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Abstract 
 

In this work we use the Direct Simulation Monte Carlo (DSMC) method to simulate 

Chemical Vapor Deposition (CVD) in small scale trenches. Transport in the gas is 

decoupled from the boundary movement by assuming that the two processes evolve at 

different timescales. Consequently, the deposition problem is solved by the successive 

application of a DSMC gas transport model and a boundary movement model.  

The DSMC gas transport model used is standard with the exception of the ability to 

model arbitrarily shaped 2D surface boundaries. In addition, a method is proposed and 

used to incorporate non-linear reaction rate correlations into the gas surface interaction. 

Our DSMC results of the complete model are extensively compared to analytical and 

theoretical results to validate the approach and the implementation.  

The Level Set method is incorporated in our work to produce a sophisticated boundary 

movement model. This model is also verified by comparing our results to published 

results. Finally, concepts form the Level Set methodology were used to dramatically 

improve the performance of the DMSC transport model when dealing with complex 

boundaries at low Knudsen Numbers.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Introduction�

Chemical Vapor Deposition (CVD) is a manufacturing process used for growing thin 

layers of deposited material on pre-existing surfaces. CVD is used in many industries but 

it is of predominant importance in the semi-conductor industry because it is one of the 

few processes that allow the creation of high quality thin layers of specialized materials 

on the micro-meter scale. Figure 1 shows a sketch of an underlying substrate that has a 

layer of material grown over it using CVD. In a typical integrated-circuit application the 

dimensions of these features would be in the micrometer scale and the trench would be 

created by photolithography or other similar etching processes. The deposited layer is 

usually required to be very uniform and free of voids and cracks (as much as possible). 

As such, much effort is expended into optimizing the manufacturing process to ensure 

that the resulting profiles are acceptable with minimum use of time and materials.  

 

Deposited Layer

Gas

Substrate

 

Figure 1: Illustration of layer growth over a substrate using chemical vapor deposition. Note the 
uneven thickness of the growth depending on the location along the trench.  
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The ability to accurately predict the shape of the deposited profile based on the process 

parameters is a very important factor in reducing CVD costs by reducing the guess-work 

associated with efficiently producing acceptable quality features that are free of voids or 

other non-uniformities. Other applications that need accurate CVD models include the 

extraction of reaction parameters of active species. In such applications measurements of 

deposition profiles are compared with profile predictions to extract values for reaction 

probabilities and other related properties.  

 

1.2  Previous Work and Background  

References [5] [6] [15] give a good overview of the CVD process and the manner in 

which accurate modeling of transport within the feature affects the ability to produce 

integrated circuits with acceptable properties and cost. The ratio of the mean free path of 

the gas above the trench being studied to the characteristic length of the feature is the 

single most important factor in determining which model to use in describing the growth 

of the deposition layer. This ratio is known as the Knudsen Number (Kn) and varies 

inversely with the overall pressure of the gas above the trench. The transport of the 

deposition molecules to the substrate varies from being collision dominated at high 

pressures (Kn<<1) to being exclusively determined by geometric factors and boundary 

conditions at lower pressure (Kn>>1). A more complex behavior that is hard to predict 

appears in the regions between these extremes. References [7] [8]&[9] discuss the 

physics of gas transport as a function of the Knudsen number.  

 

In Low Pressure Chemical Vapor Deposition (LPCVD) the mean free path between gas 

molecule collisions is large compared to the characteristic dimensions of trench and as a 

result the deposition rate at different points in the trench depends on the velocity 

distribution of molecules and the manner different parts of the trench “shadow” each 

other. The equations that describe transport in this Knudsen number regime are similar to 

ones used in radiation heat transfer and are discussed in detail in [1] and [13]. LPCVD is 

commonly used in industry and very powerful deposition models have been successfully 

applied to many applications including 2D and 3D features as well as complex gas-

surface chemical reaction models.  
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In Atmospheric Pressure Chemical Vapor Deposition (APCVD) the mean free path is 

very small compared to trench dimensions and the gas transport is determined by the 

standard Navier-Stokes flow model and the continuum diffusion model. Standard 

methods for solving these equations are well known and have been applied to the solution 

of feature-scale transport modeling for many types of physical problems and gas-surface 

chemistries [11],[10] and [16].  

 

In this work we are interested in CVD problems that lie between the two aforementioned 

cases and have Knudsen numbers that are finite and gas transport is only properly 

described using the Boltzmann Equation. The Boltzmann Equation is a high-dimensional 

integral-differential equation that can only be solved exactly in a very limited set of 

special cases. There have been a number of attempts to numerically solve the Boltzmann 

equation that fall into two broad categories. The first category of methods try to make 

significant simplifications to the physical processes by making broad assumptions that 

allow a quick solution of the transport problem. The most notable work in this class is the 

Simplified Monte Carlo (SMC) technique by Akiyama and co-workers [2] which shows 

results that seem to be very promising. Unfortunately, this approach and others like it are 

always limited by the simplifying assumptions that they make and give quite erroneous 

results when the former are not satisfied. The other category of methods try to solve the 

full transport model making no simplifying assumptions usually using the Direct 

Simulation Monte Carlo (DSMC) method ([4] [3] and [12]). DSMC is the fastest 

currently available method for solving the Boltzmann Equation. It was recently shown to 

provide accurate solutions of the Boltzmann Equation in the limit of infinitesimal 

discretization [14].  Unfortunately previous attempts to use DSMC to model the CVD 

problem have not always given consistent results and suffered from fairly crude surface 

and chemistry models. In this work we develop a reliable CVD profile growth model 

based on the DSMC incorporating sophisticated chemistry and surface movement 

models.  
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1.3  Thesis Overview 

The presentation of our work will be done in tree major parts. In Chapter 2 we describe 

our methodology for simulating feature scale surface evolution and present the details of 

the DSMC gas transport model used in our method. We will also detail the method 

through which we incorporate non-linear chemistry models into DSMC. In Chapter 3 we 

give a number of examples that verify our methodology by comparing our results against 

exact solutions and other numerical methods in various flow regimes. In addition, we will 

present a number of trends that show the behavior of our model over a number of 

important deposition parameters and compare the trends with previous results. Chapter 4 

will be primarily devoted to a detailed discussion of the models used to simulate the 

surface evolution with a particular emphasis on the Level Set Method. The fifth and last 

chapter gives a summary of our work and presents possible extensions.  
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CHAPTER 2: METHODOLOGY�

 

The goal of this chapter is to present our methodology for simulating chemical vapor 

deposition in small scale trenches using the DSMC. This chapter will start with an 

overview of the methodology outlining the major steps in the simulation process along 

with how they fit with each other. The rest of this chapter will be dedicated to explaining 

the details of two key parts of our methodology, namely, the DSMC model we are using 

for gas transport and the non-linear chemistry model for surface interaction. The other 

major part of the methodology, namely the surface evolution model, along with detailed 

examples, will be presented in Chapter 4. 

 

2.1 Methodology Overview 

The basic approach we take here is to develop separate models for the gas transport using 

DSMC and use the resulting deposition information in a separate surface evolution 

model. An important assumption we are making here is that the surface profile is 

stationary in the time scale relevant for transport. Such an assumption has been used in 

previous deposition models and has so far been shown to be valid in many applications 

[7]. In our methodology the simulation domain is terminated by boundary conditions 

imposed by the large reaction vessel which provides a fresh stream of reactants. There 

have been many attempts at creating integrated reactor/trench-scale models that directly 

couple the deposition simulation to the reactor volume [6][8][13] though in many cases 

such models are not necessary and are beyond the scope of this work. 
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Figure 1: Block diagrams of procedure used in simulating CVD using DSMC with a non-
linear chemistry model. 

 

Figure 1 shows a flow diagram of our methodology for calculating the profile resulting 

from CVD after a finite amount of time tfinal using S steps. We start by selecting an initial 

set of parameters that control how refined our profile and DSMC models are. The 

selection of the proper parameters to give converged results requires some experience and 

in general the calculation will be repeated with more detailed parameters to ensure the 

final profile is converged. An initial profile is created based on the problem specifications 

(Step 1 in Figure 1), which is used as an initial step of our DMSC calculation. The 

DSMC calculation (Step 2) is run long enough to ensure converged results are reached by 

meeting two important requirements. The first is that the steady state is reached as judged 

by the change of the total deposition rate over time. The other requirement is that the 

chemistry model –if one is used- is converged as will be explained in section 3. The 

resulting deposition rate is then used by the surface model (Step 3) to create the surface 

resulting after time= tfinal /S. The boundary model includes provisions for ensuring the 

properties of the resulting surface fit within the solution parameters specified at the start 

(for example the length of all segments<maxLength and so on). These steps are repeated 
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S number of times until the surface profile at end of time tfinal is found. The whole process 

can be repeated with more refined parameters to confirm the convergence of the final 

deposition profile.  

 

2.2  DSMC Gas Transport and Deposition Model 

As mentioned before, the Direct Simulation Monte Carlo method is used in this work to 

account for the gas transport in our CVD trench model. DSMC was invented by Bird [1] 

in the 1960’s as a method of numerically solving the Boltzmann Equation for a wide 

variety of conditions. The DSMC method is fairly well documented (See 

[1],[9],[10],[11],[12]&[13]) and so the next sections will only discuss aspects of our 

implementation that are special or non-standard.  

Although the particle dynamics in DSMC are three dimensional, this thesis considers 

infinite trenches for which a two-dimensional model is sufficient. Nothing fundamentally 

limits the applicability of our work to 2D problems, although in 3D there may be some 

complications with our boundary movement model and of course , the computation cost 

will increase. In Chapter 5 we discuss to possible ways for extending our methodology to 

handle these cases.  
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Figure 2: Plot showing the segments of a deposition profile and two different boundary 
conditions of the DSMC domain. A cyclic (periodic) boundary condition is also applied in 
the Z-Direction to simulate the effect of an infinite trench.  

Figure 2 shows a sketch of the domain and boundaries of a typical DSMC run used in our 

methodology. The domain is divided into a uniform 2D array of square cells of side 

lengths of  the mean free path ( ). The trench segments are free to move in the domain 

across any of the cells and to ensure that the cell collisions are processed properly, the 

volume of all cells is calculated using a simple Monte Carlo integration technique at the 

start of every DSMC step. The domain height in the z-direction is also set to roughly   

and a cyclic boundary condition is applied in that direction to simulate an infinitely long 

trench.  The length of the cell along the z-direction is not important because this is 

fundamentally a 2D problem and in fact we could have totally ignored the positions and 

movement along this axis to save on computational resources with no effect on the 

results. Finally, our implementation is set up so that the gas particles in the domain can be 

divided into an arbitrary number of species that can be independently tracked at all times.  

 

The gas enters the simulation domain through the open wall boundary condition that is 

applied at the x=0 plane. Particles that cross this boundary and leave the domain of 

interest are deleted. This boundary condition essentially matches the simulation to an 



 21 

infinite reservoir (x<0) of specified number density, composition and overall average 

velocity. Incoming particles are created by filling a larger region (between 0 and -4 ) 

with particles with random initial positions and a Maxwell-Boltzmann velocity 

distribution every time step. The movement of these particles is tracked and the ones that 

drift into the DSMC domain are kept while retaining their velocity and new position. 

Although this is more complex than simply creating the particles at x=0 with a biased 

Boltzmann velocity distribution, it is done to ensure that the particles created not only 

have the correct distributions for position and velocity but also maintain the correct 

correlation between these two variables.  

 

The other set of boundaries are created by the trench (shown in red in Figure 2) and the 

symmetry segments at the ends of the domain (shown in blue). Gas particles in the 

domain are moved using the standard advection schemes used in DSMC. Collisions with 

the domain boundaries are also similar in spirit although the arbitrary deposition shape 

requires the discretization of the latter in a larger number as small linear segments. As the 

number of boundary segments grows large (in a typical trench there are 50-200 segments) 

the computational cost of the particle advection step is increased by the same degree. 

This can have a very significant effect on the speed of our transport model, particularly 

when we have a large number of segments and/or a low Knudsen number. As will be 

explained in Chapter 4, there is a simple optimization that can be made to dramatically 

improve the speed while making no compromises in particle movement accuracy.  

 

Symmetry boundary conditions can be simply applied by specularly reflecting gas 

particles that collide with the symmetry boundaries. In contrast, the treatment of particles 

that collide with the growth surface involves the absorption of particles with a certain 

predefined probability (called the Sticking Coefficient); the remainder are diffusely 

reflected back into the domain. In our calculations both the reactor and the trench are held 

at the same temperature though it is easy to have different temperature distributions or 

even non-Maxwell-Boltzmann velocity distributions inside the reactor domain (x<0).  

 

In DSMC, temperature, average velocity and number density of all cells and all species 
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are defined as statistical averages over small regions of space. In addition, statistics are 

collected for the number of particles that hit each growth surface segment and the number 

of particles that “stick”  to a segment. These are later used to infer the partial pressure of 

each species as well as the deposition rate at each segment.  

 

 

2.3  Deposition Surface Chemistry Models 

The emphasis in this work is to study CVD in features due to chemistry that is dominated 

by gas-surface interaction. There are methods to incorporate gas-gas chemistry in DSMC 

models ([1] and [2] for example) though it seems that their effect is not always important 

in feature transport models [5]. More details will follow in Chapter 3 but as a general 

trend lower sticking coefficients (i.e. particles needing more collisions with the wall 

before they stick to it) result in better quality profiles while higher sticking coefficients 

cause the formation of voids and cracks. Traditionally, the sticking coefficient is taken to 

be a constant that does not change along the trench length or as the trench changes shape 

due to deposition. Usually "curve fitting" is used to match a constant sticking coefficient 

with the profiles measured from experimental SEMs and despite its crudeness this 

method is very successful in producing good estimates of sticking coefficients for many 

conditions [3].  

 

A number of successful attempts have been made to incorporate more sophisticated 

models for the calculation of the surface sticking coefficients in both CVD [5] and 

physical vapor deposition [6]. Our method for calculating Sticking coefficients based on 

chemistry models for CVD is similar to the method available in the literature though it 

has been modified to be used within our DSMC framework.  

 

To understand how the sticking coefficient is calculated, assume that there are two gases 

in our domain that react according to the following formula: 

A+β B   C(s) +  D     (1) 

Here:  
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β is the number of moles of species B that react with each mole of species A. 

and likewise,   

 is the number of moles of species C deposited for each mole of species A that reacts. 

 is the number of moles of species D returning into the gas from the surface for each 

mole of species A that reacts. 

 Furthermore, assume that an analytical formula is available for the reaction rate of 

reaction 1: 

Rate=RateA =f[T,ppA,ppB,ppD,...]      (2) 

where ppj is the partial pressure of species j.  

We proceed by "splitting" the reaction equation into two equations that involve only one 

of the reactants, for example: 

A  ½  C(s) +½  D                   (1a) 

and B  ½ /  C(s) +½ /  D      (1b) 

The partial pressures used in (2) can be inferred from the average number of particles that 

intersect each segment by the following method [4]. We first try to find the number 

density starting from the analytical formula for the flux of particles from a gas at 

equilibrium: 

Flux�
n

4
�C
�

� n�
4�Flux

C
�

 

We then proceed to use the ideal gas law to relate the flux of incoming particles to the 

partial pressure of an equilibrium gas: 

pp� nm RT � pp �4
Flux

C
� �m RT

    (3) 
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We finally calculate the particle flux into a segment by dividing the effective number of 

particles that hit the segment by the length of the run and the area of the segment. The 

implied partial pressure is then used in (2) to find the local rate of reaction at the segment. 

With the reaction rate at hand the sticking coefficient of species j and for segment i can 

be calculated from the reaction rate1 of the species at that segment as follows: 

Sc(j,i)=Ratej (i)/Fluxj(i)     (4) 

Moreover, the number of moles of species C that is deposited is tracked by adding  /2 to 

its counter each time species A is absorbed and ½ /  each time species B is absorbed.  

It is important to realize that the way the reaction equation (1) is split to (1a) and (1b) is 

generally not important as long as the correct ratios for sticking coefficients and reaction 

rates are recovered in the limit of large number of reacting molecules colliding with the 

surface. The rationale is that equation (1) is a simplification that only agrees with the real 

reaction mechanism in an average sense and does not include the details of the real 

reaction. In a similar manner, it is important that DSMC reproduces the gross chemical 

behavior in an average sense and not necessarily during every collision.  

There are two ways of calculating the deposition flux rate at each section. The first is to 

directly record the total number of particles absorbed on each segment and convert that to 

a deposition flux rate. The second method is to use the reaction rate form (2) to calculate 

the deposition rate at each point (in this example Deposition Rate =RateA* ). Although 

these two methods are equivalent in principle, the results of the later are much less noisy 

when a significant number of particles that hit the wall do not react with it.  

The final issue that has to be addressed is the creation of byproduct species that can be 

important in finite Knudsen numbers. The byproduct species is created after every 

collision according to its molar ratio to the reacting species in the split chemical formula. 

For example, in Reaction (1a)  ½  particles of species D are created every time species A 

is adsorbed and likewise ½ /  particles of D are created each time Species B reacts with 

                                                
1 Actually the reaction that should be used is Min[Rate, FluxA, FluxB] to ensure that the depletion of one 
species limits the rate of the total reaction.  
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a segment. The new species are introduced in the domain at the point that the reacting 

particle hits the surface and they are moved for the balance of the time step duration after 

the original particle reached the segment. One complicating issue arises when the number 

of byproduct particles to be created is not an integer and can be dealt with in one of two 

ways. One way is to split the original reaction equation such that an integer number of 

byproduct particle has to be created every time a reaction happens. The other solution 

that is more general is to create an extra particle with a probability equal to the fractional 

part of the number of particles.  

Finally, there have been a number of bold assumptions made in our approach in 

calculating the sticking coefficients that are not guaranteed to hold in all cases. The most 

notable example of this is the assumption of an equilibrium gas distribution that results in 

(3) that we use above. In spite of this, the method is able to give correct results in many 

different cases and in particular it has been verified at high Knudsen numbers [5][7] 

where gas particles are sometimes very far off from the equilibrium velocity distribution. 

This is probably because the reaction rate (2) is much more a function of the number of 

molecules that arrive at the surface and their average temperature and not a strong 

function of the velocity distribution function of these molecules.  
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CHAPTER 3: VERIFICATION  

 

The goal of this chapter is to demonstrate that our CVD modeling methodology is in 

agreement with already existing results that are exact, published or experimentally 

verified. We will start by describing a number of important definitions that will be useful 

when analyzing results presented in this and other chapters. The results will be grouped 

and presented in three different sections based on the Knudsen number and the surface 

chemistry model. The first section will discuss results of depositions at very low 

pressures (Kn ) and with a constant surface sticking coefficient. The second section 

will describe deposition results which are in the same Knudsen regime but with a non-

linear chemistry model which predicts the surface sticking coefficients. We will finally 

turn our attention to verification problems at high pressure (Kn 0) by comparing our 

results with results from a continuum diffusion model. In addition, trends of key 

parameters will be presented in an attempt to give a feel for the effect of varying the 

Knudsen number.  

 

3.1  Definitions of Key Terms 

Clear definitions of key ideas and terms are needed before proceeding to present the 

results. The definitions of the terms used here are similar to the ones used in the literature 

(see for example [10]) with only some minor modifications or variations. Figure 1 shows 

a sketch of a typical deposition problem along with dimensions of key importance.  
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Figure 1: Sketch of basic trench showing impor tant dimensions used to define commonly used 
terminology. 

The Aspect Ratio (AR) is the ratio of the width of the trench (W) to the Depth (D) for the 

deposition profile in the initial state. As the CVD proceeds, different parts of the profile 

advance at different rates and the emerging profile is described by a number of different 

measures. The Corner Step Coverage (CSC) is the ratio of the side length of the thinnest 

part in the bottom of the trench (S) to the thickness at the top (T). The Bottom Step 

Coverage (or simply the Step Coverage) is the ratio of the middle of the bottom of the 

trench (B) to the top thickness T. The Flux Step Coverage (FSC) is the step coverage 

calculated based on the deposition rate at the initial geometry. Deposited profiles that 

have high step coverages (called Conformal profiles) are desirable since they result in 

profiles that do not develop voids when the deposition is continued until the mouth of the 

feature is closed.  
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3.2   Low Pressure Deposition with Constant Sticking Coefficient 

(Kn ) 

In this section we start by comparing the accuracy of our code with relation to an exact 

analytical solution. We then proceed to compare our deposition maps and resulting trench 

profiles to results from specialized low pressure (Kn ) deposition codes that have been 

independently verified. Next we proceed to compare our new DSMC results to previous 

attempts at modeling trench deposition for arbitrary Knudsen numbers. As we will see we 

are generally able to reproduce published results at high Knudsen numbers but have 

found that we disagree with some of the results for published arbitrary Knudsen numbers.  

3.2.1 Comparing LPCVD Results to Analytical Limits and Specialized Programs 

The flux step coverage for a trench undergoing LPCVD can be easily calculated 

analytically in the special case when the sticking coefficient is unity. To see this we start 

with the trench sketched in Figure 2a that has particles arriving from the left with a cosine 

velocity distribution. The ratio of the deposited particles at the top of the trench to the 

midpoint of the bottom of the trench, that is the flux step coverage, is given by [5]: 

FSC
�
��

�Cos������
�
��

�Cos������ , with�� ArcTan� 1

2�AR
� � FSC �

1
�
1	4�AR2            (1) 
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Figure 1: (a) Sketch of trench with a sticking coefficient=1. All par ticles that come from the left are 
absorbed at the sur face. (b) A plot of the step coverage for  different aspect ratios. Points are DSMC 
results while the solid line is the prediction of the analytical formula.  
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Figure 2b shows a plot of the analytical formula along with the DSMC results for 

trenches with aspect ratios ranging from 0 to 8. Clearly there is excellent agreement 

between the DSMC and analytical results with differences only due to statistical noise.  

Unfortunately, the above simple analytical model cannot be extended to cases with Sc<1 

or for geometries that are more complex than a simple trench. The problem of solving for 

the transport at the radiation limit is however very well understood and much advanced 

work has been done in this field [3][2]. One implementation of this work that has been 

extensively tested in simple and complex cases is a profile simulator known as EVOLVE 

developed by Cale and co-workers[7]. 

Figure 3 shows a sketch of a moderately complex trench (in red) with particles coming in 

from the left with a cosine (equilibrium) velocity distribution. The results for the 

deposition profile along the trench length are plotted for both EVOLVE (3b) and DSMC 

(3b) for two separate sticking coefficients. The agreement between the two codes is 

almost perfect implying that our particle tracking methods in complex geometries are 

indeed accurate.  
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Figure 3: (a) Sketch of complex trench. (b) EVOLVE result for  both 1.0 and 0.5 sticking coefficient. 
(c) DSMC results for  the same sticking coefficients.  

We now proceed to look at an even more complex example with multiple species and an 

asymmetric trench (Figure 4). In this example we have low pressure gas with 3 species 

each with a unique initial flux rate and sticking coefficient at the surface. Species 1 and 2 
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come in at similar proportions from the left while species 3 is only created as a byproduct 

of the deposition of Species 1 at the wall as follows: 

Sp1  3 Sp3 + Deposition @ wall (Sc[Sp1]=0.5) 

Sp2 Does not react 

Sp3  no byproduct + Deposition @ wall (Sc[Sp3]=1.0) 

As can be clearly seen from Figure 4 the agreement between DSMC and EVOLVE is 

exceptionally good for all species. It is interesting to note how there is no deposition of 

Species 3 in the trench areas facing the left since no particles of that species come in from 

the boundary on the left and there are no gas-gas collisions to return particles back to the 

surface.  

F
lux of S

p 1 and 2

Asymmetric Trench

Sp1 � Sp3
Sp2 doesn’t react

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sp3
Sp1

Figure 4: Complex profile, EVOLVE Result and DSMC Result Respectively. The normalization is 
using the deposition rate of Sp1 on the par t of the trench facing left.  

Our next example compares results for actual deposition profile evolution based on the 

flux data from DSMC. Chapter 4 gives more details on how we model and incorporate 

deposition rate data into profile evolution. The example is of a trench of unity aspect ratio 

and a constant sticking coefficient of 0.35. Figure 5 shows the result of our calculation 

(light color) along with published results calculated by SPEEDIE (an other LPCVD 

deposition software) [2]. The agreement is very reasonable particularly since the Simple 

Node Tracking method was used with only 20 calls to the DSMC program. Chapter 4 
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contains an other LPCVD example with a constant sticking coefficient in which DSMC 

results are compared to EVOLVE profiles. 

SPEEDIE

DSMC Calculation

 

Figure5: Deposition profile results for  trench with aspect ratio=1.25 and a sticking coefficient=0.35. 
Dark lines are for SPEEDIE while light ones are for  our  DSMC methodology using a simple node 
tracking sur face model.  

 

3.2.2 Step Coverage Trends Calculated for Low Pressure Deposition with 

Constant Sticking Coefficients 

Now that we have established the reliability of our approach in predicting the deposition 

profiles, we will present a few plots that summarize the profile behavior at different 

sticking coefficients. Furthermore, we compare our results with those obtained with 

various other CVD methods designed for the transition regime (~ 0.05<Kn<10). The first 

plot (Figure 6) is of the corner step coverage in a unity aspect ratio trench as a function of 

the sticking coefficient. The step coverage is calculated at the point when the thickness of 

the deposition layer is half the width of the feature and in all cases the profile is 

calculated using 10 calls to the DSMC program. The red line in the same figure shows 
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the results published in [4] of the same set of cases calculated using a different DSMC-

based method. The agreement between the two trends is very reasonable and the 

difference is probably mainly due to the variations of profile moving model. 

Comparison Between [4] & DSMC Corner Step Coverage
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Figure 6: Step coverage versus sticking coefficients of trenches with AR=1 at a deposition 
thickness=½ width of feature and Kn=�. Plot compares our  DSMC results with those published in 
[4].  

A different parameter (the bottom step coverage) is plotted in Figure 7 for the same set of 

cases. Again the two red and blue curves are for the step coverages calculated at a 

thickness of ½*width of the initial trench similar to Figure 6. Upon examination it is clear 

that the results in [4] do not agree with our calculations even when the solution 

parameters are varied. 



 34 

0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

Comparison Between Different Methods of Calculating Bottom Step Coverage

Upper Analytical Limit

DSMC

Bottom S/C From [4]

Sticking Coefficient

S
t
e
p
 
C
o
v
e
r
a
g
e

 

Figure 7: Results for  step coverage versus the sticking coefficient for a AR=1 trench at Kn=�. The 
red curve is result repor ted in [4] while blue curve is our  DSMC calculation. In both cases the step 
coverage is calculated at a deposition thickness=½trench width. The analytical result is from 
equation (1).  

A number of clues need to be considered to confirm that our results are indeed the more 

accurate ones. To begin with, our results agree well with other codes that have been 

designed and verified in the vacuum limit (namely, EVOLVE [7] and SPEEDIE [2][18]). 

Also, equation 1 gives us a strict upper limit on the step coverage when the sticking 

coefficient is 1 because the step coverage decreases with time. The red curve clearly 

violates this inequality. Finally, the lack of detailed experimental results verifying the 

trends of [4] also reduces confidence in their accuracy.  
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3.3   Surface Step Coverage for LPCVD using a Non-Linear Chemistry 

Model 

This section presents our results for the simulation of LPCVD on 2D trenches with a non-

linear surface chemistry model and comparing them with published results. Our goal is to 

verify our methodology and code by reproducing Kn  results where the particle 

velocity distribution is the furthest away from equilibrium and it is where we expect the 

greatest deviation if our method does not hold. In what follows we will proceed to 

explain the chemistry model that will be used in the examples of this section followed by 

a detailed discussion of our results for a trench on an aspect ratio of 10. We also discuss 

the convergence of the step coverage. We will then show that our methodology 

accurately reproduces EVOLVE trends over a wide range of model parameters.  

3.3.1 Tungsten Deposition Surface Chemistry Model 

We selected the reduction of Tungsten from tungsten hexafluoride as the non-linear gas 

surface chemical reaction to model in this section. Nothing in our algorithm or 

implementation is unique to Tungsten and only a change of the chemical species and the 

reaction rate equation is needed to be able to model other reactions (see [10], [7], [3] or 

[11] for details of modeling other reactions). Reference [16] gives a detailed discussion of 

modeling Tungsten chemistry but for this example we will use the simple formula[17]: 

WF6	3�H2
W��s� 	6�HF      (1) 

and the reaction rate: 

Rate� 7.16233Exp� �8800

T
��	ppH2 �



�
ppWF6
ppWF6

Ref
�
1	KF�ppWF6

Ref

1	KF�ppWF6

�

              (1a) 

where: 

Rate: is reaction rate/mole of reactants [mol/(s*m2)] 

T: Temperature [K] 
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ppH2 : Partial Pressure of H2 [Pascal] 

ppWF6 : Partial Pressure of WF6 [Pascal] 

ppWF6
Ref

: Partial Pressure of WF6 at entry [Pascal] 

KF: Constant=7.5/Pascal 

As explained in Chapter 2 in our model the reaction is actually split up into two reactions 

that on average reproduce (1) as follows: 

WF6

1

2
W��s� 	3�HF

        (2) 

and 

H2

1

6
�W��s� 	HF

       (3) 

with a H2 deposition rate equal to the times the rate defined in (1a).  

In our calculation we ignore the creation and the transport of HF. This saves on 

computing resources and does not affect the results because at high Kn values the lack of 

collisions means that the increase in HF number density does not reduce the flow of the 

other species to and from the surface.  

3.3.2 Detailed Example of Tungsten LPCVD  

The first example of Tungsten deposition will be in a trench with an aspect ratio of 10. 

The simulation is carried out by taking H2 with an incoming partial pressure of 4.66 

Pascal and WF6 with a partial pressure of 0.466 Pascal. The surface profile is integrated 

until a cavity is created when the feature pinches off as can be seen in Figure 8. The 

simple node tracking model was used to follow the evolution of the profile shape and the 

step coverage value at closure is predicted within 1% of the published value. The 

integration of the profile was carried out with only 8 DSMC program calls from start to 

closure.  
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Figure 8: Plot of deposition profile of an AR=10 trench up to closure.  

Figure 9 shows a plot of a number of important parameters along the length of the profile 

for both species as the feature is filled. As the feature fills the partial pressure of WF6 

significantly decreases inside the feature which results in a drop in the deposition rate. 

Since the partial pressure of H2 is not significantly reduced, the lower deposition rate 

results in a lower H2 sticking coefficient in contrast with the sticking coefficient of WF6 

which increases to a maximum value because 1a is essentially linear at lower WF6 

pressures. 
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Figure 9: Plot of key parameters versus trench length for  the 10 steps that are shown in Figure 8. The 
left column is for  Species 1 (WF6) and r ight column is for  Species 2 (H2). Feature is closed after step 
8.  

Critical to the accuracy of the results presented above is the calculation of the sticking 

coefficient in a robust manner. An approach that we have found to give reasonable 

accuracy was to first perform an “equilibration”  run with short intervals between Sc re-

calculations (details in Chapter 2). We then use the resulting sticking coefficient map as a 

starting guess for a longer run to confirm convergence. The equilibration here is 

numerical in nature since at such high Knudsen numbers the problem is almost 

immediately steady state as far as the transport is concerned. The sticking coefficients are 
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considered converged when there is no appreciable systematic drift in their values and the 

only change that happens with time is due to the reduction of noise because of better 

sampling.  

3.3.3 EVOLVE and DSMC Trends 

To further validate our methodology, calculations similar to the one detailed in the last 

section are preformed and compared to results of EVOLVE in [10] and [17]. Figure 11 

shows a plot of the corner step coverage at closure of a unity aspect ratio trench at a 

number of different temperatures with WF6 and H2 concentrations identical to those in 

the last section. DSMC accurately reproduces the EVOLVE trend with the majority of the 

points only 2-3% away. Figure 12 is a plot of the step coverage at 723K of trenches of 

various aspect ratios for EVOLVE and our DSMC program. A similar agreement 

between the two programs can be seen and in fact the agreement on the AR 10 trench is 

within 0.5%!  
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Figure 11: Plot of step coverage vs. temperature for Tungsten CVD on an aspect ratio 1 trench with a 
pp H2/ppWF6=10. The solid line is taken from [10] while the points are DSMC results. Error  bars 
indicate a 5% error  margin.  
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Figure 12: Step coverage values for  Tungsten CVD for  var ious aspect ratios at a temperature of 
723K and ppH2/ppWF6=10. The solid line is from [10] while the points are DSMC results with ±5% 
error  bars.  

 

3.4  CVD at High Pressures (Kn 0) 

3.4.1 Continuum and DSMC Model Results 

Taken together, the results in the last section give us confidence in our methodology for 

both simple and complex non-linear surface chemistry models in the very low pressure 

(Kn ) regime. In this section we present our DSMC results for high pressure CVD and 

compare them with results obtained using continuum diffusion finite element analysis 

(FEA) techniques using a constant sticking coefficient. 

A constant sticking coefficient is used here to simplify the continuum equations and their 

solution. Our DSMC methodology would be identical if we wanted to use a non-linear 

surface chemistry model. The development of special boundary conditions for the 
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continuum model with a non-constant Sc on the walls is a bit more involved and is 

beyond the scope of our work though it is discussed extensively in [8], [9] and [12]. In all 

of our lower Kn number examples the particles that react with the wall release physically 

identical but non-sticking particles that are released back into the gas. This is done to 

ensure that there is no net mass flux into the surface, thus canceling convection terms 

from the continuum model.  

The equation that determines the steady state number density (ni) of species i is [13]:  

Daa��
2ni �0  

Daa is the self diffusion coefficient of our gas and is available from standard gas dynamics 

theory. For hard spheres its value is [14]: 

Daa�
3

8
�

�
� mkT

�d2�m n  

where d is molecule diameter, n is the number density, m is mass and k is the Boltzmann 

Constant.  
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 Figure 13: Finite Element Model of the continuum diffusion problem solved to compare with the 
DSMC calculation results.  

Figure 13 shows the meshed solution domain used to solve the problem for a trench with 

aspect ratio AR=½. A symmetry boundary condition (dni/dy=0) is used to impose a no 

mass flux state on the top and bottom edges, while a constant number density n0 is 

assumed along the left edge to represent the domain inlet. The exact value of the imposed 
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number density is taken from the DSMC results to account for slip effects and is the only 

input imported from that model. At the deposition surface the following boundary 

condition is used: 

MassFluxatTrenchEdges�
1

4
�C
�
�n� Daa�

d n

d normal  

This physically means that at the deposition edge of the domain the particle flux from the 

domain must be equal to the diffusive flux due to the number density gradient in the 

domain.  

The continuum domain is meshed and solved by using the Pdetool package of MATLAB 

[15] and the solution is taken to be converged when its values at the deposition edges do 

not change as the domain mesh is refined. The flux rate along the trench is calculated by 

the flux formula from equilibrium gas dynamics: 

TrenchFlux�
1

4
�C
_
nFESolution

 

where nFE Solution is taken as the number density value along edge nodes. 
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Figure 14: FEM and DSMC results for  the deposition rate along the trench at the measurement 
points sketched in Figure 13. The error  bars are ±5% of local value. Problem parameters: Sc=1.0 
500,000 par ticles Kn=0.03 and AR=3. 
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Figure 15: Compar ison between the deposition rates as calculated from DSMC and FEA along the 
length of an AR=3 the trench with a Sc=1.0. We are plotting the natural log of the solution because 
there is a large change in magnitude between the top and bottom of the trench. The values are 
normalized to the deposition rate of the node at the top of the solution domain.  
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Figures 14 and 15 plot the deposition rate of the problem as calculated by DSMC and the 

continuum problem explained in the last paragraphs. Both calculations were performed 

using a gas at 300 Kelvin and an appropriate pressure to give a Kn=0.03 on a trench of 1 

m width. For the DSMC calculation care was taken to ensure that steady state was 

reached before starting to take samples to measure the deposition rate. Figure 14 shows 

the deposition rates for a ½ aspect ratio trench with error bars ±5% of local value. 

Clearly, the agreement for both the deposition values along the trench and the inferred 

flux step coverage is excellent. The same calculations are made for an aspect ratio 3 

trench of the same width and gas properties. Figure 15 shows a log linear plot of the 

deposition rate along the trench normalized to the rate at the axis of symmetry at top of 

this trench. Again the agreement is very good particularly when one notes the drastic 

change in the deposition rate value between the top and the bottom of the trench. These 

test problems, as well as other not presented here, indicate that our DSMC simulation 

captures gaseous transport for all ranges of Knudsen numbers.  

3.4.2 Step Coverage Trends with different Knudsen Numbers 
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Figure 16: Flux step coverage at base versus Kn and sticking coefficient for  an aspect ratio 1 
infinitely deep trench. Argon gas was used with a trench width of 1 �m. 
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A feel for the trends in this class of deposition problems can be gained by examining the 

plots in Figure 16. The flux step coverage is plotted against sticking coefficients for a 

number of different Kn values. This set of calculations was carried out using Argon on a 

unity aspect ratio trench with different pressures to vary Kn. As expected, the step 

coverage is unity when the sticking coefficient is zero and monotonically decreases with 

higher sticking coefficients for all values of Kn. There is also a significant decrease in the 

flux step coverage as the Knudsen number is decreased in all cases. This is in qualitative 

agreement with the results of Cooke and Harris [1] as well as Kobayashi et el. [4]. The 

decrease in step coverage is easily explained by the fact that collisions work to 

“segregate”  regions of trench and result in larger differences in number densities and flux 

rates. Although step coverage at high Kn values does not change with different gases and 

temperatures it is a function of these and other parameters at lower Knudsen numbers. 

This is because the diffusion coefficient and hence the transport is a strong function of 

these parameters which means that no simple universal trends can be created for lower 

Knudsen number problems.  

We finally would like to note that when at low Kn it is important to include enough of the 

domain above the trench in the model. This is done to ensure there are no concentration 

gradients across the open wall boundary condition that would cause changes in the 

deposition rates as a function of area included in the model. In our work we found that a 

distance of about 1-2 trench widths gave sufficiently accurate results but it must be 

understood that this may vary significantly with different problem details and only 

experimentation with different lengths can ensure convergence. A discussion of this issue 

in the continuum case (where the issue is most significant) can be found in [9].  
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CHAPTER 4: SURFACE MOVEMENT MODELS  
 

The Level Set (LS) methodology is a very elegant and powerful approach to modeling 

evolving complex boundaries. The methodology is particularly attractive when dealing 

with boundaries of arbitrary topologies in three dimensions since it only requires the 

machinery developed for simple two dimensional cases. In this chapter we will discuss 

the details of our Level Set formulation of evolving boundaries due to CVD. 

Furthermore, we will cover the details of a simple 2D method of profile evolution and use 

it as a benchmark to compare the LS method against. We will finally detail a simple 

method of improving DSMC code performance based on a basic level set idea.  

 

4.1  Motivation & Background 

The accurate prediction of the surface profiles that result from CVD depends on two 

factors: the ability to accurately find the flux rates at every point at the growing interface 

and the ability to advance the profile in physically consistent way that properly 

incorporates the deposition rate data. The first requirement is totally dependent on the 

transport model that is explained in Chapter 2. The second requirement is a surprisingly 

subtle subject particularly when dealing with discontinuity of slopes, stability and 

topology changes common in CVD problems faced in practice [3]. To appreciate this 

point, take the problem of dealing with the initial curve shown in Figure 1 as an example. 

The curve has two segments with significantly different deposition rates on each 

segment. Although it is easy to see how the curve should move with time in the areas that 

are straight with a constant deposition rate, it is not intuitive which shape the curved 

segment between them should take. Chapter 5 of [7], [8] and [3] are good starting points 

for literature that discusses these problems and how one goes about solving them in a 

manner that faithfully represents the physics that the original boundary and deposition 

rate represent. 
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Original Profile

New Profile

New Profile

What Shape does this part take?

 

Figure 1: How is the curve defined in the middle section?  

 
Over the years a large number of approaches have been proposed to accurately model 

interfaces with various degrees of success (Chapter 4 of [7] has a good overview of some 

of these methods with some advantages, disadvantages and development history). In our 

work in CVD profile modeling we have developed and used a simple string tracking 

model as well as a more sophisticated Level Set based profile model that is based on 

Osher and Sethian’s work [9].  

 

 

4.2  Profile Evolution Models 

In what follows we will describe the two profile evolution models that we have used in 

our work in modeling the boundary evolution due to the deposition predicted by DSMC. 

The first surface model is a simple node tracking model that works for simple 2D 

geometries while the second model is based on the Level Set method which is aimed at 

more complex geometries and surface models. After describing the basic concepts behind 

each model we will proceed to describe some of the details of implementation of each 

model and we will conclude with some examples that demonstrate the reliability of both 

models when used with the appropriate parameters.  

 

4.2.1 Simple Node Tracking 

Our goal in developing and using this method is to have a simple reference model to 

compare our more complex LS implementation to. This simple method is able to produce 

accurate profile results and was of great help in identifying the different causes of errors 
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in our Level Set Development. The main limitation of this model is that it can not be 

easily extended to include more complex surface effects (surface diffusion for example) 

and that it cannot be readily extended to the treatment of 3D surface evolution.  
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Figure 2: Sketch of simple node tracking. Note how arrows are sometime longer or shorter than the 
distance the segments move.  

 

The basic steps of the method can be easily explained by referring to Figure 2, which 

shows one step of the method between times t and t+�t. The curve is defined by the N-1 

segments that extend between the nodes �n
t
, were n=1,…, N. Node n moves as follows: 

��n
t � �n

t��t � �n
t �

1
2
��Rn

t�Nn
t �Rn�1

t �Nn�1
t �

 

where Rnt and Nn
t
 are defined on Figure 2. 

In other words, a node moves by a vector distance equal to the average of the normal 

velocity of the surrounding segments. The end nodes (i.e. Node 1 and N) are dealt with 

by assuming a symmetry boundary condition which amounts to using the projection of 

the speed vector of the first and last segment in the direction parallel to the symmetry 

boundary.  
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Figure 3: Post-processing after every step of the simple node tracking surface model. 3 a&b illustrate 

de-looping while c & d illustrate long-segment refinement.   

The distortion of the profile due to the movement of the nodes leaves the profile in a state 

that is sometimes not useable for subsequent deposition rate calculations. The first 

problem that has to be remedied is the removal of loops that occasionally develop at 

corners or turns. As can be seen from Figure 3a & 3b, the nodes within the loops have to 

be removed and a node has to be created at the points of intersection of the segments that 

create the loop. This de-looping process has to be done after every step and before the 

profile is used again by the DSMC program to calculate the new flux rate.  

Figures 3c and 3d illustrate the other effect that has to be accounted for every step, 

namely segment stretching at the corners or at areas with gradients in the deposition rate. 

In our implementation this is accounted for by calculating the lengths of the all segments 

and splitting in half the ones longer than a pre-specified value maxLength. This process 

ensures that even when a large number of steps are taken, important features like corners 

and bulges still maintain an acceptable level of detail and model the profile faithfully.  
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4.2.2 Level Set Method Model  

4.2.2.1 Theory  

The basic idea behind this method is to regard our boundary as a constant-value (zero) 

contour of the function � [t,x,y,….] which is defined, in principle, on all points of the 

computation domain, that is at every point our evolving curve can go. A time-dependent 

partial differential equation governs �  and this determines the movement of the contour 

boundary. This method was pioneered by Osher and Sethian [9] and has been 

successfully used in modeling boundaries in a variety of different fields including 

deposition, image processing, combustion and many others [7][12].  

In two dimensions the general equation governing �  is: 

�t��t, x, y� � H��x�t,x, y�, �x�t, x, y��  

Here H is the “Hamiltonian”  of the problem and depends on the rules that govern the 

movement of the curve. Furthermore, H can be classified into convex and non-convex 

depending on the mathematical properties of the function. In the case where the curve 

moves in a direction normal to its self it can easily be shown that [7] [3]: 

�t ��t, x, y� �F�x, y� � 	��t,x, y� � � 0   (1) 

where F[x,y] a function that determines the normal velocity of the curve and will be 

discussed in detail in the next section. �  is initialized as the signed distance function 

from the initial boundary. The signed distance function at a point is the distance to the 

closest point on the curve with a positive or negative sign depending on whether the point 

is inside or outside the curve.   

The LS model is linked to our DSMC code by the using the following steps: 

1. Initialize � [t,x,y] as the signed distance function from the initial curve �
t�0

 & set 

t=0. 

2. Run the DSMC code using �
t�0

 and record the flux rate at each segment. 

3. Use the flux rate data to build F[x,y] (see § 4.2.2.3). 

4. Solve for ��t��tstep,x, y�using the numerical scheme outlined in next section 

(�tstep  is the time between calls to DSMC).  

5. Use a contour extracting program to get �
t��tstep  from ��t��tstep,x, y� . 

6. Increment t by �tstep, and repeat steps 2-6 until t=tfinal. 
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A very important point to keep in mind here is that although we extract the zeroth level 

contour every time we need to calculate the deposition rate, we never use this contour to 

re-initialize the values of � [t,x,y] at any time. This is done to minimize errors introduced 

due to finding the contour and then re-initializing � [t,x,y]  (see section 11.6 of [7] for a 

more detailed discussion).  

 

We will end this discussion of LS theory by highlighting a special case of Equation (1). 

When the speed function is always either positive or negative, equation (1) can be re-

written in the form (see Chapter 1 of [7] and [2]): 

� 	T�x, y� � F �1  

With this formulation the curve at time � which is normally defined by � [�,x,y]=0 is 

given by the contour defined by T[x,y]=�. The big advantage in using this formulation is 

that one has to solve for T[x,y] only once and then the contour for all times is readily 

available. This is in contrast with the time dependent LS which in principle requires the 

integration the full domain of � [t,x,y] from initial time to the time � we are interested in. 

An other notable advantage for this formulation is that it can be solved very quickly using 

the Fast Marching Method (FMM) that was developed by Sethian [7][2]. Finally, FMM 

can be used in the fast calculation of speed functions as explained in §4.2.2.3.  

 

4.2.2.2 Details and Implementation 

Osher and Sethian developed a number of numerical schemes to solve the LS equations 

both for convex and non-convex Hamiltonians [9]. In our implementation we used a 

second-order convex numerical scheme to integrate � [t,x,y]. This scheme is designed to 

properly work even when the derivative function is not well defined as in nodes close to 

corners and cusps. The basic equation of the scheme is: 

��t��tnum.� � ��t���tnum.��Max�F�x, y�,0� 	
��x, y� � Min�F�x, y�,0� 	

��x, y��  

where �tnum.  is the numerical time step used. Also: 

	
��x, y� �

�
Max�A�x, y�,0�2� Min�B�x, y�,0�2 � Max�C�x, y�, 0�2� Min�D�x, y�,0�2

	��x, y� �
�
Min�A�x, y�,0�2� Max�B�x, y�,0�2 � Min�C�x, y�, 0�2� Max�D�x, y�,0�2  

and 
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A�x, y� � D�x�x, y� �
�x

2
m�D�x�x�x, y�,D�x�x�x, y��

B�x, y� � D�x�x, y� �
�x

2
m�D�x�x�x, y�, D�x�x�x, y��

C�x, y� � D�y�x, y� �
�y

2
m�D�y�y�x, y�,D�y�y�x, y��

D�x, y� � D�y�x, y� �
�y

2
m�D�y�y�x, y�,D�y�y�x, y��

m�i,j� � � � iif � i� 
 �j�
jif �i� � �j� �and ij �0

0 otherwise  

Note that D±�[x,y] is the forward/backwards difference operator in the � direction and 

D±�±� [x,y] is defined similarly as the second order difference operator. Linear 

extrapolation is used to find the values of ��t, x, y�  at points that are outside our domain 

in the x and y direction.  

In our implementation we have elected to solve the equations for the full domain of the 

problem where �  is defined. The Narrow Band method [10] is a method to conserve 

computational effort by updating �only at points close to the zeroth contour. We have 

elected not to do so because updating the full 2D domain is very feasible on modern 

hardware and the time savings would not justify the implementation of the somewhat 

complicated Narrow Band Method. The size of the numeric step (�tnum. )that results in 

converged and stable update of �  was determined by a CFL condition and in general less 

than 10 numeric steps were used between successive calls to the DSMC program to find 

the surface deposition flux.  

An other issue that is critical to the success of this method is the fashion by which the 

zeroth contour is extracted from� . A relatively fine grid is needed in order to accurately 

resolve details of the front movement. As [5] shows, a grid of the order of a hundred 

points is needed in two dimensions to accurately resolve fine or sharp features of the 

profile to an extent comparable to other methods of modeling the CVD profile. On the 

other hand an excessively fine profile significantly increases the time needed to get 

accurate results from the DSMC program. To resolve this dilemma we have found that 

the most successful approach was to start by producing a very fine mesh that has the 

same characteristic length of a grid cell. To reduce the number of nodes in the profile, a 

separate step is performed that removes nodes that do not appreciably change the “shape” 

of the curve. This is done by calculating the length and angles between successive 
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segments and removing nodes that do not result in excessively long segments (longer 

than maxLength) or removal of sharp corners (angels >maxAngle). Figures 4b & 4c are 

the results of our node removal procedure when applied to the initial curve shown Figure 

4a with two different settings of maxLength and maxAngle. 
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Figure 4: (a) Original detailed curve. (b) Moderate node removal & (c) Aggressive node removal.  

 

In our numerical deposition experiments, successful calculations have resulted from 

making the maximum allowable segment length 2-4 grid unit lengths. Divergence or 

convergence to incorrect results was sometimes faced when attempting to allow segment 

lengths that are significantly higher than this [5]. 

  

4.2.2.3 Calculation of Extension Velocities 

The deposition rate that we obtain from our DSMC calculation is naturally only 

meaningful at points along the line segment used in the calculation. A problem that arises 

from using the LS method is that the speed function F[x,y] in Equation 1 is defined over 

the entire domain of �  and not only the deposition curve points. The problem of finding 

an appropriate F[x,y] given F[ � ] (where F[ � ]  is the flux at point � on the curve) is 

complicated and very important to the accuracy of the results and is called the Extension 

Problem. A number of different methods can be used to solve the Extension Problem 

depending on the details of the front model and are discussed elsewhere ([7] and [5] for 

example). The method we opted to use is explained in detail in [7] & [6] and uses the 

FMM to produce an F[x,y] such that 	F�x, y�.	�temp�x, y� �0  where �temp�x, y� is the 

signed distance function from the deposition curve. This method is essentially equivalent 
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to assigning each point on the domain the speed function of the closest point on the 

curve. Points that are equally close to different segments are assigned the average value 

of the rates of those segments while points on the segments are given velocities that are 

linearly interpolated from the edges.  

 

4.3 Verification & Examples 

In this section we will describe the details of a number of example cases to show that LS 

can be successfully combined with DSMC to make accurate predictions about deposition 

profiles. We will start with two simple calculations to verify that our implementation of 

the LS method does indeed produce accurate results for simple cases. The second set of 

examples will show how we can reproduce independently verified deposition profiles that 

have been produced using a very different method.  

      4.3.1 Simple Examples 

The goal of describing the next two examples is to show that our implementation of the 

LS method can accurately reproduce simple analytical results. The first example is of a 

circle with an initial diameter of 50 grid points embedded in an array of 200x200 grid 

points with unit side lengths. The trajectory of the curve is followed by using the second 

order convex time-integrating scheme introduced in the last section. The integration is 

done using a constant speed function F[x,y] =1 and is plotted in Figure 5a along with the 

original curve. The color of the final curve represents the distance between the exact 

solution and the LS solution with lighter colors indicating larger deviations. The 

maximum deviation is less than 0.384 units which is about 0.8% of the total distance 

traveled by the curve. 
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Figure 5: Plot of original profile, final profile and error from exact solution. (a) is a plot of the 
uniform growth of a simple circle. (b) Plot of uniform growth of more complex curve.   
 

The second example shown in Figure 5b and is identical to the first except for the shape 

of the initial curve. The initial curve is a series of straight segments and is plotted along 

with the final curve in a way similar to the last example. The maximum distance between 

the exact curve and the LS solution is 1.9 units which is about 7% of the distance 

traveled. The deviation from the exact solution is almost exclusively in the curved area 

generated from the sharp corner and might be related to the representation of a sharp 

corner with no rounding. 
  

   4.3.2 Verification Examples 

The goal of the examples presented in this section is to show that we can successfully 

combine the LS method with our DSMC program to perform physically accurate CVD 

simulations. We simulate an infinite trench of width 1 �m and an aspect ratio of 1. The 

gas pressure is such that we are at the radiation limit (Kn=�) and we select a sticking 

coefficient of 0.5. The deposition profile is tracked until the thickness at the surface 

reaches 0.8 �m. Cale and co-workers show a solution of this specific problem using 

EVOLVE in [5]. In our work we were able to use both the LS method and our simple 

node tracking method to accurately track the deposition and reproduce the results of 

EVOLVE. This confirms that that our DSMC program along with either surface model 

can produce accurate results as long as the correct parameters are used in the surface 

model.  
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Figure 6: Comparison between converged EVOLVE result with two different CVD solutions using 
the LS surface model. Left side of figure is for a small maxLength parameter while plot on right is 
for large maxLength parameter (AR=1, Sc=0.5, Kn��, in call cases).  
 

The simplified node tracking model was first used to track the evolution of the deposition 

front and reproduce the EVOLVE results. The agreement between our calculation and 

EVOLVE was reasonably good when using 20 separate DSMC deposition rate 

calculations and a maximum segment length parameter of 3.33units (for a feature width 

of 100 units). Due to the way the method tracks the nodes the sharpness at the bottom 

corner is faithfully reproduced which gives a slightly better estimate of the corner step 

coverage.  

The red lines in Figure 6 are the LS results for the same deposition configuration. The red 

curve on the left results from using the algorithm described in the last section with 40 

calls to the DSMC program and using the smoothing algorithm with a maxLength of 3 

and maxAngle of 11.25°. The result is almost identical to the simplified node tracking 

method and again is in very good agreement with published EVOLVE results.    
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The results we have gotten from comparing the results of the node tracking method and 

the LS method is that the latter sometimes needs a significantly larger number of flux 

evaluations to get converged results. For the LS model any significant reduction of the 

number of calls to the DSMC program results in significantly inaccurate profiles even 

with fine maxLength and maxAngle settings. Efforts to keep the same number of DSMC 

program calls but with a profile representation that allows larger segment (to reduce the 

calculation time of DSMC) also results in profiles that have significant inaccuracies in 

them as can be seen on the right red curve in Figure 6. The use of a different method of 

calculating the extension velocities (as in [5] and [4]) seems to be the only way of 

significantly reducing the number of DSMC evolutions needed to get accurate results.  

 

4.4  Optimized Particle Advection Scheme 

As pointed out in Chapter 2 there exists a simple method to improve the speed of the 

particle advection which is effective at lower Knudsen numbers using a simple LS 

concept. The method relies on having a simple criterion (which does not scale with the 

number of segments) to judge if a particle will not hit any of the wall segments in the 

current time step. When this is the case the computational cost of moving a particle goes 

from O(# of segments) to O(1) which is a substantial saving when the number of 

segments is large.  

The basic idea behind this optimization is to assign to each DSMC cell at the start of the 

run the distance to the closest point of the closest segment (dmin). These values can be 

found either by a direct minimum distance calculation to all segments or by using the 

FMM if more speed is required. At the start of the particle movement subroutine the 

distance to the cell containing the particle is compared to the distance traveled by the 

particle in the current step. In other words, 

�tDSMCStep�
	vx2� vy2 


?
dminCell  

where �tDSMC Step is the time step in the advection part of DSMC.  
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The only time the particle movement is checked for crossing all the segments is when it 

travels a distance grater than dmin of the cell it started the movement in.  
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Figure 7: (a) Complex deposition profile with many segments. (b) Plot of isocontours of the distance 

functions at �
��C�,2���C�, 3���C��  (where �  is the mean time between collisions). (c) Fraction of 
particles at position that have speed grater than dmin assuming an equilibrium velocity distribution.  

 

We will try to quantify the savings in time when using the above procedure for the 

specific case when the Kn=0.05. Figure 7a&b show plots of a deposition profile and the 

isocontours of the distance function associated with it. Integrating over the Z-Axis 

component, the equilibrium velocity distribution in the x,y plane is: 

f�Cx,Cy�� � m

2�� kT

��

�m��Cx2�Cy2�
2�kT � f�r� �� m

2�� kT

�2 � r�

� mr2
2kT

  

where r
2
�Cx

2
�Cy

2
  

and hence the fraction of particles with speed Cmin or higher is 

S�Cmin� ��
Cmin

�

f�r���r
 

Hence the fraction of particles in a cell that will travel a distance dmin[x,y] or grater in 

�tDSMC Step is S(dmin[x,y]/ �tDSMC Step) which is plotted in Figure 7c for all cells in the 
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domain. Furthermore, we can estimate the total fraction of particles that will need to be 

moved using O(# of segments) steps: 

� �AreaofDomainS� dmin�x,y�
�t

���x��y
� �AreaofDomain1��x��y   

If we perform the integration for the profile in Figure 7a we find the ratio to be 5%! Table 

1 shows a comparison between the simple way of particle advection and the improved 

way explained above for a simple AR=1 trench. Clearly the improved method is 

substantially faster and should always be used.  

 

 Kn~0.05 Kn~1 Kn~10 

Original Movement Method (s) 148.10 120.06 310.7 

Optimized Method(s) 16.18 100.96 319.81 

% of time 10.93 84.1 102.9 

Table1: Execution time spent in the particle advection subroutine using original algorithm that was 
explained in Chapter 2 along with improved method presented in this section. The improvement in 
speed is greatest at lower Kn values. These particular timing results were for 100,000 particles and a 
profile with 250 segments.  
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CHAPTER 5: CONCLUSION 
 
 

5.1  Summary 

The work presented in this thesis has resulted in an integrated method to capture profile 

evolution of micro-trenches for a finite time. Our approach is able to obtain results in all 

Knudsen regimes by incorporating a DSMC method for simulating the gas transport in 

the feature. Furthermore, we presented a method to account for complex surface 

chemistry that results in surface sticking coefficients that vary in both space and time. In 

addition, this work is novel in that it integrates the Level Set surface tracking method 

with DSMC transport to generate results that have been verified at both the continuum 

limit and radiation limit. We also used simple concepts from LS theory to significantly 

improve the performance of the DSMC method at lower Knudsen numbers.  

 

In Chapter 1 we defined chemical vapor deposition for micro-scale trenches, reviewed 

the special challenges associated with this problem along with some of the previous 

attempts at solving it for different special cases. We proceeded in Chapter 2 to explain the 

basic concepts of our methodology and how they are integrated. In addition, Chapter 2 

includes a detailed discussion of the unique aspects of our DSMC transport model as well 

as a discussion of the addition of a non-linear surface chemistry model in our work.  

 

In chapter 3 we present a large number of verification problems. Our results for low 

pressure deposition were verified by comparing them to analytical formulas as well as 

published radiation limit solutions. In contrast, we verified problems in the high pressure 

regime by comparing the deposition profiles to FEA solutions of the continuum diffusion 

equation. Overall, the agreement between our methodology and other results was 

satisfactory and indicates the reliability of our approach in modeling CVD. Chapter 3 also 

presented a number of general trends that show how deposition varies with various 

transport and deposition parameters. Of particular interest is the conclusion that step 

coverage worsens as the Knudsen number is reduced.  
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Chapter 4 discussed two models for trench surface evolution, namely, the Simple Node 

Tracking model along with the more sophisticated Level Set model. The pitfalls and 

advantages of each surface model were discussed along with examples which show how 

they both can produce accurate results when sufficient refinement is used. We concluded 

chapter 4 with an explanation of a fairly simple method to dramatically improve the 

performance of the particle advection part of the DSMC when dealing with complex 

walls using level set concepts.  
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5.2  Possible Extensions of This Work 

The first and most obvious area where this work can be extended is to use our 

methodology to deal with 3D trenches and structures. Conceptually this is straightforward 

because both the DSMC transport model and the Level Set surface model can extended 

easily to the 3rd dimension. A number of modern DSMC codes with complex geometries 

have been developed and used extensively in aerospace engineering[1] and other fields 

[3][2]. The extension of the level set surface model is trivial and has already been applied 

successfully to a number of ballistic transport flows [4][5][8].  Reference [8] shows an 

example where the solution of the 3D deposition problem enables the prediction of 

complex surface phenomena that may not be evident from solutions of 2D problems.  

 

One limitation with the current implementation of the DSMC transport model is that it 

requires a very long time to give meaningful deposition results in cases where the 

reactive species has a low concentration. This is due to the statistical nature of the DSMC 

method which requires many particle collisions with a surface in order to have a good 

estimate of the deposition rate on that surface. The use of different weighting factors for 

each species to improve the results for the low concentration species is a possible method 

for dealing with the problem. Weighting factors are discussed in [9] and more recently in 

[6] and in fact, have been incorporated in our DSMC transport model but have neither 

been verified to give accurate results nor used in the examples presented.  

 

There are a number of other interesting questions with relation to how the Level Set 

surface model is integrated with the transport model and methods of sharing information 

between them in more natural ways. A simple example might be the use of the DSMC 

cell molecular flux instead of the current velocity extension routine to improve the speed 

of the calculation by requiring fewer transport model calls. Another (more ambitious) 

prospect in integrating the two methods would be to attempt to directly use the level set 

information in the DSMC model without explicitly finding the segments that represent 

that boundary.  

 

It would also be interesting to investigate if the performance of the particle advection 
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subroutine can be significantly improved any further by using LS information. One 

possibility is to maintain a sorted list of distances between DMSC cells and segments of 

the boundary. Only segments that have a distances smaller than the distance traveled by 

the particle in the current time step are considered for collisions and then in the order of 

their distance. An alternative wall collision detection approach could be to use visibility 

ideas discussed by Sethian on visibility calculations using the distance function that does 

not scale with the number of segments that represent the trench boundary [7].  
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