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1. Is variable binding 
necessary?

2. Do humans use a 
TPR-like mechanism?

3. Do current models 
approximate faithfulness?

4. Small group technical 
questions



Tensor Product Representations - why?

A one-sentence summary of the implications of this view for AI: 

connectionist models may well offer an opportunity to 
escape the brittleness of symbolic AI systems ...

… This paper offers an example of what such a collaboration might look like.
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[Paul Smolensky HLAI Keynote  (2019); Newell, A. (1980)]
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(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Representing Structured Objects

Tensor Product Representations - what?

[Smolensky 1990, pg. 169]
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[Soulos et al. 2019]

Tensor Product Representations - what?

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions
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Faithfulness

❌ ✅
New Role, New Representation!

Orthogonality

Linear Independence

Theorem 3.3, Section 3.2

Definition 2.8, Section 2.2.2



‘Faithful’ 👼🏾 
Tensor Product 
Representations

Tensor Products

Graceful Decay 😈



Variable Binding
1. Is Variable Binding Necessary?
2. Do humans use a TPR-like mechanism?
3. Do current models approximate faithfulness?
4. Small group technical questions
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(1) Symbolic Structure
(2) Encoding w/ TPRs

(3) Representation Proofs 
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(3) Representation Proofs : Give, the programming language

Theorem. The following linear transformation is a representation of the 
instruction Give.

Give : Σi fi ⊗ri ↦ Σi fi ⊗ri

Proof.
Recall that w/ TPRs we encode Give programs as conjunctions of filler/role 
decompositions, i.e. 〚p〛= Σi fi ⊗ri . Additionally, recall that: (Give p) → p

〚(Give p)〛 =  〚p〛
   =  Σi fi ⊗ri

     =  Give Σi fi ⊗ri

      =  Give 〚p〛

                  ☐



Discussion
- How does this scale to larger programs in Give?
- What if our programming language was more complicated?
- Other thoughts...



Benefits & Shortcomings of Tensor Decomposition
+ No impositions on structure
+ Faithful 
+ Variable binding
- Scaling up can be memory and compute demanding

○ Using ConceptNet as an example, ~4M nodes, ~40 relations might need to play around with 
pretty large tensors  



Holographic Reduced Representations
● Use Circular Convolutions and Correlations to associate/disassociate 

vectors that represent structures
● Requires a reconstruction system to sort through the noise
● Circular Conv. and Circular Corr. can be manipulated to query structure 

Circular Convolution Circular Correlation (Inverse)



Representations with HRR
Sequences

S(abcdefgh)=



Representations with HRR
Sequences

Variable Binding

Binding a to X and b to Y 



Representations with HRR
Sequences

Variable Binding

Frame-Slots Seeing frame: Dick saw Spot run

Running frame: Spot runs



Example: Filling a frame
Frame:

Job Application:

● Name
● Date

Filler

● September 1, 2020



Example: Filling a frame

0.06 0.05 -0.16

Job Application 0.35 0.28 0.11

Filler:               September 1, 2020

-0.22 0.04 0.10Date

0.19 -0.14 0.02Name

Frame:
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0.10

Date

0.06 0.05 -0.16
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-0.0146C:

Binding Date & Filler



Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C[1]=0.1*-0.16+0.05*-0.22+0.04*0.06=-0.0246

-0.0146C: -0.0246

Binding Date & Filler



Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C[2]=0.1*0.06+0.05*0.04+-0.16*-0.22=0.0432

-0.0146C: -0.0246 0.0432

Pairing Job Application + Date Field



Example: Filling a frame
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Date

0.06 0.05 -0.16

C: 0.0432-0.0246-0.0146
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Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C: 0.0432-0.0246-0.0146

C: {Job Application: Date
Add Name:

C: {Date: September 1, 2020}+ Name
C’:{Date: September 1, 2020, Name}
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C’: {Date: September 1, 2020, Name}



Example: Filling a frame

C’: {Job Application: Date, Name}

Add in Frame Label
C’: {Date: September 1, 2020, Name}+ Job Application
C’’:{Job Application: Date: September 1, 2020, Name}



Example: Filling a frame

C’’: {Job Application: Date:September 1,2020, Name}

Keep in mind representations are stored in a distributed manner
We used the “decoder” implicitly to clean the noise
Our representations are the result of an FFT
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Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Date + Noise



Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Date



Benefits of Holographic Representations 
● Format for the two input vectors is not specified, only independently distributed
● Space Efficiency: you just need the 2 vectors rather than the whole Tensor, result 

is the same size as the input
● Can be calculated in O(n log n) with FFT
● HRRs could retain ambiguity while processing ambiguous input (New York as 

City and as Name)
● Easy analysis of capacity, scaling and generalization



Shortcomings of Holographic Representations
● Decoder/cleaner must store all the possible outputs.  If it knows everything, 

then why not find a way to exploit it?
● Is the decoder static? How would you add some new domain?
● Elements of each vector must be independently distributed, but have 

meaningful features 
● Hit until you decode the correct thing? 
● Some operations to decode require additional machinery ( recursive)



Encoding Methods?
TPR

OTHER

HRR



Encoding Methods?

TPR
HRR

all other encodings 
of symbols in vector 

spaces



[END]


