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Motivation

Natural language understanding systems to generalize in a systematic and robust way

e Diagnostic tests - how can we probe these generalization abilities?

o Syntactic generalization (Hu et al., 2020, “SG”) and logical reasoning (Sinha et al.,
2019, “CLUTRR”)

e Evaluation metrics for language models?



SG: Man shall not live by perplexity alone

Perplexity is not sufficient to check for human-like syntactic knowledge:

It basically measures the probability of seeing some collection of words together
However some words which are rarely seen together are grammatically correct
Colorless green ideas sleep furiously (Chomsky, 1957)

Need a more fine-grained way to assess learning outcomes of neural language
models



SG: Paradigm

Assess NL models on custom sentences designed using psycholinguistic and syntax
literature/methodology

e Compare critical sentence regions NOT full-sentence probabilities.

e Factor out confounds (e.g token lexical frequency, n-gram statistics)



SG: Paradigm

e Cover the scope of syntax phenomena: 16/47 (Carnie et al., 2012)

e Group syntax phenomena into 6 circuits based on processing algorithm



SG: Circuits

1. Agreement

2. Licensing

3. Garden-Path Effects

4. Gross Syntactic Expectation
5. Center Embedding

6. Long-Distance Dependencies



SG: Agreement

(A) The farmer that the clerks embarrassed
knowsy,, many people.

(B) *The farmer that the clerks embarrassed
Knowy ;- many people.

(C) The farmers that the clerk embarrassed
knowy,, many people.

(D) *The farmers that the clerk embarrassed
knowsy,, many people.

PA(Vsg) > Pg(Vp1) A Pc(Vipi) > Pp(Vsg)

Chance is 25% (or up to 50%)



SG: NPI Licensing

e The word “any” is a negative polarity item (NPI)

e The word “no” can license an NPI when it structurally commands it, such as in A

A) No managers that respected the guard have had any luck
>

B) *The managers {that respected no guard} have had any luck

(Reflexive Pronoun Licensing was also included in sub-class suites)



SG: NPI Licensing

(A) No managers that respected the guard have
NPI

had “any’ luck. [+NEG,—DISTRACTOR]

(B) *The managers that respected no guard have
NPI

had “any’ luck. [-NEG,+DISTRACTOR]

(C) *The managers that respected the guard have
NPI

had‘any’ luck. [-NEG,—-DISTRACTOR]

(D) No managers that respected no guard have
NPI

had “any’ luck. [+NEG,+DISTRACTOR]

PA(NPI) > Po(NPI) A Pp(NPI) > Pg(NPI)A
PA(NPI) > Py (NPI)

Acceptable orderings:

ADBC
ADCB
DABC
DACB
ACDB (?)

Chance: 5/24



SG: Reflexive Pronoun Licensing

(A) The author that the senators liked hurt
herselfr

sg.fem *

(B) *The authors that the senator liked hurt
herselfr

sg.fem *

(C) The authors that the senator liked hurt
themselvesg .

(D) *The authorx that the senator liked hurt
themselvesg .

PA(ng) > PB(ng) A PC(Rpl) = PD(Rpl)

Chance: 25%
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SG: NP/Z Garden-Paths

V*
. e
(A) !As the ship crossed the waters remained blue
and calm. [TRANS,NO COMMA]
v*
: S
(B) As the ship crossed, the waters remained
blue and calm. [TRANS,COMMA |
V*
(C)  As the ship drifted the waters remained blue
and calm. [INTRANS,NO COMMA |
V*
(D)  As the ship drifted, the waters remained blue
and calm. [INTRANS,COMMA |

SA(VY) > Sp(V*) NSA(VY) > Sc(V*)/\
SA(V*) e SB(V*) > Sc(V*) — SD(V*)
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SG: Main-Verb Reduced Relative Garden-Paths

V*
. . . A
(A) !The child kicked in the chaos found her way

back home. [REDUCED, AMBIG]
V*

. . . A
(B)  The child who was kicked in the chaos found

her way back home.
V*
. . A~
(C) The child forgotten in the chaos found her
way back home.

(D) The child who was forgotten in the chaos
v*

Y
found her way back home.

SHOVE) > SEVH) A Sa(V*) > SE(VHA
Sa(V*) — Sg(V*) > Sc(V*) — Sp(V*¥)

Chance is 25%
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SG: Gross Syntactic Expectation (Subordination)

END
ool

(A) The minister praised the building .

END
i

(B) *After the minister praised the building’ .

(C) 7MThe minister praised the
MC

building, it started to rain.

(D) After the minster  praised  the
MC

7 N

building, it started to rain.

PA(END) > Pg(END) A Pp(MC) < Pc(MC)

13



SG: Center Embedding

(A) The paintingy, that the artisty, who lived
long ago paintedy, deterioratedy,. [correct]

(B) #The paintingy, that the artisty, who lived
long ago deterioratedy, paintedy,. [incor-
rect|

PA(V2V1) > Pg(V1Va)

P(painted deteriorated| The painting that the artist) >
P(deteriorated painted|The painting that the artist)
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SG: Long Distance Dependencies

o

P —— %
(A) I know that our uncle grabbed the food in
front of the guests at the holiday party.
[THAT, NO GAP]
——
(B) *I know what our uncle grabbed the food in
front of the guests at the holiday party. [WH,
NO GAP]
B

P
(C) 771 know that our uncle grabbed'in front of the
guests at the holiday party. [THAT, GAP]
B

.,—/\-—\ .
(D) I'know what our uncle grabbed in front of in
front of the guests at the holiday party. [WH,
GAP|

Sp(a) > Sa(a) ASc(B) > Sp(B)
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SG: Pseudo-Clefting

VP
(A) What the worker did was board the plang.
NP
. P AN
(B) ?What the worker did was the plane.

NP
(C) What the worker repaired was the plane.

(D) *What the worker repaired was
VP

board the plang.

Sp(VP) > Sa(VP) A Sg(NP) > Sc(NP)
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SG: Assessment

accuracy_per_test suite = correct predictions / total items

e Test for stability by including syntactically irrelevant but semantically plausible
syntactic content before the critical region
o E.g:
o The keys to the cabinet on the left are on the table
o *The keys to the cabinet on the left is on the table

e Compare model class to dataset size
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SG: Score by Model Class

SG score
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Figure 1: Average SG score by model class. Asterisks
denote off-the-shelf models. Error bars denote boot-
strapped 95% confidence intervals of the mean.
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SG: Perplexity and SG Score
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SG: Perplexity and Brain-Score
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SG: The Influence of Model Architecture
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SG: The Influence of Model Architecture

e Architectures as priors to the linguistic representation that can be developed

e Robustness depends on model architecture
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SG: The Influence of Dataset Size

e LSTM e ON-LSTM e RNNG e GPT-2 e n-gram
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Corpus
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SG: The Influence of Dataset Size
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SG: The Influence of Dataset Size

Increasing amount of training data yields diminishing returns:

o “...) require over 10 billion tokens to achieve human-like performance, and most
would require trillions of tokens to achieve perfect accuracy — an impractically large
amount of training data, especially for these relatively simple syntactic phenomena.”
(van Schijndel et al., 2019)

Limited data efficiency
Structured architectures or explicit syntactic supervision

Humans? 11-27 million total words of input per year? (Hart & Risley, 1995; Brysbaert et al.,
2016)
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SG: The Influence of Dataset Size
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Figure 5: Evaluation results on all models, split across test suite circuits.
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CLUTRR: Motivation and Paradigm

e Compositional Language Understanding and Text-based Relational Reasoning

e Kinship inductive reasoning

e Unseen combinations of logical rules

e Model robustness

Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

it

.

~

Q: How is Carol related to Justin ?

A: Carol is the grandmother of Justin

it

e




CLUTRR: Motivation and Paradigm

e Productivity

o mother(mother(mother(Justin))) ~ great grandmother of Justin
e Systematicity

o Only certain sets allowed with symmetries: son(Justin, Kristin) ~ mother(Kristin, Justin)
e Compositionality

o son(Justin, Kristin) consists of components

e Memory (compression)
e Children are not exposed to systematic dataset
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CLUTRR: Dataset Generation & Paradigm

Step 1
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CLUTRR: Model Robustness
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CLUTRR: Systematic Generalization
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CLUTRR: Model Robustness

Models Unstructured models (no graph) Structured model (with graph)
Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Clean Clean 0.58 +o.05 0.53 +o.05 0.49 +0.06 0.63 +0.08 0.37 +o0.06 0.67 +o0.03 1.0 +o0
Supporting 0.76 +o.02 0.64 +o0.22 0.58 006 0.71 x0.0r  0.28 +0.1 0.66 +o.06 0.24 102
Irrelevant 0.7 +o0.15 0.76 +o.02 0.59 +0.06 0.69 +0.05 0.24 +o0.08 0.55 +o0.03 0.51 +o0.15
Disconnected 0.49 +o.05 0.45 +o.05 0.5 +0.06  0.59 1005 0.24 +o0.08 0.5 +o.06 0.8 +0.17
Supporting Supporting I 0.67 +o.06 0.66 +o.07 0.68 +0.0s  0.65 0.0 0.32 10.00 0.57 +o.04 ‘ 0.98 +o.01
Irrelevant Irrelevant ’ 0.51 +o.06 0.52 +o.06 0.5 +0.04  0.56 +0.04 0.25 +0.06 0.53 +o0.06 ’ 0.93 10.01
Disconnected Disconnected I 0.57 +o.07 0.57 +o0.06 0.45 1011 0.4 101 0.17 +o.05 0.47 +o.06 ‘ 0.96 +0.01
Average I 0.61 +o0.08 0.59 +o.08 0.54 £0.07  0.61 +0.06 0.30 +o.07 0.56 +o.05 ‘ 0.77 +o.00
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CLUTRR: Model Robustness (noisy training)

Models Unstructured models (no graph) Structured model (with graph)
Training | Testing | BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM | GAT
Supporting Clean 0.38 +0.04 0.32 2004 0.4 2000  0.45 200z 0.19 +0.06 0.39 +0.06 0.92 101~
Supporting 0.67 +o0.06 0.66 +o.0r 0.68 +0.0s  0.65 +00s 0.32 +o0.00 0.57 +0.04 0.98 +o.01
Irrelevant 0.44 +0.03 0.39 +0.03 0.51 +0.08 0.46 +0.09 0.2 +0.06 0.36 +0.05 0.5 +0.23
Disconnected 0.31 2021 0.25 zo0.16 0.47 +0.0s  0.41 +o.08 0.2 +o.0s 0.32 +0.04 0.92 1005
Irrelevant Clean 0.57 +o.0s 0.56 +o0.05 0.46 +0.12  0.67 005 0.24 +0.06 0.46 +o.0s 0.92 100
Supporting 0.38 +0.22 0.31 1016 0.61 +o.0r 0.61 004 0.27 +0.06 0.46 +o.04 0.77 +o.12
Irrelevant 0.51 +0.06 0.52 +0.06 0.5 +0.04 0.56 004 0.25 +o0.06 0.53 +o.06 0.93 1001
Disconnected 0.44 s0.26 0.54 +o0.27 0.55 +0.0s  0.61 2006 0.26 +0.03 0.45 +o0.08 0.85 1025
Clean 0.45 +0.02 0.47 +o.03 0.53 +o0.00 0.5 +o0.06 0.22 +o0.00 0.44 +o.0s 0.75 +o.0r
Disconnected  Supporting 0.47 +o0.03 0.46 +o0.05 0.54 1003 0.58 2006 0.22 10.06 0.38 +0.08 0.78 +o0.12
Irrelevant 0.47 +o.0s 0.48 +0.03 0.52 +0.0a  0.51 2005 0.17 +o0.04 0.38 +o.0s 0.56 +0.26
Disconnected 0.57 +0.07 0.57 +o0.06 0.45 +0.11 0.4 01 0.17 +o.0s 0.47 +o.06 0.96 +o0.01
Average | 0.47 +0.08 0.46 +o.0s 0.52 100 0.53 2006 0.23 o007 0.43 so.05 | 0.82 10.00

Table 3: Testing the robustness of the various models when trained various types of noisy facts and evaluated on
other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are defined in Section
3.5 of the main paper.



Future work & Perspectives

Sub-word tokenization

Active attention and reasoning
Generalization across tasks

Abstractions as probabilistic

Architecture and dimensionality reduction
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CLUTTR, Fig. 6
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Figure 6: Systematic Generalizability of different models on CLUTRR-Gen task (having 20% less placeholders
and without training and testing placeholder split), when Left: trained with £ = 2 and £ = 3 and Right: trained
with k = 2,3 and 4



CLUTTR, Table 5

Human Performance

Relation Length Time Limiited.  Unilimitad Tins Reported Difficulty
Z 0.848 1 1.488 +- 1.25

3 0.773 1 2.41 + 133

4 0.477 1 3.81 +- 1.46

5 0.424 1 3.78 + 0.96

6 0.406 1 4.46 +- 0.87
Table 5: Human performance accuracies on

CLUTRR dataset. Humans are provided the
Clean-Generalization version of the dataset, and
we test on two scenarios: when a human is given
limited time to solve the task, and when a human is
given unlimited time to solve the task. Regardless of
time, our evaluators provide a score of difficulty of
individual puzzles.
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CLUTTR, Table 4

Models Unstructured modgls (no graph) Structured model (with graph)
Training | Testing | BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM | GAT
Supporting Clean 0.96 +0.01 0.97 +o0.01 0.88 +o.0s  0.94 1002 0.48 +o.08 0.57 +0.08 0.92 +o0.17
Supporting 0.96 +o0.03 0.96 +0.03 0.97 +0o.01 0.97 2001 0.75 zo.0r 0.88 +0.05 0.98 +o.01
Irrelevant 0.92 +0.02 0.93 2001 0.9 2003 091 2001 0.56 +0.04 0.54 +o.06 0.5 +o0.23
Disconnected 0.8 +o.04 0.83 +0.04 0.76 +o.0s  0.86 2004 0.27 +o.06 0.42 +o.08 0.92 so0.05
Irrelevant Clean 0.63 <0.02 0.61 <007 0.85 +0.0e 0.8 +o.0r  0.53 +o.00 0.44 +o.06 0.92 +o0
Supporting 0.66 +0.03 0.64 +o0.04 0.69 +o.06 0.76 006 0.42 +o.0s 0.43 +o.08 0.77 +o0.12
Irrelevant 0.89 20.04 0.86 +o.1 0.74 011 0.78 2006 0.61 01 0.83 +o.06 0.93 +o.01
Disconnected 0.64 +0.02 0.62 +o0.05 0.72 +0.03 0.73 +0.04 0.41 +o0.04 0.61 +o.05 0.85 +0.25
Clean 0.9 +o.05 0.82 z0.12 0.94 1002 0.93 2004 0.68 +0.07 0.64 z0.02 0.75 +o.0r
Disconnected  Supporting 0.87 +0.04 0.82 +o0.05 0.85 +0.0z  0.88 1004 0.54 1008 0.5 +o.0s 0.78 +o.12
Irrelevant 0.87 <0.03 0.85 +o0.03 0.83 +0.02  0.87 002  0.59 +0.00 0.58 +0.00 0.56 +o.26
Disconnected 0.91 z0.04 0.91 zo0.03 0.8 z0.17 0.71 o1 0.49 +0.1 0.79 +o.1 0.96 +o0.01
Average | 0.83 +0.08 082008  0.83 100 0.84 006 0581000  0.60 2005 | 0.82 +0.00

Table 4: Testing the robustness on toy placeholders of the various models when trained various types of noisy facts
and evaluated on other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are
defined in Section 3.5 of the main paper.



Accuracy

CLUTTR, Fig. 7

Systematic Generalization - Comparison with different embedding policies Systematic Generalization - Comparison with different embedding policies
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Figure 7: Systematic Generalization comparison with different Embedding policies
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Van Schijndel et al., 2019

32 VP Coord (short)
10 VP Coord (short) 1096
10%8 1084
104 1072
1020 1080
10% 108]0bj Rel Within (no that)
Obj Rel Within (no that)
1012 Reflexives 10%
Obj Rels Across
VP Coord (long) Reflexives/
108 1024/0bj Rel Across (no that)
Obj Rels/VP Coord (long)
104 1012 Subj Rel/Prep/Sent Comp|
0 0
1o GRNN  GPT BERT 19 GRNN  GPT BERT
(a) Human-like (b) 99.99%

Figure 2: Lines depict number of training tokens
needed for LSTMs to achieve human-like (left) or
99.99% accuracy (right) in each syntactic agreement
condition, according to our estimates. Bars depict the
amount of data on which each model was trained.
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