Tensor Product Representations

 and Holographic Reduced Representations Smolensky, 1990 \& Plate, 1991Tiwalayo Eisape, Joey Velez-Ginorio, Pedro Colon-Hernandez \{eisape, joeyv, pe2517\}@mit.edu

Outline

Introductions (us +3 others) (11:35-11:40)

TPRs - why/what? (11:40-11:55)

Break out room (11:55-12:10 mins)
Discussion (12:10-12:20 mins)
[Early] Break (12:20-12:35)

TPR tutorial (12:35-12:50)

Discussion (12:50-12:55)

TPR Shortcomings; HRRs (12:55-1:10)

Discussion (1:10-1:25)

Outline

1. Is variable binding necessary?
2. Do humans use a TPR-like mechanism?
3. Do current models approximate faithfulness?
4. Small group technical questions

Full Group Discussion (12:50-12:55)

TPR Shortcomings; HRRs (12:55-1:10)

Full Group Discussion (1:10-1:25)

Tensor Product Representations - why?

A one-sentence summary of the implications of this view for Al :
connectionist models may well offer an opportunity to escape the brittleness of symbolic Al systems ...

This paper offers an example of what such a collaboration might look like.

Tensor Product Representations - why?

Jay is loved by Kay. Who loves Jay? Kay.

- Jay in role: subject of passive sentence
- Jay in role: object of wh-question
- Kay in role: object of passive by-phrase
- Kay in role: answer to wh-question

Tensor Product Representations - why?

Tensor Product Representations - why?

Tensor Product Representations - what?

Representing Structured Objects

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

Tensor Product Representations - what?

Tensor Product Representations - what?

Tensor Product Representations - what?

Tensor Product Representations - what?

Tensor Product Representations - what?

Tensor Product Representations - what?

(3) representing conjunctions

Tensor Products

'Faithful' Tensor Product Representations

Tensor Products

Faithfulness

$$
\begin{array}{l|llll}
\text { © } & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
\text { (2) } & & & & \\
\hline & \odot & 0 & 0 & 0
\end{array}
$$

Faithfulness

Faithfulness

Faithfulness

Faithfulness

Faithfulness

Faithfulness

Orthogonality
Theorem 3.3, Section 3.2

Linear Independence
Definition 2.8, Section 2.2.2

Tensor Products

'Faithful'
 Tensor Product Representations

Graceful Decay

Variable Binding

1. Is Variable Binding Necessary?
2. Do humans use a TPR-like mechanism?
3. Do current models approximate faithfulness?
4. Small group technical questions

Gary Marcus @GaryMarcus • Feb 6, 2018

completely agreed, @tdietterich! lots of cases where variable binding is absolutely necessary. no binding, no AGI.

Thomas G. Dietterich @tdietterich•Feb 6, 2018
Replying to @tdietterich @jahendler and @GaryMarcus
There are lots of cases where binding appears to be necessary. Ex 1: If you put X into your pocket and then walk to work, you will be able to take X out of your pocket at work. Ex 2: If I ask you query X and you know X, you will tell me X, forall X.

Break

TPR Tutorial

TPR Tutorial

(1) Symbolic Structure

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs
(3) Representation Proofs
(1) Symbolic Structure : Give, the programming language

(1) Symbolic Structure : Give, the programming language

```
Syntax
p ::= (Give p) |
```


(1) Symbolic Structure : Give, the programming language

Syntax
 p ::= (Give p) |

Examples
(Give \square)
(Give (Give \square))
(Give (Give (Give \square))

(1) Symbolic Structure : Give, the programming language

```
Syntax
p ::= (Give p) |
```


Examples

(Give \square)
(Give (Give \square))
(Give (Give (Give \square))

Semantics

(Give p) $\rightarrow p$

$$
\frac{\mathrm{p} \rightarrow \mathrm{p}^{\prime}}{(\text { Give } \mathrm{p}) \rightarrow\left(\text { Give } \mathrm{p}^{\prime}\right)}
$$

(1) Symbolic Structure : Give, the programming language

Semantics

$$
\begin{gathered}
(\text { Give } p) \rightarrow p \\
p \rightarrow p^{\prime} \\
(\text { Give } p) \rightarrow\left(\text { Give } p^{\prime}\right)
\end{gathered}
$$

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give 4 denotes the set of all Give programs up to length 4.

$$
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {)))\} }
$$

(2) Encoding w/TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give 4 denotes the set of all Give programs up to length 4.

$$
\begin{gathered}
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) }\} \\
R^{4 \times 3}=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots} \\
{\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

(2) Encoding w/TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give 4 denotes the set of all Give programs up to length 4.

$$
\begin{gathered}
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) }\} \\
R^{4 \times 3}=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],} & {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots} \\
{\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

Fillers

$f=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$

(2) Encoding w/TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give 4 denotes the set of all Give programs up to length 4.

$$
\begin{gathered}
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) }\} \\
R^{4 \times 3}=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],} & {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots} \\
{\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

Fillers

$f=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$

$$
\begin{aligned}
& \text { Roles } \\
& r=\{\text { Give }, \square, \varepsilon\}
\end{aligned}
$$

(2) Encoding w/TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

$$
\begin{gathered}
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) }\} \\
R^{4 \times 3}=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],} & {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots} \\
{\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

Fillers

$f=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \quad($ Give $($ Give $($ Give $\square)))=\left(i_{1}\right.$:Give $) \wedge\left(i_{2}:\right.$ Give $) \wedge\left(i_{3}:\right.$ Give $) \wedge\left(i_{4}:\right.$

Roles
$r=\{$ Give, $\square, \varepsilon\}$

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

$$
\begin{aligned}
& \text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) \} } \\
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]}
\end{aligned}
$$

Fillers

$f=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \quad$ (Give (Give (Give $\left.\left.\square\right)\right)=\left(i_{1}:\right.$ Give $) \wedge\left(i_{2}:\right.$ Give $) \wedge\left(i_{3}:\right.$ Give $) \wedge\left(i_{4}:\right.$]) $($ Give $($ Give $\square))=\left(\mathrm{i}_{1}: \varepsilon\right) \wedge\left(\mathrm{i}_{2}:\right.$ Give $) \wedge\left(\mathrm{i}_{3}\right.$:Give $) \wedge\left(\mathrm{i}_{4}\right.$:

Roles

$r=\{$ Give, $\square, \varepsilon\}$

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

$$
\begin{aligned}
& \text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) \} } \\
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
& \left.R^{4 \times 3}=\left\{\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], \ldots . .\right\} \\
& {\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Fillers

$f=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$
(Give (Give $($ Give $\square)))=\left(i_{1}:\right.$ Give $) \wedge\left(i_{2}:\right.$ Give $) \wedge\left(i_{3}\right.$:Give) $\wedge\left(i_{4}\right.$:
$\square)($ Give $($ Give $\square))=\left(i_{1}: \varepsilon\right) \wedge\left(i_{2}:\right.$ Give $) \wedge\left(i_{3}\right.$:Give $) \wedge\left(i_{4}:\right.$
Roles

$$
(\text { Give } \square)=\left(\mathrm{i}_{1}: \varepsilon\right) \wedge\left(\mathrm{i}_{2}: \varepsilon\right) \wedge\left(\mathrm{i}_{3}: \text { Give }\right) \wedge\left(\mathrm{i}_{4}:\right.
$$

$r=\{$ Give $, \square, \varepsilon\}$

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, 【p】: Give ${ }_{4} \mapsto R^{4 \times 3}$, from a set of symbols to a vector space via filler/role decompositions. Here, Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

$$
\begin{gathered}
\text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) }\} \\
R^{4 \times 3}=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],} & {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots} \\
{\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

Fillers

$\begin{array}{ccc}{[1]} & {[0]} & {[0]} \\ {[0]} & {[0]} \\ {[0]} & {[0]} & {[0]} \\ {[0]} & {[0]} & {[1]} \\ {[0]} & {[0]} & \llbracket(\text { Give }(\text { Give }(\text { Give } \square))) \rrbracket=\llbracket\left(i_{1}: \text { Give }\right) \wedge\left(i_{2}: \text { Give }\right) \wedge\left(i_{3}: \text { Give }\right) \wedge\left(i_{4} \text { : }\right.\end{array}$ $\mathrm{f}= \begin{cases}{[0]} \\ {[0]} & {[0],\left[\begin{array}{ll}{[1]} \\ {[0]}\end{array},\left[\begin{array}{ll}{[0]}\end{array}\right\}\right.} \\ {\left[\begin{array}{l}{[0]}\end{array}\right]}\end{cases}$

Roles

$r=\left\{\begin{array}{lll}{[10} & 0\end{array}\right]\left[\begin{array}{lll}{[01} & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$

（2）Encoding w／TPRs ：Give，the programming language

A TPR is a mapping，【p】：Give ${ }_{4} \mapsto R^{4 \times 3}$ ，from a set of symbols to a vector space via filler／role decompositions．Here，Give 4 denotes the set of all Give programs up to length 4.

$$
\begin{aligned}
& \text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) \} } \\
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
& \left.R^{4 \times 3}=\left\{\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], \ldots . .\right\} \\
& {\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Fillers

$\begin{array}{llll}{[1]} & {[0]} & {[0]} & {[0]} \\ {[0]} & {[1]} & {[0]} & {[0]}\end{array}$
$\left[\begin{array}{llll}{[0]} & {[0]} & {[1]} & {[0]}\end{array}\right.$
【（Give（Give（Give \square ）））
）］
$\rrbracket=\llbracket\left(i_{1}:\right.$ Give $) \wedge\left(i_{2}:\right.$ Give $) \wedge\left(i_{3}\right.$ ：Give $) \wedge\left(i_{4}:\right.$ $=\left(\mathbf{i}_{1} \otimes\right.$ Give $)+\left(\mathbf{i}_{2} \otimes\right.$ Give $)+\left(\mathbf{i}_{3} \otimes\right.$ Give $)+\left(\mathbf{i}_{4} \otimes \square\right)$

Roles

$r=\left\{\begin{array}{lll}{[10} & 0\end{array}\right]\left[\begin{array}{lll}{[01} & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$

（2）Encoding w／TPRs ：Give，the programming language

A TPR is a mapping，【p】：Give ${ }_{4} \mapsto R^{4 \times 3}$ ，from a set of symbols to a vector space via filler／role decompositions．Here，Give ${ }_{4}$ denotes the set of all Give programs up to length 4.

$$
\begin{aligned}
& \text { Give }_{4}=\{\square \text {, (Give } \square \text {), (Give (Give } \square \text {)), (Give (Give (Give } \square \text {))) \} } \\
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]} \\
& \left.R^{4 \times 3}=\left\{\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 3
\end{array}\right], \ldots . .\right\} \\
& {\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fillers } \\
& \left.\begin{array}{cccc}
{[1]} & {[0]} & {[0]} & {[0]} \\
{[0]} & {[1]} & {[0]} & {[0]} \\
{[0]} & {[0]} & {[1]} \\
{[0]} & {[0],} \\
i_{1} & i_{2} & {[0]} & i_{3} \\
\hline & i_{4}
\end{array}\right\} \\
& \begin{array}{l}
\text { 【(Give (Give (Give } \square \text {))) } \\
\square) \rrbracket
\end{array} \\
& \rrbracket=\llbracket\left(i_{1} \text { :Give }\right) \wedge\left(i_{2} \text { :Give }\right) \wedge\left(i_{3} \text { :Give }\right) \wedge\left(i_{4}:\right. \\
& =\left(\mathbf{i}_{\mathbf{1}} \otimes \text { Give }\right)+\left(\mathbf{i}_{\mathbf{2}} \otimes \text { Give }\right)+\left(\mathbf{i}_{\mathbf{3}} \otimes \text { Give }\right)+\left(\mathbf{i}_{\mathbf{4}}^{\otimes} \square\right) \\
& =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& \text { Roles } \\
& r=\left\{\begin{array}{llll}
{[10} & 0
\end{array}\right],\left[\begin{array}{llll}
\text { Give } & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(3) Representation Proofs: Give, the programming language

Theorem. The following linear transformation is a representation of the instruction Give.

Give : $\sum_{i} \mathbf{f}_{\mathbf{i}} \otimes \mathbf{r}_{\mathbf{i}} \mapsto \sum_{i} \mathbf{f}_{\mathbf{i}} \otimes \mathbf{r}_{\mathbf{i}}$

（3）Representation Proofs ：Give，the programming language

Theorem．The following linear transformation is a representation of the instruction Give．

$$
\text { Give : } \sum_{i} \mathbf{f}_{i} \otimes r_{i} \mapsto \sum_{i} \mathbf{f}_{i} \otimes r_{i}
$$

Proof．
Recall that w／TPRs we encode Give programs as conjunctions of filler／role decompositions，i．e．$\llbracket p \rrbracket=\sum_{i} \mathbf{f}_{\mathbf{i}} \otimes \mathbf{r}_{\mathbf{i}}$ ．Additionally，recall that：（Give p$) \rightarrow \mathrm{p}$

$$
\begin{aligned}
& \text { 【(Give p)】 = 【p】 } \\
& =\Sigma_{i} \mathbf{f}_{i} \otimes r_{i} \\
& =\text { Give } \sum_{i} \mathbf{f}_{i} \otimes r_{i} \\
& \text { = Give 【p】 }
\end{aligned}
$$

Discussion

- How does this scale to larger programs in Give?
- What if our programming language was more complicated?
- Other thoughts...

Benefits \& Shortcomings of Tensor Decomposition

+ No impositions on structure
+ Faithful
+ Variable binding
- Scaling up can be memory and compute demanding
- Using ConceptNet as an example, $\sim 4 \mathrm{M}$ nodes, ~ 40 relations might need to play around with pretty large tensors

Holographic Reduced Representations

- Use Circular Convolutions and Correlations to associate/disassociate vectors that represent structures
- Requires a reconstruction system to sort through the noise
- Circular Conv. and Circular Corr. can be manipulated to query structure

Circular Convolution

Representations with HRR

Sequences

$$
\begin{aligned}
\mathbf{s}_{a b c} & =\mathbf{a}+\mathbf{a} \odot \mathbf{b}+\mathbf{a} \odot \mathbf{b} \odot \mathbf{c} \\
\mathbf{s}_{d e} & =\mathbf{d}+\mathbf{d} \odot \mathbf{e} \\
\mathbf{s}_{\boldsymbol{f} \boldsymbol{h}} & =\mathbf{f}+\mathbf{f} \odot \mathbf{g}+\mathbf{f} \odot \mathbf{g} \odot \mathbf{h}
\end{aligned}
$$

$\mathrm{S}($ abcdefgh $)=\mathbf{s}_{\boldsymbol{a} b \boldsymbol{c}}+\mathbf{s}_{\boldsymbol{a} b \boldsymbol{c}} \odot \mathbf{s}_{\boldsymbol{d} e}+\mathbf{s}_{a b c} \odot \mathbf{s}_{d e} \odot \mathbf{s}_{f g h}$.

Representations with HRR

Sequences

Variable Binding

$$
\tilde{\mathbf{t}}=\tilde{\mathbf{x}} \circledast \tilde{\mathbf{a}}+\tilde{\mathbf{y}} \circledast \tilde{\mathbf{b}} .
$$

Binding a to X and b to Y

Representations with HRR

Running frame: Spot runs

Sequences

Variable Binding
Frame-Slots

$$
\mathbf{t}_{\text {running }}=\mathbf{l}_{\text {run }}+\mathbf{r}_{\text {agent }} \oplus \mathbf{f}_{\text {spot }}
$$

Seeing frame: Dick saw Spot run

$$
\begin{aligned}
\mathbf{t}_{\text {seeing }}= & \mathbf{l}_{\text {see }}+\mathbf{r}_{\text {agent }} \odot \mathbf{f}_{\text {dick }}+\mathbf{r}_{\text {object }} \odot \mathbf{t}_{\text {running }} \\
= & \mathbf{l}_{\text {see }}+\mathbf{r}_{\text {agent }} \odot \mathbf{f}_{\text {dick }} \\
& +\mathbf{r}_{\text {object }} \odot\left(\mathbf{l}_{r u n}+\mathbf{r}_{\text {agent }} \odot \mathbf{f}_{\text {spot }}\right)
\end{aligned}
$$

Example: Filling a frame

Frame:
Job Application:

- Name
- Date

Filler

- September 1, 2020

Example: Filling a frame

| Frame: | Job Application | 0.35 | 0.28 |
| :--- | :--- | :--- | :--- |$\quad 0.11$

Example: Filling a frame

Binding Date \& Filler

September 1, 2020
$C[0]=0.1 * 0.05+-0.16 * 0.04+-0.22 * 0.06+=-0.0146$
C: $\quad-0.0146$

Example: Filling a frame

Binding Date \& Filler

September 1, 2020
$C[1]=0.1^{*}-0.16+0.05^{*}-0.22+0.04^{*} 0.06=-0.0246$

C:	-0.0146	-0.0246

Example: Filling a frame

Pairing Job Application + Date Field

September 1, 2020

Example: Filling a frame

September 1, 2020

C: \quad| -0.0146 | -0.0246 | 0.0432 |
| :--- | :--- | :--- |

C: \{Date:September 1,2020\}

Example: Filling a frame

September 1, 2020

Example: Filling a frame

C': \{Date: September 1, 2020, Name\}

Example: Filling a frame

Example: Filling a frame

C": \{Job Application: Date:September 1,2020, Name\}

Keep in mind representations are stored in a distributed manner We used the "decoder" implicitly to clean the noise Our representations are the result of an FFT

Example Application for Holographic Representation

Best role finder:

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

January, 1, 2021

Benefits of Holographic Representations

- Format for the two input vectors is not specified, only independently distributed
- Space Efficiency: you just need the 2 vectors rather than the whole Tensor, result is the same size as the input
- Can be calculated in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ with FFT
- HRRs could retain ambiguity while processing ambiguous input (New York as City and as Name)
- Easy analysis of capacity, scaling and generalization

Shortcomings of Holographic Representations

- Decoder/cleaner must store all the possible outputs. If it knows everything, then why not find a way to exploit it?
- Is the decoder static? How would you add some new domain?
- Elements of each vector must be independently distributed, but have meaningful features
- Hit until you decode the correct thing?
- Some operations to decode require additional machinery (recursive)

Figure 5: A chunked sequence readout machine.

Encoding Methods?

Encoding Methods?

[END]

