
Tensor Product Representations
and Holographic Reduced Representations

Tiwalayo Eisape, Joey Velez-Ginorio, Pedro Colon-Hernandez
{eisape, joeyv, pe2517}@mit.edu

Smolensky, 1990 & Plate, 1991

Neuro-symbolic Models for NLP (6.884), October 2, 2020

1. Introductions (us + 3 others) (11:35 - 11:40)

2. TPRs - why/what? (11:40 - 11:55)

3. Break out room (11:55 - 12:10 mins)
4. Discussion (12:10 - 12:20 mins)
5. [Early] Break (12:20 - 12:35)

6. TPR tutorial (12:35 - 12:50)

7. Discussion (12:50 - 12:55)

8. TPR Shortcomings; HRRs (12:55 - 1:10)

9. Discussion (1:10 - 1:25)

Outline

1. Introductions (us + 3 others) (11:35 - 11:40)

2. TPRs - why/what? (11:40 - 11:55)

3. Break out room (11:55 - 12:10 mins)
4. Full Group Discussion (12:10 - 12:20 mins)
5. [Early] Break (12:20 - 12:35)

6. TPR tutorial (12:35 - 12:50)

7. Full Group Discussion (12:50 - 12:55)

8. TPR Shortcomings; HRRs (12:55 - 1:10)

9. Full Group Discussion (1:10 - 1:25)

Outline

1. Is variable binding
necessary?

2. Do humans use a
TPR-like mechanism?

3. Do current models
approximate faithfulness?

4. Small group technical
questions

Tensor Product Representations - why?

A one-sentence summary of the implications of this view for AI:

connectionist models may well offer an opportunity to
escape the brittleness of symbolic AI systems ...

… This paper offers an example of what such a collaboration might look like.

Tensor Product Representations - why?

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

Symbol

Same

Tensor Product Representations - why?

Same

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

Symbol

Same

Tensor Product Representations - why?

Same

Role

Different

Different

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Representing Structured Objects

Tensor Product Representations - what?

[Smolensky 1990, pg. 169]

Tensor Product Representations - what?

Tensor Product Representations - what?

Fi
lle

r

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Tensor Product Representations - what?

Fi
lle

r

Role

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Tensor Product Representations - what?

Fi
lle

r

Role

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Tensor Product Representations - what?

Fi
lle

r

Role

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

[Soulos et al. 2019]

Tensor Product Representations - what?

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

‘Faithful’ 👼🏾
Tensor Product
Representations

Tensor Products

‘Faithful’ 👼🏾
Tensor Product
Representations

Tensor Products

Faithfulness

Faithfulness

Faithfulness

Faithfulness

❌

Faithfulness

❌ ✅
New Role, New Representation!

Faithfulness

❌ ✅
New Role, New Representation!

Faithfulness

❌ ✅
New Role, New Representation!

Orthogonality

Linear Independence

Theorem 3.3, Section 3.2

Definition 2.8, Section 2.2.2

‘Faithful’ 👼🏾
Tensor Product
Representations

Tensor Products

Graceful Decay 😈

Variable Binding
1. Is Variable Binding Necessary?
2. Do humans use a TPR-like mechanism?
3. Do current models approximate faithfulness?
4. Small group technical questions

Break

TPR Tutorial

TPR Tutorial

(1) Symbolic Structure

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs

(3) Representation Proofs

(1) Symbolic Structure : Give, the programming language

(1) Symbolic Structure : Give, the programming language

Syntax

p ::= (Give p) | ◻

(1) Symbolic Structure : Give, the programming language

Syntax

p ::= (Give p) | ◻

Examples

(Give ◻)
(Give (Give ◻))
(Give (Give (Give ◻))

(1) Symbolic Structure : Give, the programming language

Syntax

p ::= (Give p) | ◻

Semantics

(Give p) → p

p → p’
(Give p) → (Give p’)

Examples

(Give ◻)
(Give (Give ◻))
(Give (Give (Give ◻))

(1) Symbolic Structure : Give, the programming language

Syntax

p ::= (Give p) | ◻

Semantics

(Give p) → p

p → p’
(Give p) → (Give p’)

Examples

(Give ◻)
(Give (Give ◻))
(Give (Give (Give ◻))

→
◻→
◻→
◻

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { i1 , i2 , i3 , i4 }

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { i1 , i2 , i3 , i4 }

Roles

r = { Give , ◻ , ε }

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { i1 , i2 , i3 , i4 }

Roles

r = { Give , ◻ , ε }

(Give (Give (Give ◻))) = (i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻)

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { i1 , i2 , i3 , i4 }

Roles

r = { Give , ◻ , ε }

(Give (Give (Give ◻))) = (i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻) (Give (Give ◻)) = (i1: ε) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻)

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { i1 , i2 , i3 , i4 }

Roles

r = { Give , ◻ , ε }

(Give (Give (Give ◻))) = (i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻) (Give (Give ◻)) = (i1: ε) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻) (Give ◻) = (i1: ε) ∧ (i2: ε) ∧ (i3:Give) ∧ (i4:
◻)

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { , , , }
 i1 i2 i3 i4

Roles

r = { Give , ◻ , ε }

〚(Give (Give (Give ◻)))〛 = 〚(i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻)〛

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]

[0]
[0]
[1]
[0]

[0]
[0]
[0]
[1]

[1 0 0] [0 1 0]

[0 0 1]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { , , , }
 i1 i2 i3 i4

Roles

r = { Give , ◻ , ε }

〚(Give (Give (Give ◻)))〛 = 〚(i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻)〛

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

 = (i1⊗Give) + (i2⊗Give) + (i3⊗Give) + (i4⊗◻)

[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]

[0]
[0]
[1]
[0]

[0]
[0]
[0]
[1]

[1 0 0] [0 1 0]

[0 0 1]

(2) Encoding w/ TPRs : Give, the programming language
A TPR is a mapping, 〚p〛 : Give4 ↦ R4x3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give4 denotes the set of all Give programs up to length 4.

Give4 = { ◻, (Give ◻), (Give (Give ◻)), (Give (Give (Give ◻)))}

R4x3 = { , , , ….. }
[0
[1
[1
[0

Fillers

f = { , , , }
 i1 i2 i3 i4

Roles

r = { Give , ◻ , ε }

〚(Give (Give (Give ◻)))〛 = 〚(i1:Give) ∧ (i2:Give) ∧ (i3:Give) ∧ (i4:
◻)〛

 0
 1
 1
 0

0]
1]
1]
2]

[1
[0
[1
[2

 2
 1
 0
 0

0]
0]
1]
1]

[2
[1
[1
[2

 2
 1
 0
0

1]
3]
1]
0]

[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]

[0]
[0]
[1]
[0]

[0]
[0]
[0]
[1]

[1 0 0] [0 1 0]

[0 0 1]

 = [1
[1
[1
[0

 0
 0
 0
 1

0]
0]
0]
0]

 = (i1⊗Give) + (i2⊗Give) + (i3⊗Give) + (i4⊗◻)

(3) Representation Proofs : Give, the programming language

Theorem. The following linear transformation is a representation of the
instruction Give.

Give : Σi fi ⊗ri ↦ Σi fi ⊗ri

(3) Representation Proofs : Give, the programming language

Theorem. The following linear transformation is a representation of the
instruction Give.

Give : Σi fi ⊗ri ↦ Σi fi ⊗ri

Proof.
Recall that w/ TPRs we encode Give programs as conjunctions of filler/role
decompositions, i.e. 〚p〛= Σi fi ⊗ri . Additionally, recall that: (Give p) → p

〚(Give p)〛 = 〚p〛
 = Σi fi ⊗ri

 = Give Σi fi ⊗ri

 = Give 〚p〛

 ☐

Discussion
- How does this scale to larger programs in Give?
- What if our programming language was more complicated?
- Other thoughts...

Benefits & Shortcomings of Tensor Decomposition
+ No impositions on structure
+ Faithful
+ Variable binding
- Scaling up can be memory and compute demanding

○ Using ConceptNet as an example, ~4M nodes, ~40 relations might need to play around with
pretty large tensors

Holographic Reduced Representations
● Use Circular Convolutions and Correlations to associate/disassociate

vectors that represent structures
● Requires a reconstruction system to sort through the noise
● Circular Conv. and Circular Corr. can be manipulated to query structure

Circular Convolution Circular Correlation (Inverse)

Representations with HRR
Sequences

S(abcdefgh)=

Representations with HRR
Sequences

Variable Binding

Binding a to X and b to Y

Representations with HRR
Sequences

Variable Binding

Frame-Slots Seeing frame: Dick saw Spot run

Running frame: Spot runs

Example: Filling a frame
Frame:

Job Application:

● Name
● Date

Filler

● September 1, 2020

Example: Filling a frame

0.06 0.05 -0.16

Job Application 0.35 0.28 0.11

Filler: September 1, 2020

-0.22 0.04 0.10Date

0.19 -0.14 0.02Name

Frame:

Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C[0]=0.1*0.05+-0.16*0.04+-0.22*0.06+=-0.0146

-0.0146C:

Binding Date & Filler

Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C[1]=0.1*-0.16+0.05*-0.22+0.04*0.06=-0.0246

-0.0146C: -0.0246

Binding Date & Filler

Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C[2]=0.1*0.06+0.05*0.04+-0.16*-0.22=0.0432

-0.0146C: -0.0246 0.0432

Pairing Job Application + Date Field

Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C: 0.0432-0.0246-0.0146

C: {Date:September 1,2020}

Example: Filling a frame
September 1, 2020

-0.22

0.04

0.10

Date

0.06 0.05 -0.16

C: 0.0432-0.0246-0.0146

C: {Job Application: Date
Add Name:

C: {Date: September 1, 2020}+ Name
C’:{Date: September 1, 2020, Name}

Example: Filling a frame

C’: {Date: September 1, 2020, Name}

Example: Filling a frame

C’: {Job Application: Date, Name}

Add in Frame Label
C’: {Date: September 1, 2020, Name}+ Job Application
C’’:{Job Application: Date: September 1, 2020, Name}

Example: Filling a frame

C’’: {Job Application: Date:September 1,2020, Name}

Keep in mind representations are stored in a distributed manner
We used the “decoder” implicitly to clean the noise
Our representations are the result of an FFT

Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Job Application: Name,
Date:January 1,

Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Date:January 1,

Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Date + Noise

Example Application for Holographic Representation
Best role finder:

Job Application: Name, Date

January, 1, 2021

Date

Benefits of Holographic Representations
● Format for the two input vectors is not specified, only independently distributed
● Space Efficiency: you just need the 2 vectors rather than the whole Tensor, result

is the same size as the input
● Can be calculated in O(n log n) with FFT
● HRRs could retain ambiguity while processing ambiguous input (New York as

City and as Name)
● Easy analysis of capacity, scaling and generalization

Shortcomings of Holographic Representations
● Decoder/cleaner must store all the possible outputs. If it knows everything,

then why not find a way to exploit it?
● Is the decoder static? How would you add some new domain?
● Elements of each vector must be independently distributed, but have

meaningful features
● Hit until you decode the correct thing?
● Some operations to decode require additional machinery (recursive)

Encoding Methods?
TPR

OTHER

HRR

Encoding Methods?

TPR
HRR

all other encodings
of symbols in vector

spaces

[END]

