastic integer program is solved

to balance the value of firing weapons at the detected targets against the value of holding

weapons to fire at undetected targets. This formulation does not involve timing constraints,

and each weapon may be fired against only one target.

Recent research that has focused on the structure of UAV coordination systems gives

special attention to the Low Cost Autonomous Attack System (LOCAAS). Researchers have

suggested a hierarchical decomposition of the problem into levels that include team forming,

intra-team task allocation, and individual vehicle control [5]. Recent research has proposed

methods for decision making at each of these levels [4]. Minimum spanning trees are found to

group together the tasks for each team. The intra-team assignment is then performed using

an iterative network flow method. At each iteration, this method temporarily assigns all

remaining tasks to vehicles, and fixes the assignment that would be performed first in time.

This is repeated until all the tasks are assigned. An approach to the allocation problem

has also been suggested that involves a network minimum cost flow formulation [31]. The

formulations can be solved rapidly, and model the value of searching for additional targets.

There are disadvantages associated with both the iterative and the minimum cost flow

formulations. The iterative network formulation has problems with robustness, feasibility

and occasional poor performance. These are related to the inclusion of fixed time windows

for certain tasks to be performed. The iterative and minimum cost flow approaches cannot

incorporate these constraints directly, and incomplete approaches to adding these constraints

are used. Furthermore, the minimum cost flow formulation requires penalties for modifying

the allocation so that it does not make frequent reassignments as the mission is performed.

This formulation permits only one task to be assigned to each vehicle at a time, resulting in

suboptimal results. Market-based allocation methods have been considered for the LOCAAS

problem [30] and for the general UAV allocation problem [32]. The types of coupling that

these problem formulations address is relatively simple; these control systems realize ben-

efits through de-conflicting UAV missions and information sharing, and are not capable of

22

using more subtle cooperation between UAVs such as opening corridors through anti-aircraft

defenses.

Approaches to the allocation problem which emphasize timing constraints have also been

proposed [21, 18, 28]. In this approach, detailed paths are selected for each of the vehicles in

order to guarantee simultaneous arrival at an anti-aircraft defense system, while minimizing

exposure to radar along the way. This is performed through the use of coordination func-

tions; each vehicle finds its own minimum arrival time as a function of radar exposure, and

communicates their coordination function to the rest of the fleet. Each member of the fleet

then solves the same optimization problem to determine the arrival time which minimizes

radar exposure and allows all members to arrive simultaneously.

Research has also applied rollout algorithms to UAV control problems [34]. These

algorithms are an approach to solving stochastic scheduling problems [2]. Rollout algorithms

repeatedly optimize the next scheduling decision to be made. This scheduling decision is

selected to minimize the expectation of the sum its cost and the cost-to-go of applying a base

scheduling policy from the resulting state to completion. Since the problem is stochastic,

some form of simulation is performed to find the expectation of cost, given the first scheduling

decision. The UAV control problem is represented in this framework by the aggregation of

finite state automata representing aircraft and targets, and a greedy heuristic is used as the

base policy. It has been reported [34] that the rollout algorithm is able to learn strategies

such as opening attack corridors to decrease attrition.

1.2.2 Outline of Allocation Problem Approach

Chapter 4 of this thesis presents an approach to the combined resource allocation and tra-

jectory optimization aspects of the fleet coordination problem. This approach calculates

and communicates the key information that couples the two problems. This algorithm es-

timates the cost of various trajectory options using distributed platforms and then solves

a centralized assignment problem to minimize the mission completion time. It performs

this estimation by using the same straight line path approximation examined in Chapter 2

23

for evaluating the receding horizon controller’s terminal penalty. The allocation problem is

solved as a MILP, and can include sophisticated timing constraints such as “Waypoint A

must be visited t minutes before Waypoint B”. This approach also permits the cost esti-

mation step and detailed trajectory planning for this assignment to be distributed between

parallel processing platforms for faster solution.

Chapter 5 considers a stochastic MILP formulation of the allocation problem, which

maximizes the expectation of the mission’s score. This formulation addresses one of the

most important forms of coupling in the allocation problem; the coupling between the mission

that one UAV performs and the risk that other UAVs experience. Each UAV can reduce

the risk for other UAVs by destroying the anti-aircraft defenses that threaten them. While

the approach in Ref. [12] assumes a fixed risk for visiting each of the waypoints, the ability

to reduce this threat is not addressed directly by any approach in the allocation literature.

The formulation presented in Chapter 5 associates not only a score but also a threat with

each waypoint. A waypoint’s threat captures the probability that an anti-aircraft defense at

that waypoint destroys a nearby UAV during its mission. A waypoint poses no threat if the

waypoint does not represent an anti-aircraft defense, or if a UAV has already destroyed it.

The solution optimizes the use of some vehicles to reduce risk for other vehicles, effectively

balancing the score of a mission, if it were executed as planned, against the probability that

the mission can be executed as planned.

24

Chapter 2

Receding Horizon Control Trajectory

Design

2.1 Introduction

This chapters presents an approach to minimum time trajectory optimization for autonomous

fixed-wing aircraft performing large scale maneuvers. These trajectories are essentially pla-

nar, and are constrained by no-fly zones and the vehicle’s maximum speed and turning rate.

MILP is used for the optimization, and is well suited to trajectory optimization because it can

incorporate logical constraints, such as no-fly zone avoidance, and continuous constraints,

such as aircraft dynamics. MILP is applied over a receding planning horizon to reduce the

computational effort of the planner and to incorporate feedback. In this approach, MILP is

used to plan short trajectories that extend towards the goal, but do not necessarily reach it.

The cost function accounts for decisions beyond the planning horizon by estimating the time

to reach the goal from the plan’s end point. This time is estimated by searching a graph

representation of the environment. This approach is shown to avoid entrapment behind ob-

stacles, to yield near-optimal performance when comparison with the minimum arrival time

found using a fixed horizon controller is possible, to work on a large trajectory optimization

problem that is intractable for the fixed horizon controller, and to plan trajectories that can

25

be followed by vehicles in a hardware testbed.

This chapter will first present a fixed horizon version of the trajectory planner and a

receding horizon controller with a simple terminal penalty for comparison. The control

architecture of the improved trajectory planner is presented, including the cost map prepa-

ration algorithm and the constraints required to evaluate the new terminal penalty. Finally,

simulation and hardware testing results are shown.

2.2 Fixed Horizon Minimum Time Controller

A minimum arrival time controller using MILP over a fixed planning horizon was presented

in Ref. [26]. It designs a series of control inputs {u(i) ∈ R2 : i = 0, 1, . . . , N − 1}, that give

the trajectory {x(i) ∈ R2 : i = 1, 2, . . . , N}. Constraints are added to specify that one of

the N trajectory points x(i) = [xk+i,1 xk+i,2]
T must equal the goal xgoal. The optimization

minimizes the time along this trajectory at which the goal is reached, using N binary decision

variables bgoal ∈ {0, 1} as

min
u(·)

φ1(bgoal, t) =
N∑

i=1

bgoal,iti (2.1)

subject to

xk+i,1 − xgoal,1 ≤ M(1− bgoal,i)

xk+i,1 − xgoal,1 ≥ −M(1− bgoal,i)

xk+i,2 − xgoal,2 ≤ M(1− bgoal,i)

xk+i,2 − xgoal,2 ≥ −M(1− bgoal,i) (2.2)
N∑

i=1

bgoal,i = 1 (2.3)

where M is a large positive number, and ti is the time at which the trajectory point x(i) is

reached. When the binary variable bgoal,i is 0, it relaxes the arrival constraint in Eqn. 2.2.

Eqn. 2.3 ensures that the arrival constraint is enforced once.

To include collision avoidance in the optimization, constraints are added to ensure that

26

none of the N trajectory points penetrate any obstacles. Rectangular obstacles are used in

this formulation, and are described by their lower left corner [ulow vlow]
T and upper right

corner [uhigh vhigh]
T . To avoid collisions, the following constraints must be satisfied by each

trajectory point

xk+i,1 ≤ ulow +M bobst,1

xk+i,1 ≥ uhigh −M bobst,2

xk+i,2 ≤ vlow +M bobst,3

xk+i,2 ≥ vhigh −M bobst,4 (2.4)
4∑

j=1

bobst,j ≤ 3 (2.5)

The jth constraint is relaxed if bobst,j = 1, and enforced if bobst,j = 0. Eqn. 2.5 ensures that

at least one constraint in Eqn. 2.4 is active for the trajectory point. These constraints are

applied to all trajectory points {x(i) : i = 1, 2, . . . , N}. Note that the obstacle avoidance con-

straints are not applied between the trajectory points for this discrete-time system, so small

incursions into obstacles are possible. As a result, the obstacle regions in the optimization

must be slightly larger that the real obstacles to allow for this margin.

The trajectory is also constrained by discretized dynamics that model a fixed-wing aircraft

as a point of mass m [26]




ẋi+1,1

ẋi+1,2

ẍi+1,1

ẍi+1,2



=




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0







xi+1,1

xi+1,2

ẋi+1,1

ẋi+1,2



+




0 0

0 0

1
m
0

0 1
m






ui,1

ui,2


 (2.6)

The model also includes a limited speed and turning rate. The latter is represented by a

limit on the magnitude of the turning force u(i) that can be applied

L2(ẋ(i)) ≤ vmax (2.7)

27

L2(u(i)) ≤ umax (2.8)

The constraints of Eqns. 2.7 and 2.8 make use of a linear approximation L2(r) of the 2-norm

of a vector r = (r1, r2)

∀ [p1 p2]
T ∈ P : L2(r) ≥ r1p1 + r2p2, (2.9)

where P is a finite set of unit vectors whose directions are distributed from 0◦ − 360◦. The

projection of r onto these unit vectors gives the length of the component of r in the direction

of each unit vector. When a sufficient number of unit vectors is used in this test, the resulting

maximum projection is close to the length of r. The set of unit vectors P is provided to the

MILP problem as a parameter.

Note that in this implementation of the problem, there is only an upper bound on the

speed. It is feasible for the speed to fall below vmax, allowing tighter turns. However, for the

minimum time solution, it is favorable to remain at maximum speed [26].

This formulation finds the minimum arrival time trajectory. Experience has shown that

the computational effort required to solve this optimization problem can grow quickly and

unevenly with the product of the length of the trajectory to be planned and the number of

obstacles to be avoided [29, 26]. However, as discussed in the following sections, a receding

horizon approach can be used to design large-scale trajectories.

2.3 Simple Terminal Cost Formulation

In order to reduce the computational effort required and incorporate feedback, MILP has

been applied within a receding horizon framework. To enable a more direct comparison

of the effects of the terminal penalty, the following provides a brief outline of the receding

horizon approach suggested in Ref. [29]. The MILP trajectory optimization is repeatedly

applied over a moving time-window of length N . The result is a series of control inputs

{u(i) ∈ R2 : i = 0, 1, . . . , N − 1}, that give the trajectory {x(i) ∈ R2 : i = 1, 2, . . . , N}. The

28

first part of this input trajectory, of length Ne ≤ N , is executed before a new trajectory is

planned. The cost function of this optimization is the terminal penalty φ2(x(N)), which finds

the 1-norm of the distance between the trajectory’s end point and the goal. The formulation

is piecewise-linear and can be included in a MILP using slack variables as

min
u(·)

φ2(x(N)) = L1(xgoal − x(N)) (2.10)

where L1(r) evaluates the 1-norm of r as the sum of the absolute values of the components

of r. Slack variables su and sv are used in the piecewise linear relationships

L1(r) = su + sv

su ≥ u

su ≥ −u

sv ≥ v

sv ≥ −v (2.11)

Obstacle avoidance and dynamics constraints are also added. This formulation is equivalent

to the fixed horizon controller when the horizon length is just long enough to reach the goal.

However, when the horizon length does not reach the goal, the optimization minimizes the

approximate distance between the trajectory’s terminal point and the goal.

This choice of terminal penalty can prevent the aircraft from reaching the goal when the

approximation does not reflect the length of a flyable path. This occurs if the line connecting

x(N) and the goal penetrates obstacles. This problem is especially apparent when the path

encounters a concave obstacle, as shown in Fig. 2-1. When the first trajectory segment

is designed, the terminal point that minimizes the 1-norm distance to the goal is within

the concavity behind the obstacle, so the controller plans a trajectory into the concavity.

Because the path out of the concavity would require a temporary increase in the 1-norm

distance to the goal, the aircraft becomes trapped behind the obstacle. This is comparable

to the entrapment in local minima that is possible using potential field methods.

29

x
goal

φ
2
 as terminal penalty

Fig. 2-1: Trajectory Planned using 1-Norm as Terminal Penalty. Starting point at left, goal
at right. Circles show trajectory points. Receding horizon controller using simple terminal
penalty φ2 and N = 12 becomes entrapped and fails to reach the goal.

2.4 Improved Receding Horizon Control Strategy

This section presents a novel method for approximating the time-to-go along a path to

the goal which avoids obstacles in order to avoid entrapment. This terminal penalty is

implemented in a MILP program, using only linear and binary variables.

2.4.1 Control Architecture

The control strategy is comprised of a cost estimation phase and a trajectory design phase.

The cost estimation phase computes a compact “cost map” of the approximate minimum

distance to go from a limited set of points to the goal. The cost estimation phase is per-

formed once for a given obstacle field and position of the goal, and would be repeated if the

environment changes.

The trajectory designer uses this cost map information to evaluate the terminal penalty

30

Path associated with
terminal penalty φφφφ3

Path consistent with
discretized dynamics

x(0)

Execution
Horizon

Planning
Horizon

xgoal

x(N) xvis

Fig. 2-2: Resolution Levels of the Planning Algorithm

of the receding horizon optimization. This division of computation between the cost esti-

mation and trajectory design phases enables the trajectory optimization to use only linear

relationships. This approach avoids the difficulties associated with nonlinear programming,

such as choosing a suitable initial guess for the optimization.

An example of a result that would be expected from the trajectory design phase is shown

schematically in Fig. 2-2. In this phase, a trajectory consistent with the discretized aircraft

dynamics is designed from x(0) over a fine resolution planning horizon of N steps. The

trajectory is optimized using MILP to minimize the terminal penalty. This cost estimates

the distance to the goal from this point as the distance from x(N) to a visible point xvis,

whose cost-to-go was estimated in the previous phase, plus the cost-to-go estimate cvis for

xvis. As described in Section 2.4.2, cvis is estimated using a coarser model of the aircraft

dynamics that can be evaluated very quickly. Only the first Ne steps are executed before a

31

new plan is formed starting from the state reached the end of the execution horizon.

The use of two sets of path constraints with different levels of resolution exploits the

trajectory planning problem’s structure. On a long time-scale, a successful controller need

only decide which combination of obstacle gaps to pass through in order to take the shortest

dynamically feasible path. However, on a short time-scale, a successful controller must plan

the dynamically feasible time-optimal route around the nearby obstacles to pass through the

chosen gaps. The different resolution levels of the receding horizon controller described above

allow it to make decisions on these two levels, without performing additional computation

to “over plan” the trajectory segment to an unnecessary level of detail.

The cost estimation is performed in MATLAB. It produces a data file containing the

cost map in the AMPL [9] language, and an AMPL model file specifies the form of the

cost function and constraints. The CPLEX [10] optimization program is used to solve the

MILP problem and outputs the resulting input and position trajectory. MATLAB is used

to simulate the execution of this trajectory up to x(Ne), which leads to a new trajectory

optimization problem with an updated starting point.

2.4.2 Computation of Cost Map

The shortest path around a set of polygonal obstacles to a goal, without regard for dynamics,

is a series of joined line segments that connect the starting point, possibly obstacle vertices,

and the goal. To find this path, a visibility graph can be formed whose nodes represent

these points. Edges are added between pairs of nodes if the points they represent can be

connected by a line that does not penetrate any obstacles. The visibility graph is searched

using Dijkstra’s Single Source Shortest Path Algorithm [6], starting at the goal, to find the

shortest path from the each node of the graph to the goal, and the corresponding distances.

Dijkstra’s Algorithm takes advantage of the fact that if the shortest path from xi to the

goal passes through xj, then the portion of this path from xj to the goal is also xj’s shortest

path. The algorithm maintains two sets of nodes: N , whose path to the goal has been fixed,

and N̄ , whose path to the goal could still be improved. N is initially empty, and N̄ initially

32

algorithm (c, s) = Dijkstra(xgoal,Xobst,x(0),d)
Place xgoal, all obstacle vertices, and x(0) in N̄ ;
c1 := 0, s1 := 1; \\ Node 1 is goal
Set all other costs in c to ∞;
while N̄ �= ∅ do

Choose the node xj in N̄ with minimum cj;
Move node xj from N̄ to N ;
Relax(j, N̄ , c, s,d);

end while

procedure Relax(j, N̄ , c, s,d)
for all nodes xi ∈ N̄ that are connected to xj do

if dij + cj < ci then
ci := dij + cj; \\ Shorten by going through j
si := j;

end if
end for

Algorithm 1: Dijkstra’s Algorithm. This algorithm provides the basis for Alg. 2

contains all obstacle vertices, the start node, and the goal node. Since optimal trajectories

tend to head towards obstacle vertices, these points are a good choice of points at which to

find the cost-to-go. Additional points can be added to N̄ .

At each iteration, the algorithm chooses a point of known cost xj to move from N̄ to N ,

effectively fixing its path to the goal. In the procedure Relax, all of the nodes xi that are

both connected to xj and in N̄ are then examined. If the current route from xi to the goal

is longer than the route from xi through xj to the goal, then xi’s current minimum distance

ci is updated to this lower value, and j is recorded as si, the successor of node i on the path

to the goal.

After the distances are updated for all the connected nodes, the minimum of the distance

values corresponding to nodes in N̄ is now known with certainty. The node with this

minimum distance is moved to N . This process continues until the shortest path from all

nodes to the goal has been found.

In order to illustrate how the resulting cost map accounts for obstacles, their contribution

to the cost is isolated in Fig. 2-3. To produce this graph, cost values were found over a fine

33

Fig. 2-3: Effect of Obstacles on Cost Values. Difference between actual cost at various
points in an obstacle field and cost in same region with no obstacles, larger differences shown
with darker shading. This shows the effects of obstacles on cost values. Goal is at center
right.

grid of points in two fields of equal size, one with obstacles, and one without1. The cost

values found in the obstacle-free field were subtracted from the cost values found in the

obstacle field to remove the contribution of straight line distance to costs. Areas of larger

difference are shown in Fig. 2-3 by darker shading. Note that the cost is increasing into the

concave obstacle. This increase is crucial to avoiding the entrapment shown in Fig. 2-1.

The major computational activities in the cost estimation phase are determining whether

lines intersect with obstacles, and searching through the visibility graph for shortest paths.

Computationally efficient ways of doing each are readily available [6], and the entire cost

estimation portion of the computation can be performed in a fraction of the time required

to form one plan.

1Cost values need not be found over such a fine grid to plan trajectories successfully. Since optimal
large-scale trajectories tend to connect the starting point, obstacle vertices, and the goal, costs need only be
found at these points. Many extra grid points are added here to more clearly demonstrate the trend in cost
values.

34

2.4.3 Modified MILP Problem

The results of the cost estimation phase are provided to the trajectory design phase as

pairs of a position where the approximate cost-to-go is known and the cost at that point

(xcost,j, cj). This new formulation includes a significantly different terminal cost that is a

function of x(N), and (xvis, cvis), a pair from the cost estimation phase. The optimization

seeks to minimize the distance that must be covered from x(N) to reach the goal by choosing

x(N) and the pair (xvis, cvis) that minimize the distance from x(N) to xvis, plus the estimated

distance cvis to fly from xvis to xgoal.

min
u(·)

φ3(x(N)) = L2(xvis − x(N)) + cvis (2.12)

A key element in the algorithm is that the optimization is not free to choose x(N) and

xvis independently. Instead, xvis is constrained to be visible from x(N). Note that visibility

constraints are, in general, nonlinear because they involve checking whether every point along

a line is outside of all obstacles. Because these nonlinear constraints cannot be included in a

MILP problem, they are approximated by constraining a discrete set of interpolating points

between x(N) and xvis to lie outside of all obstacles. These interpolating points are a portion

τ of the distance along the line-of-sight between x(N) and xvis

∀ τ ∈ T : [x(N) + τ · (xvis − x(N))] /∈ Xobst (2.13)

where T ⊂ [0, 1] is a discrete set of interpolation distances and Xobst is the obstacle space.

The visibility constraint ensures that the length of the line between x(N) and xvis is a

good estimate of the length of a path between them which avoids obstacles. The interpolating

points are constrained to lie outside obstacles in the same way that the trajectory points are

constrained to lie outside obstacles in the previous formulations (see Eqns. 2.4 and 2.5), so it

is possible that portions of the line-of-sight between interpolating points penetrate obstacles.

However, the number of interpolating points can be chosen as a function of the distance to

the goal and the narrowest obstacle dimension to guarantee that the line-of-sight will only be

35

able to “cut corners” of the obstacles. In this case, the extra distance required to fly around

the corner is small, and the accuracy of the terminal penalty is not seriously affected.

The values of the position xvis and cost cvis are evaluated using the binary variables bcost

and the n points on the cost map as

xvis =
n∑

j=1

bcost,jxcost,j (2.14)

Cvis =
n∑

j=1

bcost,jCj (2.15)

n∑
j=1

bcost,j = 1 (2.16)

Obstacle avoidance constraints (Eqns. 2.4 and 2.5) are enforced without modification at

{x(i) : i = 1, 2, . . . , N}. The dynamics model (Eqn. 2.6), the velocity limit (Eqn. 2.7),

and the control force limit (Eqn. 2.8) are also enforced in this formulation. This provides a

completely linear receding horizon formulation of the trajectory design problem.

2.5 Results

The following examples demonstrate that the new receding horizon control strategy pro-

vides trajectories that are close to time-optimal and avoid entrapment, while maintaining

computational tractability.

2.5.1 Avoidance of Entrapment

In order to test the performance of the improved cost penalty around concave obstacles, the

improved terminal penalty φ3 was applied to the obstacle field shown in Fig 2-1, and the

resulting trajectories are shown in Fig. 2-4. The new cost function captures the difference

between the distance to the goal and the length of a path to the goal that avoids obstacles,

allowing the receding horizon controller to plan trajectories that reach the goal.

36

φ
3
 as terminal penalty

Fig. 2-4: Trajectories designed using receding horizon controller with φ3 terminal penalty
avoid entrapment. Trajectories start at left and at center, goal is at right. Circles show
trajectory points. N = 12.

2.5.2 Performance

The computational effort required by the receding horizon control strategy is significantly

less than that of the fixed horizon controller because its planning horizon is much shorter.

However, for the same reason, global optimality is not guaranteed. To examine this trade-

off, a set of random obstacle fields was created, and a trajectory to the goal was planned

using both the receding and fixed horizon controllers. The receding horizon controller was

applied several times to each problem, each time with a longer planning horizon. The results

are shown in Fig. 2-5. The extra number of time steps in the receding horizon controller’s

trajectory is plotted as a percentage of the minimum number of steps found using the fixed

horizon controller, averaged over several obstacle fields. The plot shows that, on average,

the receding horizon controller is within 3% of the optimum for a planning horizon longer

than 7 time steps. The average total computation time for the receding horizon controller

is also plotted, showing that the increase in computation time is roughly linear with plan

37

5 10 15 20 25 30
0

1

2

3

4

In
cr

ea
se

 in
 p

la
n

le
ng

th
 fr

om
 th

e

op

tim
al

 p
la

n
to

 th
e

re
ce

di
ng

 h
or

iz
on

 c
on

tr
ol

le
r

(%
)

Number of Steps per Plan

5 10 15 20 25 30
0

50

100

150

200

A
ve

ra
ge

 to
ta

l c
om

pu
ta

tio
nT

im
e

ts
)

Fig. 2-5: The Effects of Plan Length. Increase in arrival time from optimal to that found
by receding horizon controller is plotted with a solid line. Average total computation time
is plotted with a dashed line.

length.

2.5.3 Computation Savings

The effects of problem complexity on computation time were also examined by timing the

fixed and receding horizon controllers’ computation on a 1 GHz PIII computer. The com-

plexity of a MILP problem is related to its number of binary variables. For the fixed horizon

trajectory designer, the number of binary variables required for obstacle avoidance domi-

nates the total number of binary variables as the problem size grows. Four binary variables

are required for every obstacle at every time step, so the product of the number of time

steps required to reach the goal and the number of obstacles was chosen as a metric of com-

plexity. A series of obstacle fields was created with increasing values of this metric, and a

trajectory through each obstacle field was planned using both the receding and fixed horizon

controllers. Unlike the previous test, the receding horizon controller was applied here with

38

0

100

200

300

400

500

600

210 420 686 1170 1628 2366 2850 3638

Complexity (number of obstacles x number of steps to reach goal)

C
um

ul
at

iv
e

C
om

pu
ta

tio
n

T
im

e
(s

)

Fixed Horizon
median computation
time

Receding Horizon
average cumulative
computation time

Fig. 2-6: Cumulative Computation Time vs. Complexity

a fixed-length planning horizon. The optimization of each plan was aborted if the optimum

was not found in 600 seconds.

The results of this test are shown in Fig. 2-6, which gives the average cumulative com-

putation time for the receding horizon controller, and the median computation time for the

fixed horizon controller. The median computation time for the fixed horizon controller was

over 600 seconds for all complexity levels over 1628. At several complexity levels for which

its median computation time was below 600 seconds, the fixed horizon controller also failed

to complete plans. The cumulative time required by the receding horizon controller to design

all the trajectory segments to the goal was less than this time limit for every problem. All

but the first of its plans can be computed during execution of the previous, so the aircraft

can begin moving towards the goal much sooner.

Next, an extremely large problem, with a complexity of 6636, was attempted with the

39

Fig. 2-7: Sample Long Trajectory Designed using Receding Horizon Controller. Executed
trajectory (plan plus velocity disturbance) shown with thick line, planned trajectory seg-
ments shown with thin lines.

receding horizon controller. It successfully designed a trajectory that reached the goal in

316 time steps, in a cumulative computation time of 313.2 seconds. This controller took

2.97 seconds on average to design one trajectory segment. The fixed horizon controller

could not solve this problem in 1200 seconds of computation time. A trajectory through

the same obstacle field was also planned in the presence of velocity disturbances, causing

the followed trajectory to differ significantly from each of the planned trajectory segments.

By designing each trajectory segment from the state that is actually reached, the receding

horizon controller compensates for the disturbance. The executed trajectory and planned

trajectory segments are shown in Fig. 2-7.

2.5.4 Hardware Testing Results

The receding horizon controller was also used to plan a trajectory for a hardware testbed

system. This system was made up of radio-controlled trucks equipped with GPS for state

estimation [20]. This trajectory was provided as a reference to a controller on board each

truck, and is plotted along with the trajectory that the vehicles actually followed in Fig. 2-

8. The truck successfully avoided the obstacles and reached its goal. Due mainly to a time

delay between state estimation and steering actuation, the reference trajectory is not followed

exactly. However, the reference’s selected minimum radius of curvature is clearly larger than

the vehicle’s turning radius, indicating that the model of the vehicle dynamics restricts the

formulation to planning maneuvers that are compatible with the vehicle’s turning radius.

40

−25 −20 −15 −10 −5 0 5

−10

−5

0

5

10

15

East

N
or

th

video02

Fig. 2-8: Planned and Executed Trajectories for Single Vehicle. Time steps making up the
planned trajectory are shown with circles. Positions recorded during execution are shown
with solid line. Vehicle starts at right and finishes at left. Note that due to the discretization
of obstacle avoidance, the obstacles were increased to guarantee that the original obstacles
were not penetrated between time steps.

Next, trajectories were planned in a combined optimization for two trucks starting at

opposite ends of an obstacle field. Inter-vehicle collision avoidance was enforced similarly

to obstacle avoidance, but with a prohibited square of size 5m around each vehicle’s time-

varying position, instead of the fixed obstacle rectangle. The executed trajectories are plotted

together with the planning trajectories in Fig. 2-9. This indicates that inter-vehicle colli-

sion avoidance can be enforced by a receding horizon planner which simultaneously plans

trajectories for both vehicles.

2.5.5 Planning with Incomplete Information

The examples presented so far have assumed that the position of all obstacles was known

at the beginning of the trajectory design and execution process. To examine the effects of

41

−25 −20 −15 −10 −5 0 5

−10

−5

0

5

10

15

East

N
or

th

Fig. 2-9: Planned and Executed Trajectories for Two Vehicles. Time steps making up the
planned trajectory are shown with circles. Positions recorded during execution are shown
with solid line. Grey vehicle starts at left, black vehicle starts at right and vehicles exchange
sides. Note inter-vehicle collision avoidance at center.

imperfect obstacle position information, simulations were performed that model a vehicle

which begins with no obstacle information, but detects obstacles when they come within

some range of it. It is assumed that the obstacles do not move. The detection range was

chosen to be longer than the distance that the vehicle could cover over the execution horizon,

to avoid collisions.

A simulation was performed in a relatively simple environment, and the vehicle’s position

and obstacle information is shown in Figs. 2-10 – 2-13. In this simulation, the vehicle takes

an inefficient route, but still reaches the goal because its cost map is updated when new

information is received. This update is performed rapidly, requiring a fraction of the time

required to optimize one trajectory segment.

The long trajectory planning problem of Fig. 2-7 was also attempted with imperfect

obstacle information, and the resulting trajectory to the goal is shown in Fig. 2-14. In this

42

Fig. 2-10: Trajectory Planning with In-
complete Information. At start, location of
one obstacle is known. Detection range is
shown with circle. Goal is at right.

Fig. 2-11: Another obstacle is detected
when it enters the detection range, and the
cost map is updated rapidly.

Fig. 2-12: With cost values updated, the
lower left corner of the intervening obstacle
is selected as xvis.

Fig. 2-13: The resulting trajectory to the
goal.

43

Fig. 2-14: Sample Long Trajectory in Uncertain Environment. The undetected obstacles
are shown with lighter shading, with the concave obstacle modeled as a set of overlapping
rectangular obstacles. In top figure, the vehicle is about to enter the concavity because it
has not yet detected the obstacle forming the concavity’s far end. When it does so, the cost
map is updated to reflect the fact that points inside the obstacle are further along a flyable
path from the goal than points at its opening. In the middle figure, the vehicle takes an
inefficient route around obstacles near the goal by attempting to pass below an obstacle,
without knowledge of an additional blocking obstacle below it. The final trajectory and all
obstacles are shown in the bottom figure.

example, the vehicle temporarily enters the concavity behind an obstacle, but leaves it when

it detects that the concavity is closed at its far end.

These examples indicate that the trajectory planner can take a longer route than nec-

essary when it has incomplete obstacle information. However, the cost map is updated to

capture new obstacle information, and the vehicle eventually reaches the goal.

44

2.6 Conclusions

This chapter presents a new algorithm for designing long-range kinodynamically constrained

trajectories for fixed-wing UAVs. It is based on MILP optimization within a receding hori-

zon control framework. A novel terminal penalty for the receding horizon optimization is

computed by finding a cost map for the environment, and connecting the aircraft trajectory

over the planning horizon to the cost map. The resulting MILP problem can be solved

with commercially available optimization software. Simulation results show that the reced-

ing horizon controller plans trajectories whose arrival times are within 3% of optimal, and

that the controller can successfully solve complex trajectory planning problems in practical

computation times. This controller avoids avoids entrapment in concavities, even when in-

complete obstacle location information is available. The receding horizon trajectory designer

has been test on a hardware testbed, and planned trajectories that were compatible with

the dynamics of the trucks.

45

46

Chapter 3

Stable Receding Horizon Trajectory

Design

In general, the cost function of a receding horizon controller’s optimization problem estimates

the cost-to-go from the selected terminal state to the goal. While the receding horizon

controller reoptimizes the trajectory before the system reaches the end of the plan, it is

possible for some properties of the path associated with the cost-to-go estimate to appear

in the executed trajectory. If the associated path does not avoid obstacles, the vehicle

can become entrapped behind concave obstacles [29]. The trajectory designer presented in

Chapter 2 prevented entrapment by using the length of a path to the goal made up of straight

line segments as its cost-to-go. While this planner provides good results in practice, it is not

infallible. The vehicle cannot follow the heading discontinuities where the line segments join,

so the path associated with the cost-to-go estimate is not dynamically feasible. Normally,

replanning is able to find a dynamically feasible path around the line segment path which the

vehicle can follow to the goal. However, the trajectory design problem can become infeasible

when the positioning of nearby obstacles leaves no dynamically feasible trajectory from the

state that is reached. In this case, the receding horizon controller finds no path for the

vehicle to follow, and collision with obstacles is unavoidable without violating the aircraft

dynamics.

47

This chapter modifies the trajectory planner to guarantee that it is stable, and reaches

the goal in bounded time. It does so by evaluating the cost-to-go estimate along a kinody-

namically feasible path to the goal. This trajectory designer is shown to be computationally

tractable, to be capable of designing trajectories in highly constrained environments where

the unstable formulation presented in Chapter 2 is incapable of reaching the goal, and to

result in minimal increase in path length over the trajectories found by that planner. The rel-

evant receding horizon control stability analysis techniques are summarized in Section 3.1,

then a basic stability proof for a modified trajectory designer is given in Section 3.2. A

method for computing a suitable cost map is described in Section 3.2.2, and a MILP form

of the trajectory designer’s optimization problem is shown in Section 3.3. While this opti-

mization problem is involved, it is necessary to completely guarantee the intuitive conditions

for stability presented in Section 3.1. Finally, trajectory design examples are shown in Sec-

tion 3.4.

3.1 Review of Stability Analysis Techniques

In addition to Ref. [1], the survey paper Ref. [7] gives a summary of techniques for analyzing

the stability of discrete-time receding horizon controllers. The receding horizon controllers

studied in this paper all solve optimization problems with the goal of driving the system to

the origin. The optimization problems constrain the system to reach a desired final region

at the end of the planning horizon.

Two benefits are gained through this approach: i) computational effort is saved by form-

ing plans that do not necessarily reach the goal, and can therefore be shorter; and ii) the

cost of control is reduced by allowing successive optimization solutions to delay reaching the

goal until the end of the receding planning horizon. By proving that the controller reaches

the origin in bounded time, it is guaranteed that the controller does not delay completion

forever, and that the origin itself is eventually reached, rather than just the final region.

The common elements that have been useful for proving the stability of many different

48

receding horizon controllers are a positive definite state and control penalty �(x(i),u(i)), a

positive definite terminal penalty F (x(N)), and a terminal constraint set Xf . The optimiza-

tion problem is

min
u

VN(x) =
N−1∑
i=0

�(x(i),u(i)) + F (x(N))

x+ ≡ x(i+ 1) = f(x(i),u(i))

u(i) ∈ U

x(i) ∈ X

x(N) ∈ Xf ⊂ X (3.1)

Where x(i + 1) = f(x(i),u(i)) corresponds to the system dynamics, U represents the set

of admissible control inputs, X represents the set of admissible states, and N ≥ 1. The

optimal solution of this program at state x results in a state trajectory Xo(x) and control

trajectory Uo(x) with associated minimum cost V O
N (x). Let x

o(i;x) be the ith state reached

by applying Uo(x) starting from x, and let uo(i;x) be the ith control input applied.

References [1] and [7] assume that the first control input uo(0;x) from Uo is executed

before the optimization is performed again. The notation φ∗(x,u) represents the change in

some function φ between state x(i) and x(i+ 1),

φ∗(x(i),u(i)) = φ(f(x(i),u(i)))− φ(x(i))

The sufficient condition for stability is

V O∗
N + �(x,uo(0;x)) ≤ 0 (3.2)

This condition states that as the optimization is repeatedly solved over a receding horizon, the

optimal value of the cost function must decrease by at least the first state and control penalty

�(x,uo(0;x)). If this condition is satisfied, then the system reaches the origin eventually.

This is because the optimal cost V O
N is lower-bounded by 0, and decreasing by at least

49

�(x,uo(0;x)). Therefore, V O
N must converge to some value. When it converges, V

O∗
N → 0, so

�(x,uo(0;x))→ 0, which is satisfied only if x→ 0.

Ref. [7] provides four conditions that guarantee that Eqn. 3.2 holds. While Eqn. 3.2

is a powerful general statement, these conditions are easier to evaluate in the context of

a particular controller. The conditions in Eqns 3.4 – 3.6 refer to a terminal control law

u = κf (x), which can be used when the system is within Xf . The conditions are

Xf ⊂ X , Xf is closed, 0 ∈ Xf (3.3)

κf (x) ∈ U , ∀ x ∈ Xf (3.4)

f(x, κf (x)) ∈ Xf , ∀ x ∈ Xf (3.5)

[F ∗ + �](x, κf(x)) ≤ 0, ∀ x ∈ Xf (3.6)

Eqn. 3.3 specifies that the origin must be in the desired terminal region, and that this region

must satisfy the state constraint. Eqn. 3.4 specifies that κf must produce admissible control

inputs, and Eqn. 3.5 specifies that once the region Xf is entered, κf must keep the system

within it. Eqn. 3.6 specifies that the terminal controller must make the terminal penalty

decrease by at least the state and control penalty associated with the terminal point x

between x and x+. While κf could be used within Xf , its only purpose is to assist in the

proof, and it is never actually used to control the system.

The connection between these conditions and Eqn. 3.2 will be shown now. Assume that

the optimization of Eqn. 3.1 is solved at x, resulting in a trajectory with terminal state

xo
f = xo(N ;x) and optimal cost V O

N (x). If the first resulting control input is applied so that

state x+ is reached, and the conditions of Eqn. 3.3 – 3.6 are met, then a feasible control

trajectory of length N can be constructed with x+ as its starting point using κf(x
o
f) as

Ũ(x) = {uo(1;x), . . . ,uo(N − 1;x), κf(x
o
f)}

The control trajectory Ũ(x) would result in a terminal state of f(xo
f , κf(x

o
f)). The cost

50

associated with implementing Ũ(x) can be constructed from the previous cost V O
N (x) by

dropping the first state and control penalty �(x, uo(0;x)) and terminal penalty F (xo
f), and

adding the state and control penalty �(xo
f , κf(x

o
f)) and terminal penalty F (f(xo

f , κf (x
o
f)))

associated with using κf(x
o
f).

VN(x
+, Ũ(x)) = V O

N (x)− �(x, uo(0;x))− F (xo
f) + �(xo

f , κf(x
o
f)) + F (f(xo

f , κf(x
o
f)))

VN(x
+, Ũ(x))− V O

N (x) + �(x, uo(0;x)) = F (f(xo
f , κf(x

o
f)))− F (xo

f) + �(xo
f , κf(x

o
f)) (3.7)

By the constraints of Eqns. 3.4 and 3.5, the trajectory associated with Ũ is a feasible solution.

Thus, its associated cost VN(x
+, Ũ(x)) is an upper bound on the optimal cost V O

N (x
+). The

following inequality can be constructed with the left-hand side of Eqn. 3.7

V O
N (x

+)− V O
N (x) + �(x,uo(0;x)) ≤ VN(x

+, ũ(x))− V O
N (x) + �(x, uo(0;x))

V O∗
N + �(x,uo(0;x)) ≤ VN(x

+, ũ(x))− V O
N (x) + �(x, uo(0;x)) (3.8)

The condition of Eqn. 3.6 implies that the right-hand side of Eqn. 3.7 is less than zero

F (f(xo
f , κf(x

o
f)))− F (xo

f) + �(xo
f , κf (x

o
f)) ≡ [F ∗ + �](x, κf (x)) ≤ 0 (3.9)

Substituting Eqns. 3.8 and 3.9 into Eqn. 3.7 gives the sufficient condition for stability of

Eqn. 3.2

V O∗
N + �(x,uo(0;x)) ≤ 0

This shows that if the conditions given in Eqns. 3.3 to 3.6 are satisfied, then the condition

of Eqn. 3.2 is met, and the receding horizon controller is stable.

51

x(N)
xgoal

Execution
Horizon

Planning Horizon

x

Tree segment: feasible by cost map construction

Trajectory over planning horizon
Connecting segment: feasible by terminal constraints

v

w

xci

cccw,j

r
ccw,j

xcj

Fig. 3-1: Resolution Levels of the Stable Receding Horizon Trajectory Designer. The con-
necting segment and tree segment make up the path that κf(x) would follow and guarantee
the feasibility of the trajectory optimization past the planning horizon to the goal.

3.2 Stable Receding Horizon Trajectory Designer

The receding horizon controller stability analysis techniques described above will be applied

to prove that a modified version of the receding horizon controller is stable and reaches the

goal in bounded time. A mixed-integer linear program form of this controller’s optimization

problem has been implemented in AMPL and is presented in Section 3.3.

The operation of the stable receding horizon trajectory planner is shown schematically in

Fig. 3-1. Before the trajectory optimization is performed, a tree of kinodynamically feasible

paths and their lengths is found from a discrete set of NC states [X
T
c ẊT

c]
T to the goal. In the

trajectory design phase, a detailed trajectory segment over the planning horizon is optimized

using a discrete-time model of the vehicle dynamics. The set Xf of allowed terminal states

52

is chosen as those states from which κf can follow a simple “connecting segment” from

[x(N)T ẋ(N)T]T to join with the tree of feasible paths. The connecting segment connects

with constant heading from x(N) to w along v, then turns at the vehicle’s maximum rate

over a path from w to [xT
ci ẋT

ci]
T ∈ [XT

c ẊT
c]

T . The vehicle can then follow a “tree segment”

from the pre-computed set to the goal.

The connecting segment, from x(N) to a state of known cost, is discussed in Section 3.2.1.

The selection of the states of known cost, and the construction of the tree of trajectories, is

discussed in Section 3.2.2. The stability proof of the overall controller is given in Section 3.2.3.

3.2.1 Terminal Constraint Set

The definition of the terminal constraint set makes use of two circles centered at ccw,i and

cccw,i for every one of the NC states of known cost [x
T
ci ẋT

ci]
T , as shown in Fig 3-1. These

circles model the clockwise and counter-clockwise turning path of the vehicle up to [xT
ci ẋ

T
ci]

T .

The circles have a radius of ρ, the vehicle’s turning radius at maximum speed vmax. The

circle centers ccw,i and cccw,i are positioned so that xci is on their circumference, and oriented

so that ẋci is tangent to both.

∀ i ∈ C :

ccw,i = xci +
ρ

vmax




ẋci2

−ẋci1


 (3.10)

cccw,i = xci +
ρ

vmax



−ẋci2

ẋci1


 (3.11)

where C = Ccw ∪ Cccw are the circle centers, and C = {1 . . .NC}. The set Xf is those

which have a velocity tangent to one of the turning circles. This property guarantees that

a connecting segment exists from all states in Xf to a state in [X
T
c ẊT

c]
T , and is expressed

through constraints on the straight portion v of the connecting segment. The connecting

segment joins the terminal state [x(N)T ẋ(N)T]T to the point w = ci + r on the turning

53

circle as shown in Fig. 3-1. The vector v is constrained to be in the direction ẋ(N)/‖ẋ(N)‖

of the terminal state’s velocity and perpendicular to r.

∀(x, ẋ) ∈ Xf , ∃ ci ∈ C, r,v :

x+ v = ci + r

v = V
ẋ

‖ẋ‖ (3.12)

v · r = 0 (3.13)

‖r‖ = ρ

where V is a scalar. All points on turning circles, including the states of known cost xci,

are in Xf and therefore satisfy the invariance constraint of Eqn. 3.5 over the turning circles.

Guaranteeing obstacle avoidance over the connecting segment will be discussed in section 3.3.

3.2.2 The Tree of Trajectory Segments

As described above, the receding horizon controller’s optimization problem makes use of a

tree of kinodynamically feasible trajectories from a limited set of states to the goal. An

example of a such a tree is shown in Fig. 3-2. This section presents an algorithm to find the

tree.

As discussed in Section 2.4.2, minimum distance trajectories tend to connect the vehicle’s

starting position, vertices of obstacles, and the goal. These points are chosen as the positions

Xc of the states of known cost. The velocities Ẋc of the states of known cost have magnitudes

equal to the vehicle’s maximum speed vmax. Their direction is chosen, as the tree is being

constructed, to follow the next segment in the tree, so that all states on the trajectory tree

satisfy Xf . Once the velocity ẋci of a state of known cost is chosen, the circle centers ccw,i

and cccw,i are set as specified in Eqns. 3.10 and 3.11. The distance di from the i
th state of

known cost xci to the goal is also given by this algorithm.

Algorithm 2 is applied to grow the tree of kinodynamically feasible paths from all states

54

x(N)

Execution
Horizon

Planning Horizon

x

xgoal

Tree segments

Trajectories over planning horizon
Connecting segments

Fig. 3-2: An example of a tree of kinodynamically feasible trajectories to the goal. For
each leaf of the tree, a trajectory over the planning horizon and a connecting segment is
also shown in grey. The optimal position for x(N) minimizes the length of the associated
connecting and tree segments, and is shown in black.

in [XT
c ẊT

c]
T to the goal xgoal. When Make-Path-Tree is called, the desired positions

Xc for the states of known cost are passed in. Make-Path-Tree divides Xc into two sets;

N , whose path to the goal has been fixed, and N̄ , whose path to the goal could still be

improved. At each iteration, the algorithm chooses a state of known cost [xT
ci ẋT

ci]
T to move

from N̄ to N , effectively fixing its path and adding it as a branch to the current tree of

paths. Each position xci ∈ N̄ is then examined.

The routine Find-Connecting-Segment is used to find a trajectory [XT ẊT]T from

xci to state [x
T
cj ẋT

cj]. As shown in Fig. 3-3, this trajectory has the properties of a connecting

segment: it maintains a speed of vmax while following a tangent to the turning circle centered

at ccw,j or cccw,j, then turns around this circle to reach [xcj ẋcj]. If this path does not penetrate

55

algorithm (Ccw,Cccw, Ẋc,d) = Make-Path-Tree(Xc,Xobst,xgoal, ẋgoal)
d1 := 0; \\ initialize data for goal
xc,1 := xgoal; ẋc,1 := ẋgoal;
ccw,1 := xc,1 + ρ[ẋgoal,2,−ẋgoal,1]

T /vmax; cccw,1 := xgoal,1 − ρ[ẋgoal,2,−ẋgoal,1]
T /vmax;

Set all other costs in d to ∞;
N̄ := Xc;N := ∅;
while N̄ �= ∅ do

Choose the node xj in N̄ with minimum dj

Move xcj from N̄ to N ;
Relax(j, N̄ ,d, Ẋc,Xobst,Ccw,Cccw, ρ, vmax)

end while

procedure Relax(j, N̄ ,d, Ẋc,Xobst,Ccw,Cccw, ρ, vmax)
for all xci ∈ N̄ do
(X, Ẋ) := Find-Connecting-Segment(xci, ccw,j, ccw,j);
∆dij :=Path-Length(X);
if ∆dij + dj < di and ∀ x ∈ X : x /∈ Xobst then
di := ∆dij + dj; \\ shorten path by going through j
ẋci := ẋ0; \\ direct velocity to head down next segment in path
ccw,i := xci + ρ[ẋ12,−ẋ11]

T/vmax; cccw,i := xci + ρ[−ẋ12, ẋ11]
T/vmax;

end if
end for

Algorithm 2: Constructing the Feasible Path Tree: This is a modified form of Dijkstra’s
Algorithm (see Alg. 1), in which costs are found at the same time as paths are grown to the
goal.

an obstacle, and passing through xcj shortens the path from xci to the goal, then the distance,

velocity, and circles associated with xci are updated. The velocity ẋci is always chosen as

the first velocity ẋ0 from the connecting segment.

By this construction, all states on the tree of trajectory segments are also in Xf , because

they either have a velocity tangent to a turning circle or are on a turning circle. Also, by

this construction the end of any connecting segment is continuous in position and velocity

with the start of a tree segment. These properties will be exploited in the next section to

prove the stability of the controller.

56

xci

cccwj

ccwj

xcj

xcj

Fig. 3-3: The Trajectory Returned by Find-Connecting-Segment. This routine con-
nects the xci to the state [x

T
cjẋ

T
cj]

T . First, it finds the shortest line through xci that is tangent
to the turning circle at ccw,i or cccw,i and compatible with the turning direction of the circle.
The turning path from the tangent to [xT

j ẋT
j]

T is then added.

3.2.3 Stability Analysis

The stable receding horizon controller solves the optimization problem given in Eqn. 3.1,

with the coordinate frame chosen with xgoal at the origin. The tree of trajectory segments

is rooted at the goal, satisfying the constraint of Eqn. 3.3. If the trajectory optimization is

feasible the first time it is performed, the constraints on x(N) guarantee that the connecting

segment and tree segment together provide a trajectory to the goal. This trajectory is made

up of straight segments connecting arcs around turning circles. The turning circles have

radius ||r|| = ρ, the vehicle’s minimum turning radius, so the trajectory is dynamically

feasible. The terminal controller κf is chosen to follow this trajectory, satisfying the control

57

admissibility constraint of Eqn 3.4.

The tree of trajectories is itself made up of connecting segments which fly straight, then

turn onto a state of known cost closer to the goal. Therefore, all points along tree segments

satisfy the terminal constraint set Xf . This satisfies the invariance constraint of Eqn 3.5, and

the next trajectory optimization is guaranteed to have this implicitly constructed trajectory

as a feasible solution.

The terminal penalty F (x) is chosen to be the distance that κf would travel to reach the

goal from x

F (x) = V + ρ|θ|+ di (3.14)

where V is defined in Eqn. 3.12 as the length of the tangent from x(N) to the point w at

which it intersects the circle, |θ| is the magnitude of the angle that the vehicle turns between

w and xci, and di is the length of the kinodynamically feasible path found from xci to the

goal.

The state and control penalty �(x(i),u(i)) is chosen to be the distance that will be covered

over the following time-step, starting at x(i) and applying u(i), so that

�(x(i),u(i)) = F (x)− F (x+) = F ∗(x) (3.15)

With this definition, [F ∗ + �](x, κf(x)) = 0 so the rate of decrease constraint of Eqn. 3.6 is

satisfied as an equality. Since the entire path associated with F (x) is feasible, it is an upper

bound on the length of the path that the optimizing controller will actually follow and F (x)

will decrease by �(x(i),u(i)) at every time-step. This proves this controller is stable, and

will reach the goal in bounded time.

3.3 MILP Formulation of Controller

While the formulation of the receding horizon controller presented in Section 3.2 is provably

stable, it is nonlinear. The optimization problem presented in Section 3.2 includes the

58

xci

ivN px max)(=
Qcw

c

Px(N)

iqcw ρ+=

v

Qccw

Fig. 3-4: The vectors involved in the tangency constraints. The controller simultaneously
chooses the direction for ẋ(N) and a perpendicular direction for w−c from two finite sets of
mutually perpendicular unit vectors. The vector v is also constrained to be in the direction
of ẋ(N).

requirement that the velocity at the end of the planning horizon ẋ(N) be tangent to one of

the turning circles. As given in Eqn. 3.13, this constraint can be written using a dot product

of the decision variables ẋ and r, showing that this constraint is quadratic. Furthermore,

the angle through which the vehicle turns is used in the terminal penalty given in Eqn. 3.14,

but is not available directly.

Because nonlinear optimization is typically far more difficult than linear optimization,

it is desirable to reformulate this controller as a linear optimization problem. This section

presents a version of the receding horizon controller that uses a discretization in order to for-

mulate the controller as a MILP. This discretized version is also stable, and its computational

performance will be discussed in Section 3.4.

59

3.3.1 Tangency Constraint

In section 3.2.1, Eqn. 3.13 used a quadratic term to constrain the terminal velocity to be

tangent to a turning circle. The MILP formulation of the trajectory designer converts this

constraint into a discrete, linear form. The vectors involved in the new constraints are shown

in Fig. 3-4. The controller’s choice of one circle center c from the set C is encoded by the

vectors of binary decision variables bcw and bccw.

c =
∑
i∈C
(bcw,iccw,i + bccw,icccw,i)

∑
i∈C
(bcw,i + bccw,i) = 1

bcw ∈ {0, 1}NC , bccw ∈ {0, 1}NC

The choice of a direction for ẋ(N) from a set P of NP possible unit vectors is encoded with

the vectors of binary decision variables pcw ∪ pccw.

ẋ(N) = vmax

∑
i ∈ P

(pcw,i + pccw,i)pi

∑
i ∈ P

(pcw,i + pccw,i) = 1

pcw ∈ {0, 1}NP , pccw ∈ {0, 1}NP

where P = {1 . . . NP}. To enforce orthogonality, the binary variables pcw ∪ pccw simultane-

ously determine the direction of r = w − c from the set Q = Qcw ∪ Qccw of perpendicular

unit vectors. The set Qcw (Qccw) is constructed so that qccw,i (qccw,i) is the correct direction

for r if the vehicle reaches the clockwise (counter-clockwise) turning circle on a tangent in

the direction pi.

qcw,i =



−pi,2

pi,1




60

qccw,i =




pi,2

−pi,1




The direction for r is selected as

r = ρ
∑

i ∈ P
(pcw,iqcw,i + pccw,iqccw,i)

If a turning circle is chosen from Ccw by setting one of bcw,i = 1, then the optimization

must choose a direction for r from Qcw by setting one of the pcw,j = 1 and similarly for the

counter-clockwise direction. The following constraints are added to enforce this.

∑
j ∈ P

pcw,j =
∑
i∈C

bcw,i

∑
j ∈ P

pccw,j =
∑
i∈C

bccw,i

To enforce tangency, v must be parallel to ẋ(N) and thus perpendicular to the selected

direction for r.

v = c+ r− x(N)

∀ i ∈ P :

v · qcw,i ≤ ε+M(1− pcw,i)

v · qcw,i ≥ −ε−M(1− pcw,i)

v · qccw,i ≤ ε+M(1− pccw,i)

v · qccw,i ≥ −ε−M(1− pccw,i)

where ε is a small positive number and M is a large positive number. The tangency con-

straints are enforced for qcw,i or qccw,i if pcw,i = 1 or pccw,i = 1, and are relaxed otherwise.

These constraints guarantee that the velocity vector ẋ(N) is tangent to one of the turning

circles. Obstacle avoidance constraints (Eqns. 2.4 and 2.5), the dynamics model (Eqn. 2.6),

61

the velocity limit (Eqn. 2.7), and the control force limit (Eqn. 2.8) are also enforced in this

formulation.

Obstacle avoidance over the tangent portion of the connecting segment is enforced by

constraining a discrete set of interpolating points along v to lie outside of all obstacles as

given in Eqn. 2.13. Over the turn from w to the selected state of known cost xc, constraints

on the selected direction for r must be added to enforce obstacle avoidance. The turning

path from w = ccw,i + ρqcw,j to the state of known cost xc,i is checked before the trajectory

design begins. If the path penetrates any obstacles, then the simultaneous selection of xc,i

and qcw,j is excluded by setting acw,i,j = 0. The following constraints enforce this exclusion:

∀ j ∈ P :

pcw,j ≤
∑
i∈C

acw,i,jbcw,i

pccw,j ≤
∑
i∈C

accw,i,jbccw,i

3.3.2 Selection of Unit Vectors in P

This discussion has not yet addressed the selection of particular directions for the unit vectors

pi ∈ P . There is some freedom in this choice. It is desirable minimize the number NP of unit

vectors in P , since each of the directions requires two binary variables to be added to the

program, and the complexity of MILPs grows non-polynomially with the number of binary

variables they include. However, the terminal state x(N) must be positioned on one of the

tangent lines corresponding to the available unit vectors. If too few unit vectors are used,

it might not be possible for the vehicle to reach any tangent line at the end of its planning

horizon, resulting an infeasible program.

It is straightforward to avoid this by adding a unit vector to P . After the tree of trajectory

segments is found as described in Section 3.2.2, and before each trajectory optimization is

performed, a connecting segment from the vehicle’s current state [x(0)T ẋ(0)T]T to a state

of known cost [xT
ci ẋ

T
ci]

T is found using a modified version of the routine Find-Connecting-

62

x(0)
x(0)

xci

xci

Fig. 3-5: The Trajectory between Two States Returned by Find-Connecting-Segment.
This routine connects [x(0)T ẋ(0)T]T to [xT

ci ẋT
ci]

T . First, it finds the shortest line that is
tangent to turning circles for both states, and compatible with the turning direction of the
circles. The turning paths from [x(0)T ẋ(0)T]T to the tangent, and from the tangent to
[xT

ci ẋT
ci]

T are then added.

Segment. An example of such a path is shown in Fig. 3-5. The state of known cost is

chosen to minimize the associated total path length. The state [x(N)T ẋ(N)T]T is found

that would be reached at the end of the planning horizon if the connecting segment and

the following tree segment were followed. By adding the vehicle’s heading ẋ(N)/‖ẋ(N)‖

to P , a feasible heading is guaranteed to be available to the trajectory optimization. If

Find-Connecting-Segment cannot find a path to a state of known cost before the first

optimization is performed, then the trajectory design problem is infeasible. After the first

optimization is solved, Find-Connecting-Segment will always find a path to a state of

known cost. This addition guarantees that the optimization program remains feasible, and

63

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ

Fig. 3-6: Comparison of Upper Bounding Function ‖ˆ̇x(N)− ˆ̇xc‖1 to |θ|. ‖ˆ̇x(N)− ˆ̇xc‖1 is
shown with solid line, |θ| is shown with dashed line.

adding more unit vectors may make it possible to find solutions of lower cost.

3.3.3 Arc Length Approximation

In addition to enforcing the tangency requirement, the stable controller requires a nonlinear

relationship to exactly evaluate the arc length ρ|θ| covered by the vehicle as it traverses the

turning circle. This arc length contributes to the total length of the trajectory followed to

the goal, so it must be included in the cost function.

The discretized stable controller replaces exact evaluation of |θ| in Eqn. 3.14 with an

upper bound |θ|′ on |θ| that is valid whenever |θ| ≤ π/2. By using an upper bound, the

convergence constraint of Eqn. 3.6 is maintained.

|θ| is the magnitude of the angle between the vehicle’s heading at the start of the turn,
ˆ̇x(N) = ẋ(N)/vmax, and the vehicle’s heading at the end of the turn, ˆ̇xc = ẋc/vmax. Fig. 3-6

shows that the one-norm ‖ˆ̇x(N)− ˆ̇xc‖1 provides an upper bound on |θ| whenever |θ| ≤ π/2.

64

This can also be established analytically by considering, without loss of generality, the case

where ˆ̇x(N) = [1 0]T . Then

ˆ̇xc =



cos(θ)

sin(θ)




‖ˆ̇x(N)− ˆ̇xc‖1 = | cos(θ)− 1|+ | sin(θ)|

Over the range 0 ≤ θ ≤ π/2

‖ˆ̇x(N)− ˆ̇xc‖1 = − cos(θ) + 1 + sin(θ)
d

dθ
(‖ˆ̇x(N)− ˆ̇xc‖1) = sin(θ) + cos(θ) ≥ 1 ≥ dθ

dθ
(3.16)

The first inequality is true by the triangle inequality. At θ = 0, ‖ˆ̇x(N)− ˆ̇xc‖1 = 0, and

Eqn. 3.16 shows that ‖ˆ̇x(N)− ˆ̇xc‖1 increases faster than θ over 0 ≤ θ ≤ π/2, so ‖ˆ̇x(N)− ˆ̇xc‖1

must be greater than θ over this range. ‖ˆ̇x(N)− ˆ̇xc‖1 is symmetric about the θ = 0 axis

because

‖ˆ̇x(N)− ˆ̇xc‖1 = | cos(θ)− 1|+ | sin(θ)| = | cos(−θ)− 1|+ | sin(−θ)|

Therefore, ‖ˆ̇x(N)− ˆ̇xc‖1 must also be greater than |θ| for −π/2 ≤ θ ≤ 0. This proves that

‖ˆ̇x(N)− ˆ̇xc‖1 is an upper bound on |θ| over |θ| ≤ π/2, as required.

The following constraints are added to the discretized controller to evaluate |θ|′ ≥

‖ˆ̇x(N)− ˆ̇xc‖1 ≥ |θ|

|θ|′ ≥ (ˆ̇x(N)1 − ˆ̇xc1) + (ˆ̇x(N)2 − ˆ̇xc2)

and |θ|′ ≥ (ˆ̇x(N)1 − ˆ̇xc1)− (ˆ̇x(N)2 − ˆ̇xc2)

and |θ|′ ≥ −(ˆ̇x(N)1 − ˆ̇xc1) + (ˆ̇x(N)2 − ˆ̇xc2)

and |θ|′ ≥ −(ˆ̇x(N)1 − ˆ̇xc1)− (ˆ̇x(N)2 − ˆ̇xc2)

65

In order to restrict the controller to turn at most π/2 radians, heading directions pcw,i (pccw,i)

that would result in a larger turn to the state of known cost xc,i are also excluded by setting

acw,i,j = 0 (accw,i,j = 0).

3.3.4 Linearized Terminal Penalty

The use of a discrete-time dynamics model and fixed time-step size in the optimization

problem requires one further modification to satisfy the assumptions of the stability analysis

of the receding horizon controller. The stability analysis was performed using the length of

the trajectory that κf(x) would be fly to the goal as the terminal penalty for that state F (x).

Stability was proven assuming that the optimal trajectory, starting at any state, would have

a lower cost than that associated with using κf(x), so that V
O
N (x

+) ≤ VN(x
+, Ũ(x)). Because

the optimization uses a discrete-time model of the aircraft dynamics and a fixed time-step

size, the last trajectory designed by the optimization can only arrive at the goal exactly

at a time-step, while the trajectory followed by κf (x) is defined over continuous time, and

can arrive at the goal at a time that not an integer number of time steps. The optimized

trajectory may therefore arrive a fraction of a time step later than that designed by κf (x),

and may be longer than the trajectory followed by κf (x).

This potential violation of the assumption that V O
N (x

+) ≤ VN (x
+, Ũ(x)) does not greatly

affect the proof that receding horizon controller reaches the goal, since the assumption can

only be violated when the goal is actually reached. This emphasizes that the stability

conditions of Eqns. 3.3–3.6 are sufficient but not necessary for stability. The condition of

Eqn. 3.6 can be satisfied by increasing the terminal penalty by the maximum distance that

can be covered over 1 time step, vmax∆T if the terminal state is not equal to the goal

state. When the goal is actually reached, the terminal penalty decreases by at least the

excess distance covered by the controller during the arrival delay. This is evaluated using

the binary variable bgoal, which is one only if the goal is reached. The linearized terminal

66

penalty is then

F (x) = L(v) + ρ|θ|′ +
∑
i∈C
(bcw,i + bccw,i)di + (1− bgoal)vmax∆T

where L(v) approximates the two-norm of the vector v by taking the maximum value of its

projection onto a series of unit vectors, ∆T is the time step size, and bgoal is evaluated using

the same constraints given in Eqns. 2.2 and 2.3.

3.4 Simulation Results

Simulation results are presented below for the stable receding horizon trajectory designer.

The stable receding horizon trajectory designer is capable of planning near-optimal trajec-

tories in highly constrained environments, and does so with computational effort that is

comparable to that of the unstable trajectory designer.

3.4.1 Operation of the Trajectory Designer

Successive trajectory segments designed by the stable trajectory designer are shown in Fig. 3-

7. Although the controller selects a turning circle as part of every solution, it does not neces-

sarily execute a trajectory that follows the circumference of a circle because the connecting

segment that follows the suboptimal path is beyond the executing horizon, and the controller

can replan it with new turning circles available before it is executed. This emphasizes that

despite the sub-optimality of the path that is implicitly constructed from tangent lines and

turning circles, the optimality of the executed trajectory is not limited to this construction.

The tangent lines and turning circles simply provide a straightforward geometric construc-

tion of a feasible path to the goal. The stable receding horizon trajectory planner took 58.9

seconds to design this trajectory, and arrived at the goal in 36 steps.

67

Fig. 3-7: Plans of the Stable Trajectory Designer. Successive trajectory segments designed
by the stable trajectory designer are shown. Starting point is at left, goal is at right. The
thick line shows executed steps, the thin line shows planned steps, and the dashed line shows
v. The terminal point x(N) is shown with •, and w is shown with ∗.

3.4.2 Trajectory Design in Highly Constrained Environments

As described in Section 3.2, there is always an implicitly constructed kinodynamically feasible

path from the terminal state x(N) chosen by the stable receding horizon designer to the goal.

68

Fig. 3-8: Trajectory Examples in Highly Constrained Environment. Start is at center, goal
is at right. Top row: kinodynamically feasible trajectories from starting point to goal, found
during trajectory tree construction. Top left shows tree for vehicle with turning radius
ρ = 0.5, top right corresponds to ρ = 6. Bottom row shows trajectories planned given
ρ = 6. Bottom left is planned using unstable receding horizon trajectory planner. Note that
optimization problem becomes infeasible before the goal is reached. Bottom right is planned
with stable receding horizon controller: note that narrow path through obstacles is ruled out
by trajectory tree construction and a longer, but kinodynamically feasible, path is actually
followed.

69

Table 3.1: Cumulative Solution Times for Long Trajectories

Trajectory Design Without Initial Guess With Initial Guess
Formulation Sol’n. Time (s) Num. Steps Sol’n. Time (s) Num. Steps
Unstable 136.2 160 91.45 160
Stable 168.2 161 116.8 161

This prevents the designer from forming a plan that relies on passing through a series of gaps

between obstacles past the planning horizon that is kinodynamically infeasible.

An obstacle field with such a series of gaps is shown in figure 3-8. The unstable receding

horizon trajectory planner is not prevented from selecting this path past the planning horizon,

and does so because the narrow gap provides the shortest straight-line path to the goal. The

same straight line path would be found in the construction of the kinodynamically feasible

path to the goal for a vehicle with turning radius ρ = 0. However, if the vehicle’s minimum

turning radius is sufficiently larger than 0, it cannot pass through the same series of gaps

and the trajectory design problem becomes infeasible. If a vehicle actually followed this path

as it was being constructed, it would collide with an obstacle after this point.

3.4.3 Design of Long Trajectories

The stable receding horizon controller is guaranteed to reach the goal if its first optimization

problem is feasible, but this controller’s MILP formulation requires more binary variables

than that of the unstable trajectory designer. The computational impact of this increase was

examined by comparing the solution times of both controllers with equal planning horizons

for a very long trajectory.

In order to shorten the solution time, candidate trajectory solutions were provided for

each optimization problem that was solved. Starting the branch-and-bound search procedure

with a lower upper bound on the optimal cost allows more of the search space to be pruned

because its linear relaxation has a cost higher than the upper bound, shortening the search.

In the case of the unstable receding horizon controller, the candidate trajectory was

70

Fig. 3-9: Tree of Trajectory Segments for Long Trajectory. This tree of trajectory segments
was produced by the stable receding horizon controller while solving the same trajectory
design problem as shown in Fig. 2-7.

Fig. 3-10: Sample Long Trajectory Designed by Stable Controller.

constructed by reusing the unexecuted trajectory points from the previous solution, and

replacing the executed steps by extrapolating along the line of visibility to the next state

of known cost. The candidate trajectory for the stable receding horizon controller was

constructed by reusing unexectued steps, and choosing trajectory points along the connecting

and tree segments to the goal. Both of these procedures can be executed very rapidly. These

candidate solutions were feasible more often for the stable controller than for the unstable

controller, since there can be a sharp turn between the last state x(N) of the previous

unstable controller’s trajectory and the line of visibility, while the stable controller’s terminal

heading was guaranteed to be the same as that of the connecting segment.

The computation times for both formulations are given in Table 3.1, and the stable

controller’s tree of trajectories and solution is shown in Fig. 3-10. The trajectories found

with and without providing candidate solutions were almost identical. These results show

that the stable trajectory designer takes 23.7% longer than the unstable trajectory designer,

and that the length of the trajectory planned by the stable controller was only 1 step longer

than that designed by the unstable controller.

71

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
Decrease in Terminal Penalty
Max. Possible State Penalty

Fig. 3-11: Rate of Decrease of Stable Controller’s Terminal Penalty. The decrease in
terminal penalty exceeds the state penalty when a turn is executed because an upper bound
on the turn’s arc length is included in the terminal penalty.

3.4.4 Rate of Decrease of Terminal Penalty

The analysis of section 3.2 shows that a terminal controller κf (x) exists which satisfies the

constraint of Eqn. 3.6. This constraint specifies that as a series of trajectories are designed,

each terminal cost must be less than the previous by at least the previous state and control

penalties over the execution horizon. The state and control penalty was chosen as the

distance that would be covered by κf(x) over the execution horizon of the previous plan.

Since the constraint of Eqn. 3.6 is satisfied, the optimizing controller should also be able

to design trajectories whose terminal cost decreases at least the distance that κf(x) would

follow. This property was verified by solving a series of optimization problems to plan a

trajectory to the goal, and recording the actual decrease in the terminal penalty. This

decrease is plotted in Fig. 3-11, and is compared to the maximum distance that κf(x) could

72

cover over the execution horizon. In each case the decrease in terminal penalty was verified

to be greater than the maximum distance that κf (x) could cover. Since the terminal penalty

is an over bound on the distance to the goal, and its rate of decrease is bounded from below,

the controller must reach the goal in bounded time.

3.5 Conclusions

This chapter presents a stable receding horizon trajectory designer. Its stability is guaranteed

by constraints that specify that each time a trajectory segment is optimized, a kinodynam-

ically feasible trajectory exists past the extent of the planning horizon to the goal. This

trajectory provides the next optimization with a feasible solution, and the stability of the

controller is guaranteed. Computational results show that the stable trajectory designer is

capable of designing trajectories through highly constrained obstacle fields, while requiring

computation time that is modestly longer than that of the unstable controller. In less con-

strained environments, the stable receding horizon controller does not plan trajectories that

are significantly longer than those of the unstable controller.

73

74

Chapter 4

Minimum Time Allocation

4.1 Introduction

Chapters 2 and 3 presented techniques for performing trajectory design. Before this can be

performed, the position of the UAV’s goal must be assigned. A sequence of goals for each

UAV can be found by solving an allocation problem which divides the fleet’s tasks amongst

its members. However, many common choices for objectives to optimize when making this

allocation are a function of the paths that each UAV would take to its goal, so the allocation

problem relies on the other’s result. These problems are therefore coupled, with each relying

on the result of the other. This can be handled by designing trajectories for all possible

allocations, then choosing the detailed trajectories that minimize the cost. However, each

trajectory design problem is computationally demanding. Exactly designing all but a small

set of trajectories is impractical, so another approach is required.

This chapter presents an approach to solving the allocation and trajectory design prob-

lems which partially decouples them to make their solution computationally tractable, while

maintaining the essential aspects of the coupling in order to approach optimality. The ap-

proach presented in this chapter is applied to find minimum completion time solutions to

the allocation problem. Completion times for various allocation options are estimated using

path approximations. These path approximations can be constructed using the joined line

75

segment path approximations that were applied in Chapter 2, or the kinodynamically feasi-

ble paths presented in Chapter 3. Joined line segment paths are presented in this chapter.

This approach distributes the computational effort of some steps between parallel processing

platforms to improve the solution time. This partially-decoupled approach is shown to yield

coordinated mission plans that are very close to the optimal solution [24].

The allocation problem is formulated as a MILP problem. This formulation provides the

ability to include more complex constraints such as capability constraints, which allow only

a subset of the fleet to visit particular waypoints, and constraints which allow waypoints

to be visited only in relative or absolute time windows. The resulting MILP problems can

be formulated in AMPL [9] and solved readily using commercially available software such

as CPLEX [10]. The combination of the approximate cost algorithm and task allocation

formulation presented in this chapter provides a flexible and efficient means of assigning

multiple objectives to multiple vehicles under various detailed constraints.

This chapter will define the allocation problem, then present a cost estimation algorithm.

This is followed by a formulation of the allocation problem. A series of allocation problems is

presented that demonstrate the effects of adding constraints. Results are them presented to

evaluate the effects of the partial decoupling on performance and computational tractability.

4.2 Problem Formulation

The algorithm described here assumes that a set of tasks has been identified which must

be performed by the team. The team is made up of NV UAVs with known starting

states and maximum velocities. The starting state of UAV v is given by the vth row

[x0v y0v ẋ0v ẏ0v] of the matrix S0, and the maximum velocity of the UAVs is given

vmax. The waypoint locations are assumed to be known, and the position of waypoint w

is given by the wth row [Bwx Bwy] of the matrix B. The application of the algorithms

presented in this chapter to No Fly Zones that are bounded by polygons is straightforward,

but the case where the polygons are rectangles will be presented here for simplicity. The

76

location of the lower-left corner is given by (Zj1, Zj2), and the upper-right corner by (Zj3, Zj4).

Together, these two pairs make up the jth row of the matrix Z. Finally, the UAV capabilities

are represented by a binary capability matrix K. The entry Kvw is 1 if vehicle v is capable

of performing the tasks associate with waypoint w, and 0 if not.

This algorithm produces a trajectory for each vehicle, represented for the vth vehicle by a

series of trajectory points x(v, i) ∈ R2 : i = 1, 2, . . . , tv, where tv is the time at which aircraft

v reaches its final waypoint. The finishing times of all vehicles make up the vector t.

This work is concerned with coordination and control problems in which the cost is a

function of the resulting trajectories. This is a broad category of coordination and control

problems, and includes costs that involve completion time or radar exposure. While a cost

function has been chosen that penalizes both the maximum completion time and the average

completion times over all UAVs, the approach presented here can be generalized to costs that

involve other properties of the trajectories. The cost used in this chapter can be written as

t̄ = max
v

tv (4.1)

J1(t̄, t) = t̄+
α

NV

NV∑
v=1

tv (4.2)

where α � 1 weights the average completion time compared to the maximum completion

time. If the penalty on average completion time were omitted (i.e., α = 0), the solution

could assign unnecessarily long trajectories to all UAVs except for the last to complete its

mission. Note that, because this cost is a function of the completion time for the entire fleet,

it cannot be evaluated exactly until detailed trajectories have been planned that visit all the

waypoints and satisfy all the constraints. The minimum cost coordination problem could be

solved by planning detailed trajectories for all possible assignments of waypoints to UAVs

and all possible orderings of those waypoints, then choosing the detailed trajectories that

minimize cost function J1(t̄, t), but there are many such possibilities and designing each is

computationally demanding.

77

Find shortest straight line path
for each waypoint permutation

Allocate subtasks optimally

Design detailed UAV trajectories

Check collision avoidance

Compute feasible permutations,
prune

B

A

Fig. 4-1: Task Assignment and Trajectory Planning Algorithm

4.3 The Allocation Algorithm

4.3.1 Overview

Instead planning detailed trajectories for all possible task allocations, the algorithm pre-

sented in this chapter constructs estimates of the finishing times for a subset of the feasible

allocations, then performs the allocation to minimize the cost function evaluated using the

estimates. Next, detailed UAV trajectories are designed, and checked for collisions between

vehicles. The main steps in the algorithm are shown in Fig. 4-1.

First, a list of all unordered feasible task combinations is enumerated for every UAV,

given its capabilities. Next, the length of the shortest path made up of straight line segments

between the waypoints and around obstacles is calculated for all possible order-of-arrival per-

mutations of each combination. The construction of these paths can be performed extremely

rapidly using graph search techniques. The minimum finishing time for each combination is

estimated by dividing the length of the shortest path by the UAV’s maximum speed. Some

78

of the tasks allocations and orderings have completion times that are so high that they can

confidently be removed from the list to reduce the decision space of the optimization, and

solve the allocation problem faster.

With these estimated finishing times available, the task allocation problem can be per-

formed to find the minimum of the estimated costs. Once the optimal task allocation is found

using the estimated completion times, detailed kinematically and dynamically feasible tra-

jectories that visit the assigned waypoints can be planned and checked for collision avoidance

between UAVs [29]. If the minimum separation between UAVs is violated, the trajectories

can be redesigned to enforce a larger separation distance (shown by loop B in Fig. 4-1). If

desired, or if the completion time of the detailed trajectory plan is sufficiently different from

the estimate, detailed trajectories can be planned for several of the task allocations with the

lowest estimated completion times. The task allocation can then be performed using these

actual completion times (shown by loop A in Fig. 4-1).

This strategy also casts the task allocation and detailed trajectory planning problems

in a form that allows parts of the computation to be distributed to parallel platforms, as

shown in Fig. 4-2. The process of estimating costs is independent for each vehicle, so they

can be performed separately. The detailed trajectory design for each vehicle can be similarly

distributed. The parallel platforms could be processors on board the UAVs, or could be

several computers at a centralized command and control facility. Having described how the

steps in the algorithm are related, methods for performing them will be described next.

4.3.2 Finding Feasible Permutations and their Costs

This section presents a detailed description of the process for developing a list of feasible task

assignments, finding approximate finishing times for each task assignment, and pruning the

list. This step accepts the aircraft starting states S0, capabilities K, obstacle vertex position

Z, and waypoint positions B. The algorithm also accepts two upper boundaries that can

help to prune unfavorable permutations: nmax specifies the maximum number of waypoints

that a UAV can visit on its mission, and tmax specifies the maximum time that any UAV can

79

Compute feasible permutations,
prune

Optimal subtask assignment

Check collision avoidance

Est.
cost #1

Est.
Cost. #2

Est.
cost #Nv-1

Est.
cost #Nv

Design
trajectory #1

Design
trajectory #2

Design
trajectory #Nv-1

Design
trajectory #Nv

…

…
A

B

Fig. 4-2: Distributed Task Assignment and Trajectory Planning Algorithm

Fig. 4-3: Visibility Graph and Shortest Paths for the Allocation Problem. Left plot shows
visibility graph and shortest paths between UAV 6 and all waypoints. Center plot shows
shortest path for UAV 6 over one combination of waypoints. Right plot shows shortest paths
for all UAVs over same combination of waypoints

fly on its mission. In order to further reduce the decision space, the algorithm produces, for

each UAV and each combination of nmax or fewer waypoints, only the order in which to visit

the waypoints that gives the shortest finishing time.

The steps in this algorithm are listed in Algorithm 3, and are depicted in Fig. 4-3, in

which a fleet of UAVs (shown with ◦) must visit a set of waypoints (shown with ×). The

first step is to find the visibility graph between the UAV starting positions, waypoints, and

obstacle vertices. The visibility graph is shown in the left plot with grey lines. Next, UAV

6 is considered, and the visibility graph is searched to find the shortest paths between its

80

starting point and all waypoints, as shown in the plot at left with black lines. In the center

plot, a combination of three waypoints has been chosen, and the fastest path from UAV 6’s

starting position through them is shown. The order of arrival for this combination is found by

forming all possible permutations of the unordered combination of waypoints, then summing

the distance over the path associated with each order-of-arrival from UAV 6’s starting point.

The UAV is assumed to fly this distance at maximum speed, and the order-of-arrival with the

shorted associated finishing time is chosen. In the plot at right, the fastest path to visit the

same combination of waypoints is shown for each vehicle. Note that the best order-of-arrival

at these waypoints is not the same for all vehicles.

Pseudocode for this algorithm is given in Alg. 3. It produces three sets of data which

fully describe all permutation of waypoints for all vehicles, and are provided to the allocation

formulation. These are the P, whose element Pdvwp entry is 1 if the d
th destination visited by

permutation p for vehicle v is waypoints w and 0 if not; V, whose Vwvp entry is 1 if waypoint

w is visited by permutation p for vehicle v, and 0 if not; and T, whose Tdvp entry is the time

at which the dth destination on vehicle v’s pth permutation. For permutations of fewer than

nmax waypoints, Tnmaxvp assigned the time that vehicle v reaches its last waypoint. All of

the permutations produced by this algorithm are guaranteed to satisfy the associated UAV’s

capabilities.

In this algorithm, finding the shortest distance between a set of waypoints and starting

points on line 1 would be performed by finding the visibility graph between the points and

vertices of obstacles, then applying a shortest path algorithm, as described in Chapter 2. This

approach applied Dijkstra’s Single Source Shortest Path Algorithm, since only one goal was

considered. Because the distance between all waypoints is required here, the Floyd-Warshall

All-Pairs Shortest Path algorithm [6] is appropriate. Note that the iterations through the

“for loop” between lines 2 and 25 of Algorithm 3 are independent, and can be distributed to

parallel processors. The corresponding matrices from each processor can then be combined

and passed onto the next stage in the algorithm, the task allocation problem.

81

1: Find distance between all waypoint pairs (i, j) as D(i, j) using Z and B;
2: for all UAVs v do
3: p:=1;
4: for all numbers nc of waypoints to visit, nc := 1, . . . , nmax do
5: Find distance d(i) between start point of UAV v, all waypoints i using S0, Z, and B;
6: for all combinations C of nc waypoints that v is capable of visiting do
7: for all permutations i of waypoints [w1, . . . , wnc] in C, with i := 1 . . . nc! do
8: T ′

1i := d(w1)/vmax;
9: P ′

1w1i := 1;
10: for d := 2 . . . nc do
11: if T ′

(d−1)i > tmax then
12: go to next i; \\ Permutation is too long
13: end if
14: T ′

di = T ′
(d−1)i +D(wd−1, wd)/vmax; \\ Cumulative time from start

15: P ′
dwdi = 1;

16: end for
17: Tnmaxi = Tnci

18: end for
19: Vwvp = 1 : ∀ w = [w1, . . . , wnc];
20: imin = argmini T

′
nci; \\ Choose the fastest permutation.

21: Tdvp = T ′
dimin

: ∀ d = [1, . . . , nc];
22: Pdvwp = P ′

dwdi : ∀ d = [1, . . . , nc], ∀ w = [w1, . . . , wnc];
23: p← p + 1;
24: end for
25: end for
26: end for

Algorithm 3: Algorithm for finding shortest paths between waypoints

4.3.3 Task Allocation

The previous section outlined a method of rapidly estimating completion times for individual

vehicles for the possible waypoint allocations. This section presents a method of selecting

which of these assignments to use for each vehicle in the fleet, subject to fleet-wide task

completion and arrival timing constraints.

The basic task allocation problem is formulated as a Multi-dimensional Multiple-Choice

Knapsack Problem (MMKP) [19]. In this classical problem, one element must be chosen

from each of multiple sets. Each chosen element uses an amount of each resource dimension,

and incurs a cost. The choice from each set is made to minimize the cost subject to multi-

82

dimensional resource constraints. In the UAV task allocation problem, the choice of one

element from each set corresponds to the choice of one of the NP permutations for each

vehicle. Each resource dimension corresponds to a waypoint, and a permutation uses 1

unit of resource dimension i if it visits waypoint i. The visitation constraints are then

transformed into constraints on each resource dimension. The completion times are the

costs in this problem. Thus, the overall objective is to assign one permutation (element) to

each vehicle (set) that is combined into the mission plan (knapsack), such that its cost is

minimized and the waypoints visited (resources used) meet the constraint for each waypoint

(dimension). The problem can be written as

min
x

J2 =
NV∑
v=1

NP∑
p=1

Tnmaxvpxvp

subject to
NV∑
v=1

NP∑
p=1

Vivpxvp ≥ wi : ∀ i ∈ {1, . . . , NW}
NP∑
p=1

xvp = 1 : ∀ v ∈ {1, . . . , NV }

(4.3)

where nmax is the maximum number of waypoints that any UAV can visit, Tnmaxvp gives

the completion time of vehicle v’s pth permutation, and xvp is a binary decision variables

equal to 1 if vehicle v performs permutation p, and 0 otherwise. The cost in this problem

formulation minimizes the sum of the times to perform each selected permutation. The first

constraint enforces that waypoint i is visited at least wi times (typically wi = 1). The second

constraint prevents more than one permutation from being assigned to each vehicle. The

MMKP formulation is the basic task allocation algorithm. However, modifications are made

to the basic problem statement to include additional cost considerations and constraints.

4.3.4 Modified Cost: Total Mission Time

The first modification for the UAV allocation problem is to change the cost. The cost in

Eq. 4.2 is a weighted combination of the sum of the individual mission times (as in the

83

MMKP problem) and the total mission time. The new cost is

min
xvp

J3 = t̄+
α

NV

NV∑
v=1

Tnmaxv

Tdv =
NP∑
p=1

Tdvpxvp (4.4)

t̄ ≥ Tnmaxv : ∀ v ∈ {1 . . . NV }

where t̄ selects the maximum completion time of all UAVs. The solution to the task allocation

problem is a set of ordered sequences of waypoints for each vehicle which ensure that each

waypoint is visited the correct number of times while minimizing the desired cost (mission

completion time).

4.3.5 Timing Constraints

Solving the task allocation as a centralized problem allows the inclusion of complex con-

straints on when a waypoint is visited. For example, a typical constraint might be that an

anti-aircraft defense site at A must be visited at least ∆t units of time before another vehicle

can proceed to a high value target at waypoint B.

The timing constraints are met by either altering the order in which waypoints are visited,

delaying when a vehicle begins a mission, or assigning a loitering time to each waypoint. The

formulation presented here introduces a decisions variable t0v to represent the time at which

vehicle v starts, and then executes its mission without delay. To construct the constraint,

an intermediate variable tw is introduced for every waypoint w to evaluate the time at which

it is visited as

∀w ∈ {1, 2, . . . , NW}, ∀d ∈ {1, 2, . . . , nmax}, ∀v ∈ {1, 2, . . . , NV }, ∀p ∈ {1, 2, . . . , NP} :

tw ≥ t0v + Tdvp −M(1− xvpPdvwp)− ε

tw ≤ t0v + Tdvp +M(1− xvpPdvwp) + ε

(4.5)

where M is a large positive number. The constraints of Eqns. 4.5 combine to enforce an

84

equality relationship tw = t0v + Tdvp if vehicle v visits waypoint w as its d
th destination of

its pth permutation, and are relaxed otherwise. The timing constraint can then be enforced

directly in terms of the intermediate variables tw as

∀c ∈ 1, 2, . . . , NC :
NW∑
w=1

Rcwtw ≥ ∆tc (4.6)

where Rcw = −1 if waypoint w must be visited first in the cth constraint, and Riw = 1

if waypoint w must be visited last in the cth constraint. Simultaneous arrival at the same

location can be enforced by placing two waypoints at the same location, and applying two

arrival time constraints. Time window constraints relative to the start of the mission can be

enforced by including only a 1 entry in Rc . Note that this formulation does not allow the

same vehicle to visit both waypoints unless one of the original permutations met the timing

constraint, and that for very tightly constrained problems, the decision space pruning might

have to be relaxed to maintain feasibility. Constraints 4.5 and 4.6 are added to the original

problem in Eq. 4.3 to form a task allocation problem including timing constraints. The cost

must also be altered to include the UAV start times as

J4 = t̄+
α

NV

NV∑
v=1

(t0v + Tnmaxv) (4.7)

The constraints presented here for delaying individual start times can be generalized to form

other solutions to the timing constraint, such as allowing a UAV to loiter at a waypoint

before going to the next objective.

4.4 Simulations

4.4.1 Simple Allocation Example

A small problem is first considered to show how the assignment changes when constraints are

added. The basic allocation problem includes two UAVs and four waypoints, and is solved

85

using the partially decoupled method described in this chapter.

The first scenario, shown in Fig. 4-4, is the basic allocation problem. Each UAV is capable

of visiting every waypoint. The solution for this problem is straightforward, with each

vehicle visiting waypoints that are close. This allocation is guaranteed to minimize the cost

function evaluated using estimated mission completion times which neglect vehicle dynamics.

A formulation of this problem that accounts for the vehicle dynamics to find the globally

optimal allocation is presented in [24]. In this approach, a large optimization problem is

formed to allocate waypoints to vehicles and design detailed trajectories simultaneously.

This method was also applied to the allocation problem of Fig. 4-4, and resulted in the same

allocation found using the partially decoupled method.

In the second scenario, the ability of the upper vehicle to visit the upper right waypoint

is removed, resulting in the allocation shown in Fig. 4-5. The third scenario adds a timing

constraint specifying that the upper left waypoint must be visited simultaneously with or

after the lower right waypoint. The allocation shown in Fig. 4-6 delays the departure of the

upper vehicle, which visits only the upper left waypoint. Fig. 4-7 includes an obstacle in

the environment. This results in a modified allocation, reflecting the fact that the partially

decoupled approach uses path approximations that avoid obstacles. The same allocation was

found with the fully coupled approach for all of these examples.

In each case, the time required to find the allocation using the partially decoupled ap-

proach, and then to design detailed trajectories was less than required to solve the fully

coupled optimization problem. The times are shown in Table 4.1. The long computation

times required by the fully coupled approach emphasize the fact that even for simple prob-

lems, the combined allocation and trajectory design problem is extremely computationally

demanding.

4.4.2 Large-Scale Comparison to Fully Coupled Approach

In each of the four allocation problem examples presented in Section 4.4.1, the partially

decoupled approach quickly gave the same globally-optimal allocation as the fully-coupled,

86

t =0.0
t =10.05

t =20.10

t =0.0
t =10.05

t =20.10

Fig. 4-4: Allocation for two vehicles and
four targets with full capabilities, no timing
constraints

t =0.0
t =10.05

t =28.08t =0.0

t =10.05

t =28.08

Fig. 4-5: Allocation for problem of Fig. 4-
4, with capability of upper vehicle to visit
upper right waypoint removed.

t =10.1
t =20.10

t =0.0
t =10.05

t =20.10

t =34.10

Fig. 4-6: Allocation for problem of Fig. 4-
5, with added constraint to visit lower right
waypoint before or at same time as upper
left.

t =0.0

t =29.49t =3.4
t =13.49

t =29.49
t =39.54

Fig. 4-7: Allocation for problem of Fig. 4-6,
with added obstacle.

87

Table 4.1: Computation Time for Small Allocation and Trajectory Design Problems

Partially Decoupled Comp. Time(s) Fully Coupled
Problem Allocation Trajectory Design Total Comp. Time(s)
1 0.16 1.43 1.59 12.11
2 0.22 9.34 9.56 26.89
3 0.22 11.13 11.35 146.28
4 0.19 21.05 21.24 981.43

−15 −10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

WP1

WP2

WP3

WP4

Veh1

Veh2

Veh3

x position

y
po

si
tio

n

UAV Coordination w/ Approximate Costs
Mission Time = 19.90

: 1,2,4

: 1,2,3,4

: 2,3

−15 −10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 4-8: Comparison of Partially Decoupled and Fully Coupled Approaches. The solution
found using the partially decoupled approach is shown at left, and that of the fully coupled
approach is shown at right.

but computationally demanding formulation. In order to evaluate whether the partially de-

coupled approach would consistently give the globally optimal allocation, both formulations

were applied to a set of 50 problems [25]. Each problems included three vehicles, four way-

points and two obstacles. The starting positions of vehicles, waypoint positions, and obstacle

locations were chosen at random.

The solution of one problem from this set with both formulations is shown in Fig. 4-8.

With a computation time limit of 10 minutes, the fully coupled formulation was able to find

the optimum in 37 problem instances. For these problem instances, the solution times of the

two methods are compared in Table 4.2. On average, the partially-decoupled formulation

was able to find the allocation and plan detailed trajectories more than 44 times faster than

88

Table 4.2: Computation Time for Random Allocation and Trajectory Design Problems

Method Computation Time (s)
Mean Max.

Coupled 165 577
Decoupled
Assignment 0.54 0.61
Trajectories 3.19 6.51

the fully coupled approach. The partially-decoupled formulation found the global optimum

in 36 of the 37 cases. In the one case where it did not, the resulting discrete time trajectories

required 1 additional time step for completion. These results indicate that the approach

presented in this chapter decouples these problems appropriately, and achieves significant

improvement in computation time with negligible loss of performance.

4.4.3 Complex Allocation Problem

A much larger allocation problem was attempted in order to examine the computational

effort required by the partially decoupled approach. This large problem includes a fleet of 6

UAVs of 3 different types and 12 waypoints of 3 different types. The UAV capabilities are

shown in Fig. 4-9. There are also several obstacles in the environment. Again the objective

is to allocate waypoints to the team of UAVs in order to visit every waypoint once and only

once in the minimum amount of time. There are no timing constraints in this scenario. The

solution is shown in Fig. 4-9. All waypoints are visited subject to the vehicle capabilities in

23.91 time units. This problem was solved in 27 seconds by the partially decoupled approach,

but could not be solved in reasonable time by the fully coupled approach.

In order to understand the difficulty of this problem, a “greedy” heuristic was applied

to it. This heuristic makes allocation decisions one waypoint at a time. It calculates the

increase in the cost function in Eq. 4.2 associated with allocating each waypoint to each

capable vehicle. The vehicle-waypoint allocation with the smallest associated increase in the

cost is selected. The allocated waypoint is removed from consideration. This procedure is

repeated until all waypoints are allocated. The greedy heuristic solved the large scenario

89

−15 −10 −5 0 5 10

−15

−10

−5

0

5

10

15

20

WP1

WP2

WP3

WP4

WP5

WP6

WP7

WP8

WP9

WP10

WP11

WP12

Veh1

Veh2

Veh3

Veh4

Veh5

Veh6

x position

y
po

si
tio

n

UAV Coordination w/ Approximate Costs
Mission Time = 23.91

:
:
:

Fig. 4-9: Scenario has three pairs of heterogenous vehicles with 12 waypoints (3 different
types). Figure legend shows which vehicles can visit each waypoint. The scenario demon-
strates task allocation for a large problem with heterogenous vehicles using the approximate
cost method.

shown in Fig. 4-9 with a maximum completion time of 28.20 time units, an increase of 17.9%.

In this coordination plan, the last waypoint to be allocated caused a large increase in the

completion time. This clearly shows that locally justified decisions do not provide globally

optimal fleet coordination plans, and that the MILP-based method presented here provides

significantly better results than “greedy” heuristics.

4.5 Conclusions

This chapter presents an approach to the task allocation and detailed trajectory design com-

ponents of the optimal fleet coordination problem which partially decouples these problems.

It efficiently estimates finishing times associated with the different allocation options, and

provides this information to the allocation optimization. The allocation is an extension of the

90

MMKP problem, and is solved as a MILP problem. A small number of detailed trajectories

are then designed to perform the allocated tasks.

Results were presented to show that this approach is an appropriate way of decoupling the

trajectory design and allocation problems. It is able to solve larger problems than the fully

coupled approach with negligible loss in performance, and to produce better performance

than a greedy heuristic.

91

92

Chapter 5

Maximum Expected Score Allocation

5.1 Introduction

The previous chapter described a method of solving the allocation problem that computes a

set of possible waypoint permutations for each vehicle to perform, and applies MILP to select

the optimal allocation from amongst them. This chapter extends that approach to scenarios

with more sophisticated objectives. This new formulation addresses the uncertainty in the

UAV coordination problem by modeling the probability of UAV loss, and exploiting the

ability of UAVs to cooperate in order to reduce this probability.

Real world air operations planners employ cooperation between aircraft in order to man-

age the risk of attrition. Missions are scheduled so that one group of aircraft opens a corridor

through anti-aircraft defenses before a follow-on group attacks higher value targets, preserv-

ing their survival. When each UAV has some capability to destroy anti-aircraft defenses and

to attack high value targets, designing the mission plan to exploit this cooperation optimally

becomes more challenging.

Cooperation is not just desirable, but is in fact crucial to designing successful missions

in the heavily defended environments where UAVs are most likely to be used. A success-

ful method of performing the allocation cannot simply assume the mission will always be

executed as assumed, given an adversary in the environment who is actively attempting to

93

cause failure. Simulations will be presented to show that ignoring the probability of UAV

loss results in mission plans that are likely to fail, and that modeling this probability but

ignoring its coupling to each UAV’s mission can neglect the fleet’s only way to succeed.

Clearly, a UAV mission planning formulation must recognize the importance of manag-

ing UAV attribution, and have the capability to use the same strategies as real-world air

operations planners. The formulation presented in this chapter approaches this by capturing

not only the value of the waypoints that each vehicle visits and of returning the vehicle

safely to its base, but also by capturing the probability of these events. In order to maxi-

mize mission score as an expectation, this stochastic formulation designs coordination plans

which optimally exploit the coupling effects of cooperation between UAVs to improve sur-

vival probabilities. This allocation is shown to recover real-world air operations planning

strategies, and to provide significant improvements over approaches that are not cognizant

of managing attrition.

5.2 Optimization Program Formulations

This chapter present three formulations of the allocation problem that are progressively more

cognizant of its stochastic properties. The first is a purely deterministic formulation that

assumes no UAV is lost. The second is a deterministic equivalent that models the probability

of UAV loss, without taking into consideration the reduction in this probability that comes

from destroying anti-aircraft defenses. The third is a stochastic optimization which models

both the probability of UAV loss and the ability of cooperation to reduce the probability of

loss.

These formulations extend the minimum completion time formulation of Chapter 4. The

waypoint permutations are expanded to include the UAVs’ landing positions as their final

destination. They also apply the constraints presented in Chapter 4 which force the following

variables to take their desired values; Vwvp is 1 if waypoint w is visited by vehicle v on its p
th

permutation and 0 if not, tw is the time that waypoint w is visited, t0v is the aircraft’s time

94

of departure from its starting point, Pdvwp is 1 if the d
th destination visited by permutation p

for vehicle v is waypoints w and 0 if not, and Tdv is the length of time after its departure that

vehicle v visits its dth waypoint. In order to emphasize distinctions between formulations,

this chapter assigns variable names with tildes to probabilities and scores whose calculation

neglects the coupling effects between UAV missions, and variable names without tildes to

their equivalents whose calculation takes this coupling into consideration.

The results of applying these formulations to the same allocation problem are presented,

and the level of anti-aircraft defense threat in the environment is varied to understand

its effects. The expected score of each is calculated in section 5.3. The less sophisticated

approaches are shown to achieve worse expected scores for simple problems, and to be unable

to plan successful missions for more difficult scenarios. The full stochastic formulation is

shown to achieve the highest expected score.

5.2.1 Purely Deterministic Formulation

The first modified formulation extends the cost function of Eqn. 4.7 to include a score s̃dvp

associated with each waypoint in order to balance completion time against the value of

waypoints allocated to vehicles

max
xvp,t0v

J5 = −α1t̄−
α2

NV

NV∑
v=1

(t0v + Tnmaxv) +
nmax∑
d=1

NV∑
v=1

NP∑
p=1

s̃dvpxvp (5.1)

where s̃dvp an input to the allocation problem representing the score of the d
th destination

of vehicle v on its pth permutation, and the weights α1 and α2 are selected to weight com-

pleting the mission quickly against planning longer missions that visit more waypoints. The

requirement that every point be visited is relaxed, and this formulation neglects the possi-

bility of UAV attrition. This formulation tends to result in “optimistic” plans, in which risk

is ignored in favor of high scores.

An example of a mission plan found with this purely deterministic formulation is shown

in Fig. 5-1. In this example, the five waypoints at right are allocated to three vehicles that

95

t
01

=0

q
31

=0.92 t
11

=76

q
11

=0.95

t
21

=112

q
21

=0.92

t
02

=0

q
32

=0.86
t
12

=100

q
12

=0.86

t
03

=0

q
33

=0.83

t
13

=108

q
13

=0.88

t
23

=143

q
23

=0.83

Fig. 5-1: Example Purely Deterministic Allocation. The vehicles start at left and visit
waypoints at right. tdv gives the time at which point d is reached on UAV v’s mission,
including departure time from starting point. qdv is the probability that point d is reached
on UAV v’s mission. Probability of being shot down is assumed to be proportional length
of path in anti-aircraft defense’s range, shown with circles. Note that the middle vehicle
aircraft does not delay its departure, and that the bottom vehicle passes through the large
anti-aircraft defense second from the bottom once without destroying it.

start at the left. The central waypoint has a score of 100 points, and the other waypoints

have a score of 10. The UAVs each receive a score of 50 for returning to their starting point,

representing the perceived value of the UAVs relative to the waypoints. The resulting plan

is shown in Fig. 5-1, and resembles that shown in Fig. 4-4, with no UAV path crossings and

no delay before any vehicle starts its mission. The weights α1 and α2 are chosen sufficiently

low that all waypoints are visited, but still encourage fast completion of the mission. The

96

expected score of this mission will be discussed in Section 5.3.

In this work, the probability that a UAV is destroyed is calculated as proportional to

the length of its path within the anti-aircraft defense’s range. In the nominal threat level

case, the constant of proportionality was chosen so that a path to the center of the smaller

anti-aircraft defense would have a probability of survival of 0.96. The formulations were also

applied in environments in which the nominal constant of proportionality was multiplied by

factors of 3 and 7, respectively. These particular selections are arbitrary, but the results of

this comparison illustrate important trends in the performance as the threat level increases.

Under the nominal threat levels, this formulation gave a probability of 0.86 that the

high value target at center would be reached by the UAV to which it was allocated. When

the probability of destruction on each leg was increased by a factor of 3, the probability

of reaching the high value target was 0.57, and when the probability of destruction was

increased by a factor of 7, the probability of reaching the high value target was 0.25. This

shows that in well-defended environments, the deterministic formulation plans missions that

are highly susceptible to failure.

5.2.2 Deterministic Equivalent of Stochastic Formulation

This second form models the threat that each waypoint poses to UAVs as a fixed quantity, so

that destroying it does not decrease the risk to other vehicles. This reduces the problem to

multiplying the score associated with each waypoint along a UAV’s mission by the probabil-

ity that the UAV reaches that waypoint. This calculation can be done for every permutation

before the optimization is performed, so no probabilities are explicitly represented in the op-

timization program itself. This approach allows sophisticated relationships between survival

probability and radar exposure to be used. Voronoi diagrams can be used as a basis for path

approximations in order to minimize radar exposure, and time and probability values for

several different paths can be provided for each ordering of waypoints.

Let q̃dvp be the probability that vehicle v reaches the d
th destination on its pth permu-

tation, and let d = 0 correspond to the vehicle’s starting position. Then q̃0v = 1.0 for all

97

permutations, and

q̃dvp = q̃(d−1)vp

NW∏
w=1

q̃dvwp (5.2)

where q̃dvwp is the probability that an anti-aircraft defense at waypoint w does not shoot

down UAV v between its (d− 1)th and dth destinations. Then, the cost function of Eqn. 5.1

can be modified to use the deterministic equivalent of the score q̃dvps̃dvp

max
xvp,t0v

J6 = −α1t̄−
α2

NV

NV∑
v=1

(t0v + Tnmaxv) +
nmax∑
d=1

NV∑
v=1

NP∑
p=1

q̃dvps̃dvpxvp (5.3)

where q̃dvps̃dvp is evaluated in the cost estimation step, and is passed into the optimization

as a parameter. Example allocation plans from the deterministic equivalent formulation are

shown in Fig. 5-2. This formulation includes a notion of risk, but does not recognize the

ability of UAVs to cooperate to decrease the probability of attrition. As the threat level of

the environment increases, this formulation tends to result in “pessimistic” plans, in which

some of the waypoints are not visited. This occurs when the contribution to the expected

score of visiting the remaining waypoints is offset by the decrease in expected score of doing

so due to a lower probability of surviving to return. The ability to reduce risk through

cooperation can be captured by evaluating the actual risk during optimization as a function

of the waypoint visitation precedence.

5.2.3 Stochastic Formulation

This section describes a stochastic optimization formulation in which the expectation of

score is maximized. This optimization will be shown to exploit phasing by attacking the

anti-aircraft defenses before the high value targets, and to preserve the survival of the vehicle

which visits the high value target.

In order to determine whether an anti-aircraft defense is in operation while a vehicle flies

within its original range, the waypoint visitation precedence is evaluated. If the time that

98

t
01

=0

q
31

=0.88

t
11

=108

q
11

=0.88

t
02

=0

q
32

=0.92

t
12

=79

q
12

=0.95

t
22

=114

q
22

=0.92

t
03

=0

q
33

=0.92 t
13

=76

q
13

=0.95

t
23

=112

q
23

=0.92

t
01

=0

q
31

=0.74

t
11

=76

q
11

=0.84

t
21

=112

q
21

=0.74

t
02

=0

q
32

=0.62

t
03

=0

q
33

=0.84
t
13

=76

q
13

=0.84

t
01

=0

q
31

=1.00

t
02

=0

q
32

=1.00

t
03

=0

q
33

=1.00

Fig. 5-2: Example Deterministic Equivalent Allocations. Nominal probabilities of destruc-
tion at top left, increased by factor of 3 at top right, increased by factor of 7 at bottom.
At top left, UAV 1 could exploit phasing by waiting for UAV 2 to destroy the anti-aircraft
defense second from top threatening 1 on its way to its target. However, the probabilities are
fixed quantities, so the benefits of cooperation between UAVs are not recognized, and UAVs
1 and 2 leave simultaneously at t = 0. As the threat level of the environment increases, the
allocation which maximizes the expectation of score keeps the UAVs at their base in order
to collect the reward for safe return, and the high value waypoint is not visited.

99

UAV v begins the leg leading to its dth destination is less that the time that waypoint w is

visited, then waypoint w is considered to threaten the UAV on this leg from d− 1 to d, and

the binary decision variable Advw is set to 1 to encode this waypoint visitation precedence.

The logical equivalence

Advw = 1⇔ t0v + T(d−1)v ≤ tw (5.4)

can be enforced with the constraints

t0v + T(d−1)v ≤ tw +M(1−Advw) + ε

tw ≤ t0v + T(d−1)v +M(1− Advw) + ε

where ε is a small positive number, M is a large positive number. With this precedence

information available, constraints which evaluate the probability qdv that vehicle v survives

to visit the dth waypoint on its mission can be formulated. The probability q̃dvw of vehicle

v not being destroyed on the leg leading to its dth destination by an intact air defense at

waypoint w for the selected permutation is evaluated as

q̃dvw = q̃dvpwxvp (5.5)

If waypoint w is visited before the vehicle starts the leg to destination d, then the anti-

aircraft defense at w is assumed not to threaten the vehicle, so the actual probability qdvw

that vehicle v is not destroyed by an anti-aircraft defense at waypoint w is 1. Otherwise, it

is q̃dvw

qdvw ≤ q̃dvw +M(1−Advw)

qdvw ≤ 1

Now the actual probability qdv of reaching each destination can be found by evaluating

100

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log q
dv

q
dv

q’
dv

Fig. 5-3: Comparison of Piecewise Linear Approximation q′dv to qdv vs. log qdv. Note that
the approximation is very accurate in the range of probabilities of interest where qdv ≥ 0.3.

Eqn. 5.2 in terms of the actual probability of surviving each anti-aircraft defense qdvw as

qdv = q(d−1)v

NW∏
w=1

qdvw (5.6)

where again, d = 0 corresponds to the vehicle’s starting position and q0v = q̃0v = 1.0.

Because Eqn. 5.6 is non-linear in decision variables qdvw and qdv, it cannot be included

directly in the formulation, but can be tranformed using logarithms as

log qdv = log q(d−1)v +
NW∑
w=1

log qdvw (5.7)

While this form accumulates the effects of each of the anti-aircraft defense sites on the

survival probability over each leg of the mission, it only provides log qdv. Evaluating the

101

t
01

=0

q
31

=0.92
t
11

=76

q
11

=0.95

t
21

=112

q
21

=0.92

t
02

=76

q
32

=0.97
t
12

=176

q
12

=0.97

t
03

=0

q
33

=0.92
t
13

=76

q
13

=0.95

t
23

=112

q
23

=0.92

t
01

=0

q
31

=0.74
t
11

=76

q
11

=0.84

t
21

=112

q
21

=0.74

t
02

=0

q
32

=0.84
t
12

=79

q
12

=0.84t
03

=79

q
33

=0.80

t
13

=180

q
13

=0.90

t
23

=230

q
23

=0.80

q
31

=0.29

t
31

=0

q
11

=0.59

t
11

=76

q
21

=0.29

t
21

=126

q
32

=0.74
t
32

=126

q
12

=0.74

t
12

=226

q
13

=1.00

t
13

=0

Fig. 5-4: Example Maximum Expected Score Allocation. Nominal probabilities of destruc-
tion at top left, increased by factor of 3 at top right, increased by factor of 7 at bottom. Note
that in all 3 cases, phasing is employed: the two larger anti-aircraft defense sites have been
visited before the UAV that visits the high value begins its mission, and this UAV retains
the highest probability of survival. As the threat level of the environment increases, only
the high value target and the anti-aircraft defenses that threaten the route to it are visited.

102

expected score requires qdv, and this can be recovered approximately as q
′
dv by raising 10 to

the exponent log qdv using the piecewise linear function shown in Fig. 5-3. This piecewise

linear relationship can be included into a MILP accurately using 3 binary variables, since

the exact function is nearly linear in the range of interest where probabilities are above 0.3.

The expectation of the mission score is then found by summing waypoint scores multiplied

by the probability of reaching that waypoint. If the score of the dth waypoint visited by

vehicles v in its pth permutation is s̃dvp, then the expectation of the score sdv that will be

received from visiting it is

∀p ∈ {1, 2, . . . , NP} : sdv ≤ q′dvs̃dvp +M(1− xvp) (5.8)

and the objective function of the stochastic formulation is

max
xvp,t0v

J7 = −α1t̄−
α2

NV

NV∑
v=1

(t0v + Tnmaxv) +
nmax∑
d=1

NV∑
v=1

sdv (5.9)

The optimal allocations for this problem shown in Fig. 5-4 recovers phasing and preservation

of the vehicle that visits the high value target. As the threat level in the environment

increases, the upper and lower waypoints are ignored.

5.3 Results

5.3.1 Nominal Environment

After the coordination problem was solved for nominal threat values using the three formu-

lations described above, the resulting allocation solutions were evaluated using the model

of the stochastic formulation of Section 5.2.3. The resulting expected score, mission com-

pletion time, and probability of survival of the three formulations is compared in Table 5.1.

The computation time of each formulation is also shown. Note that the expected score

of the purely deterministic and stochastic formulations is very different, although the way-

103

Table 5.1: Results of Several Formulations in Probabilistic Environment with Nom-
inal Threat Levels

Expected Probability of Survival Computation
Formulation Score t̄ UAV 1 UAV 2 UAV 3 Time (s)

Min. Completion Time 251.3 219.5 0.92 0.86 0.83 6.5
Deterministic. Equiv. 263.8 219.5 0.88 0.92 0.92 7.0

Stochastic 273.1 276.5 0.92 0.97 0.92 27.1

point combinations assigned to each vehicle are the same and the allocation differs mainly

in timing. This emphasizes the importance of timing of activities.

While some improvement over the completely deterministic formulation is seen in the de-

terministic equivalent formulation, the stochastic formulation achieves the highest expected

score. This formulation also does the best job of protecting the survival of the vehicle that

visits the high value target. It is, however, the most computationally demanding formulation.

5.3.2 High Threat Environments

The results of applying all three formulations in high threat environments are shown in Ta-

bles 5.2 and 5.3, and indicate that in high threat environments the completely deterministic

and deterministic equivalent approaches are incapable of recovering a higher expected score

than would be achieved by keeping the UAVs at their base. Also, these two formulations are

not capable of designing a plan that is likely to reach the high value target.

5.3.3 Results on Larger Problem

During the solution of the problems presented already, it was noticed that the expected score

formulation often quickly found a good answer that was close to optimal, then made very

little improvement in the expected score for the rest of its solution time. Since the goal of this

research is to develop automated mission planning tools that can apply successful operational

strategies in complex environments, finding the optimum provides little advantage over a

solution that is very close to it.

104

Table 5.2: Expected Score in More Threatening Environments. Nominal probabili-
ties of destruction, and probabilities 3 and 7 times higher are considered.

Expected Score
Formulation Nominal ×3 ×7

Min. Completion Time 251.3 173.1 81.4
Deterministic. Equiv. 263.7 219.6 150.0

Stochastic 273.15 239.9 208.7

Table 5.3: Probability of Reaching High Value Target in More Threatening Envi-
ronments. Nominal probabilities of destruction, and probabilities 3 and
7 times higher are considered.

Probability
Formulation Nominal 3 7

Min. Completion Time 0.86 0.57 0.25
Deterministic. Equiv. 0.92 0.74 0.00

Stochastic 0.97 0.9 0.74

To examine this, the expected score formulation was also applied to a large problem with

4 vehicles and 11 targets, and the expected score of the incumbent solution was recorded

over time during the optimization process. This optimization was not solved to completion,

but achieved a maximum score of about 342 in 60 minutes. However, an incumbent solution

with an expected score of about 331 was found in only 18 seconds as shown in Fig 5-5. In

this problem, each vehicle can visit 2 waypoints.

This new approach is computationally demanding, which is a result of modeling the ability

to influence the probabilities themselves. This is not common in stochastic optimization,

but is necessary for planning successful air operations. This formulation can achieve good

results quickly. Its loss of 11 units of score is not as significant as its robustness, which

comes from managing UAV attrition. This solution can be seen as computationally feasible

method of automating UAV mission design, without losing the strategic awareness of the

air operations planner. Given that the other formulations presented here have fundamental

problems planning missions in threatening environments, the expected score formulation

possesses significant advantages.

105

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

Time (s)

E
xp

ec
te

d
S

co
re

Imcumbent Sol’n
60 minute maximum

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Time (s)

E
xp

ec
te

d
S

co
re

Imcumbent Sol’n
60 Minute Maximum

Fig. 5-5: Expected Score of Incumbent Solution vs. Time. The incumbent is compared to
the best solution found in 60 minutes. The same problem is being solved in both plots.

106

t
01

=74

q
31

=0.95

t
11

=103

q
11

=0.96

t
21

=108
q

21
=0.95

t
02

=55
q

32
=0.97

t
12

=108
q

12
=0.97

t
22

=118

q
22

=0.97

t
03

=0
q

33
=0.85

t
13

=21

q
13

=0.88
t
23

=25

q
23

=0.85

t
04

=25

q
34

=0.88

t
14

=53

q
14

=0.89

t
24

=55

q
24

=0.88

UAV 1
UAV 2
UAV 3
UAV 4

Central waypoint:
(high value target)

t
11

=103

q
11

=0.96

t
21

=108

q
21

=0.95

t
22

=118

q
22

=0.97

t
13

=21

q
13

=0.88

t
23

=25

q
23

=0.85

t
14

=53

q
14

=0.89

t
24

=55

q
24

=0.88

UAV 1
UAV 2
UAV 3
UAV 4

Central waypoint:
(high value target)

Fig. 5-6: Example Large Allocation Problem. Vehicle starting positions are shown with
small circles. The lower plot shows a zoomed in view around the high value target. This
solution was found in 18 seconds. Seven of the waypoints represent anti-aircraft defenses,
while the 8th, at the center of the tight cluster of waypoints, is a high value target that
presents no threat. Note that UAV 2 delays its departure just long enough that 5 of the
anti-aircraft defenses have been destroyed. UAV 2 then visits waypoint A at the same time
(t = 108) as UAV 1 visits waypoint B. Note that the waypoints A and B have been selected
as the two that are farthest apart, so that UAV 2 can reach the A without being significantly
threatened by B. This preserves UAV 2’s survival and minimizes completion time.

107

108

Chapter 6

Conclusions

This thesis has presented several approaches to the UAV trajectory design and waypoint

allocation problems. These approaches apply MILP to optimize the allocation of a set

waypoints to individual UAVs in the fleet, and to optimize the detailed trajectories that the

vehicles follow to reach their assigned waypoints. By formulating these problems as MILPs,

the solution search process can performed by powerful commercial software such as CPLEX.

Such optimization-based approaches could be used as the basis for UAV mission planning

tools, enabling UAVs to take on a wider range of tasks and to operate with conventional

vehicles in a cohesive manner. The specific contributions of this thesis to the these topics

will now be described.

6.1 Contributions to the Trajectory Design Problem

In Chapter 2, a receding horizon formulation of the trajectory design problem was presented.

This thesis proposes a novel terminal penalty which can be evaluated based on computation-

ally efficient search of a graph representation of the environment. This choice of terminal

penalty accounts for obstacles beyond the planning horizon, and avoids entrapment in con-

cave obstacles. Comparison of the receding horizon trajectory planner to a fixed horizon

equivalent shows that the receding horizon planner results in minimal increase in time to

109

reach the goal and significantly reduces the time required to plan a trajectory to the goal.

This method is capable of planning trajectories in complex and uncertain environments, and

following the resulting trajectories was demonstrated in a hardware testbed.

While this trajectory designer produces good results in practice, it was not proven to be

stable. Chapter 3 proved the stability of a modified controller. It presented a method for

computing a tree of kinodynamically feasible paths to the goal. A novel use of this path

construction technique was made to guarantee that a kinodynamically feasible trajectory

exists from the terminal state of each short trajectory segment to the goal. This approach

was shown to be capable of planning trajectories in a highly constrained environment, in

which the trajectory designer of Chapter 2 failed. The stable receding horizon trajectory

designer is also capable of planning long trajectories with a negligible increase in trajectory

length, and a moderate increase in computation time.

The trajectory design techniques presented in this thesis have yielded a computationally

efficient trajectory designer that provides near-optimal performance and guarantees stability.

6.2 Contributions to the Allocation Problem

In Chapter 4, a decomposition-based approach was presented for the problem of allocating

a set of waypoints to the individual vehicles making up a fleet. This approach partially

decouples the allocation problem from the detailed trajectory design problem, which would

otherwise have to be solved for all possible waypoint permutations in order to exactly eval-

uate their associated cost. To avoid this computationally intractable task, the allocation

is made based on cost values that are rapidly estimated using the same visibility graph

search technique presented in Chapter 2. With cost estimates available for the candidate

allocations, a MILP is formulated which allocates waypoints to each UAV and minimizes the

estimated completion time of the overall allocation, while observing capability, timing and

waypoint visitation constraints. Once the allocation has been found, detailed trajectories

can be planned for the selected permutations of waypoints for each UAV.

110

Comparison to a fully coupled, computationally demanding formulation of the combined

allocation and trajectory design problem that finds the global optimum was used to evaluate

the partially decoupled approach. The partially decoupled approach was found to give the

globally optimal allocation for 36 of 37 problem instances, and found an allocation that

required 1 extra time step for the other problem instance. More importantly, it required far

less computation to solve than the fully coupled formulation, and is able to solve large scale

allocation problems for which the global optimum is not available.

This approach was extended to optimize the value of visiting waypoints under the pos-

sibility of UAV attrition. This unique stochastic formulation maximizes mission score as

an expectation by using sophisticated strategies that are part of real-world air operations

planning. These strategies include phasing of mission activities, creating corridors through

anti-aircraft defenses, and protecting the survival of aircraft that visit high value targets.

The expected score maximization formulation was demonstrated to be capable of planning

air operations in high-threat environments, where other formulations that do not model the

event of UAV loss or neglect the ability to manage attrition through cooperation break down.

6.3 Future Work

Improving the computational tractability of the expected score formulation would be bene-

ficial to the allocation problem. Exploiting the potential for cooperation between UAVs is a

critical aspect of mission planning, and the formulation presented here provides a route to the

optimal coordination plan. While the use of pre-compiled waypoint permutations presented

in Chapter 5 does yield some reduction in computation, the combination of the expected

score formulation presented here and branch-and-bound MILP solution techniques still does

not yield solutions quickly enough to be practical for real-time mission planning. Approxi-

mate techniques such as tabu search might yield answers with acceptable performance and

computation levels.

The architecture of the UAV coordination and control system is an important research

111

topic. The approaches to the allocation problem presented here all require a large optimiza-

tion problem for the entire fleet to be solved. To allow replanning during operation, the

UAVs must communicate extensively to synchronize a database of their states and the world

state. Alternative hierarchies which require less communication and reduced the size of the

optimization problems to be solved should be considered.

The advice of an expert in the domain of air operations planning would be very helpful

in setting research goals, and evaluating the important aspects of real-world air operations

planning that the optimization formulation should capture.

112

Bibliography

[1] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics,

and constraints. Automatica, 35:407–427, 1999.

[2] D.P. Bertsekas and D.A.Castanon. Rollout algorithms for stochastic scheduling prob-

lems. In Proceedings of the IEEE Conference on Decision and Control, Tampa FL,

December 1998.

[3] USAF Scientific Advisory Board. Uav technologies and combat operations. Technical

Report Tech. Tep. SAB-TR-96-01, November 1996.

[4] P.R. Chandler, M. Pachter, D.Swaroop, J.M.Fowler, J.K. Howlett, S. Rasmussen,

C. Schumacher, and K Nygard. Complexity in uav cooperative control. In Proceed-

ings of the American Control Conference, Anchorage AK, May 2002.

[5] P.R. Chanler and M. Pachter. Hierarchical control for autonomous teams. In Proceedings

of the AIAA Guidance, Navigation and Control Conference, Montreal, August 2001.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. MIT Press/McGraw-Hill, 1990.

[7] D.Q.Mayne, J.B.Rawlings, C.V.Rao, and P.O.M.Scokaert. Constrained model predictive

control: Stability and optimality. Automatica, 36:789–814, 2000.

[8] C. A. Floudas. Nonlinear and Mixed-Integer Programming – Fundamentals and Appli-

cations. Oxford University Press, 1995.

113

[9] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modelling Language for Mathe-

matical Programming. Boyd and Fraser Publishing Company, Danvers, MA, 1993.

[10] ILOG. ILOG CPLEX User’s guide, 1999.

[11] A. Jadbabaie, J. Primbs, and J. Hauser. Unconstrained receding horizon control with

no terminal cost. In Proceedings of the American Control Conference, Arlington, VA,

June 2001.

[12] J.L.Ryan, T.G.Bailey, and J.T.Moore. Reactive tabu search in unmanned aerial re-

connaisance simulations. In D.J.Medeiros et al., editor, Procedings fo the 1998 Winter

Simulation Conference, 1998.

[13] T. Karatas and F. Bullo. Randomized searchs and nonlinear programming in trajectory

planning. Proceedings of the IEEE Conference on Decision and Control, 2001.

[14] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. Technical Report

CS-TR-94-1519, 1994.

[15] T.W.McClain K.B.Judd. Spline based path planning for unmanned air vehicles. In

Proceedings of the AIAA Guidance, Navigation and Control Conference, August 2001.

[16] K.P.O’Rourke, T.G.Bailey, R.Hill, and W.B.Carlton. Dynamic routing of unmanned

aerial vehicles using reactive tabu search. In Proceedings of the 67th MORS Symposium,

November 1999.

[17] S. LaValle and J. Ku. Randomized kinodynamic planning, 1999.

[18] T. McLain, P. Chandler, S. Rasmussen, and M. Pachter. Cooperative control of uav

rendezvous. In Proceedings of the American Control Conference, pages 2309 – 2314,

Arlington, VA, June 2001.

114

[19] M. Moser, D. Jokanovic, and N. Shiratori. An algorithm for the multidimensional

multiple-choice knapsack problem. IEICE Trans. Fundamentals, E80-A(3):582–589,

March 1997.

[20] Nick Pohlman. Estimation and control of a multi-vehicle testbed using gps doppler

sensing. Master’s thesis, Massachusetts Institute of Technology, 2002.

[21] M.Pachter P.R.Chandler, S.Rasmussen. Uav cooperative path planning. In Proceedings

of the AIAA Guidance, Navigation and Control Conference, Denver, CO, August 2000.

[22] R.A.Muphey. An approximate algorithm for a weapon target assignment stochastic

program. In Approximation and Comlexity in Numerical Optimization: Continuous

and Discrete Problems. Kluwer Academic Publishers, 1999.

[23] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings of

the 20th IEEE Symposium on the Foundations of Computer Science, pages 421–427.

IEEE, 1979.

[24] A. Richards, J. Bellingham, M. Tillerson, and J. How. Co-ordination and control of mul-

tiple uavs. In Proceedings of the AIAA Guidance, Navigation and Control Conference.

AIAA, 2002.

[25] A. Richards, J. Bellingham, M. Tillerson, and J. How. Coordination and control of mul-

tiple uavs. In Proceedings of the AIAA Guidance, Navigation and Control Conference,

Monterey, CA, Aug 2002.

[26] A. Richards and J. How. Aircraft trajectory planning with collision avoidance using

mixed integer linear programming. In Proceedings of the American Control Conference,

Anchorage, AK, May 2002.

[27] A. Richards, J. How, T. Schouwenaars, and E. Feron. Plume avoidance maneuver

planning using mixed integer. In Proceedings of the AIAA Guidance, Navigation and

Control Conference. AIAA, Aug 2001.

115

[28] M.Goodrich R.W. Beard, T.W.McLain. Coordinated target assignment and intercept

for unmanned air vehicles. In Proceedings of teh 2002 IEEE International Conferendce

on Robotics and Automation, Washington, DC, May 2002.

[29] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming for

multi-vehicle path planning. In Proceedings of the European Control Conference, Porto,

Portugal, September 2001.

[30] C. Schumacher, P.R. Chandler, and S. Rasmussen. Task allocation for wide area search

munitions via network flow optimization. In Proceedings of the AIAA Guidance, Navi-

gation and Control Conference, Montreal, Canada, August 2001.

[31] C. Schumacher, P.R. Chandler, and S. Rasmussen. Task allocation for wide area search

munitions via network flow optimization. In Proceedings of the American Control Con-

ference, Anchorage AK, May 2002.

[32] J. Tierno. Distributed autonomous control of concurrent combat tasks. In Proceedings

of the American Control Conference, Arlington, VA, June 2001.

[33] H. P. Williams and S. C. Brailsford. Advances in Linear and Integer Programming,

chapter Computational Logic and Integer Programming, pages 249–281. Clarendon

Press, 1996.

[34] J. M. Wohletz, D.A.Castanon, and M.L.Curry. Closed-loop control for joint air opera-

tions. In Proceedings of the American Control Conference, Arlington VA, June 2001.

116

