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Abstract

This paper presents evidence of a decreasing relationship between
household wealth and consumption variability using PSID data. This
relationship offers evidence in favor of models of precautionary sav-
ings vs. models of full insurance and vs. standard models of the
permanent income hypothesis. Moreover, the presence of this relation-
ship invalidates the identification conditions behind the log-linearized
consumption Euler equation. We construct a specification test of the
log-linearized Euler equation based on this finding and we obtain a
rejection of the assumption needed for log-linearization.

1 Introduction

This paper presents evidence of a decreasing relation between household
wealth at a given date and the variability of consumption expenditure in
the following year. This evidence bears upon two different issues: first,
it provides empirical support to models of precautionary savings, second,
it provides a specification test for the log-linearized version of the Euler
equation.

Models of precautionary wealth accumulation rely either on prudent pref-
erences or on liquidity constraints or both. A typical feature of these of mod-
els is that consumers use accumulated financial assets to self insure against
income shocks. An empirical prediction of these models is that household
with larger levels of accumulated wealth will face a lower level of consump-
tion variability because they are more willing to use accumulated wealth as
a buffer stock against income shocks. This happens because consumers with
larger levels of accumulated wealth are either less concerned about hitting
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the liquidity constraint in the near future or less risk averse as they reached
higher levels of consumption. This prediction distinguishes models of pre-
cautionary behavior both from quadratic utility models of the permanent
income hipothesis and from models of full insurance. The first objective of
this paper is to test this prediction by looking at the variability of consump-
tion as a function of household wealth.

The results obtained can be interpreted as a complement to the test of
liquidity constraints by Zeldes (1989): he was concentrating on the con-
ditional first moment of the Euler equation residual, which —in presence
of liquidity constraints— displays a discontiuous jump at wealth levels at
which the constraint is binding, here instead we study the conditional second
moment of the Euler equation residual which —in presence of liquidity con-
straints and/or prudent preferences— is smoothly decreasing with wealth
over an extended range. An advantage is that we do not need any assump-
tion about the maximum level of borrowing allowed. Our results can also
be interpreted as a further test of the full insurance model in the vein of
Townsend (1990) with the twist that we are testing full insurance against
a well defined alternative hypothesis, namely against self-insurance through
asset accumulation.

In terms of the consumption Euler equation the conditional variability of
consumption growth is associated with the conditional second moment of the
Euler equation residual. The log-linearized version of the Euler equation is
correctly identified only under the implicit assumption that this second mo-
ment is uncorrelated with the instruments used. This happens because the
log-linearized identification condition is only an approximation of the true
identification condition, and the accuracy of the approximation depends on
the higher conditional moments of the residual. Current wealth is clearly
correlated with past measures of income and consumption, which are usually
included in the instruments set. Thus, a relationship between wealth and the
second moment of the residuals hints at a possible misspecification of the
log-linearized Euler equation. We setup a specification test along these lines
and we obtain a rejection of the hypothesis of a second moment uncorrelated
with the instruments. Our results constitute a further warning about the
use of the log-linearized Euler equation in empirical work and they comple-
ment well the discussion by Carroll (1997) which was based on simulation
results. While sharing Carrol’s concerns on the log-linearized approach, we
maintain a more optimistic view on the general possibility of obtaining use-
ful information in a Euler equation framework. Thus, we try some possible
fixes to the identification problem. In presence of heteroskedasticity one can
either go back to the nonlinear setup or try and improve the approximation
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in the traditional setup adding terms to the Taylor expansion. This paper
tries the second alternative because, under some additional assumptions, it
let us keep linearity in the individual effects, and this can be quite useful
from the point of view of panel data estimation.

Section 2 contains a theoretical motivation to interpret the evidence
presented in terms of models of precautionary savings. We show simulated
series for consumption and wealth for a simple model of optimal consumption
with incomplete insurance and borrowing constraints and show that the
conditional variance of consumption at time t is decreasing with the level of
liquid asset holdings at time t − 1. Under full insurance or under quadratic
preferences the same model displays instead a conditional variance that is
constant across wealth levels. In section 3 we discuss the relation between
the orthogonality condition derived from consumption theory and the log-
linearized version of it often used in the empirical literature and discuss the
identification problems that arise in the log-linearized model in presence of
heteroskedasticity. In section 4 we describe the data used and the estimation
strategy for the log-linearized Euler equation. The empirical results based
on the PSID data are reported and discussed in section 5.

2 Theoretical motivation

In this section I use a standard model of consumption behavior with unin-
surable income risk to show, with some simple simulations, that the presence
of prudence and/or of borrowing constraints generates a negative relation
between household wealth and the variability of consumption.

Consider the problem of an infinitely lived consumer that receives a
random labor income Yit, can accumulate a risk free asset, and faces a
borrowing constraint Ait ≥ A.

max Et

∞∑
s=t

βtu(Cis)

s.t. Cis + Ais = (1 + r)Ais−1 + Yis

Ais ≥ A

Assume that Yit has a permanent and a transitory component, Xit and
ηit. The income process is described by the two equations

Yit = Xitηit

Xit = (1 + g) Xit−1εit
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where ηit and εit are i.i.d. log-normal shocks. Define ct = Ct/Xt and
at = At/Xt.

We distinguish three different cases: (1) full insurance, (2) PIH: only
a risk free asset is available, utility is quadratic and A = −∞ (3) precau-
tionary savings with CARA utility and borrowing constraints: only a risk
free asset is available, utility is CARA and A > −∞. We are interested
in characterizing the conditional variance of consumption in each case, in
particular we will look at V art−1(ct) and at V art−1(lnCt).

The case of full insurance requires to embed the consumer’s problem
above in a general equilibrium framework. We assume that there is no
aggregate uncertainty so that the realized cross sectional averages of εit

and ηit are equal to the mean of the corresponding random variables1. In
this case for any strictly concave utility function full insurance allows any
consumer i to achieve a constant level of consumption across states of the
world. In this case both V art−1(ct) and V art−1(lnCt) are zero. It is worth
noticing that full insurance has a stronger implication: even in presence
of aggregate uncertainty, the variability of consumption conditional on the
aggregate shock would be zero.

In the case of quadratic utility we need to assume β 1+r
1+g = 1 in order to

obtain a stationary process for at.2 In this case the optimal consumption
policy is

Ct = r


(1 + r)At−1 +

∞∑
j=0

(1 + r)−1 EtYt+j




and we can show that both V art(ct) and V art(lnCt) are constant and do
not depend either on at or on At.

In case (3) we need to resort to simulations to characterize the stochastic
properties of consumption. The budget constraint can be written as: ct +
at = 1+r

1+gat−1/εt+ηt. Defining zt = 1+r
1+gat−1/εt+ηt we can show that optimal

consumption will be characterized by the equation

Ct = h(zt)Xt

where the function h satisfies the functional equation

u′(h(z)) ≥ (1 + r)βEu′
(

h

(
1 + r

1 + g
(z − h(z)) exp(−ε) + exp(η)

))

1This assumption is consisten with the assumption of a fixed r in cases (2) and (3). If
we derive r in a general equilibrium framework r can be constant if we reach a stationary
distribution of the risk-free asset and there is no aggregate risk (see e.g. Huggett (1993)).

2Again, this seems a usful requirement if we want to ember the consumer problem in
an equilibrium framework and obtain a constant r.
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with h(z) = z in case of inequality.
We calibrate the process for income to match the process for individual

income estimated by MaCurdy (1982) using PSID data, (in this we follow
Deaton (1991)). We use the following parameters: r = 2%, β = .95, γ = 2,
V ar(ln ε) = .1 and V ar(ln η) = .07. Many studies have characterized in
detail the optimal asset accumulation policy in problems of this type: an
agent accumulates the asset in good times and runs down his stock in bad
times, there is a stationary transition for asset holdings and a long run
stationary distribution of asset holdings with bounded support. To compute
the optimal consumption policy we follow a simple iteration method on the
Euler equation.

Figures 1 and 2 illustrate the simulated relation between at−1 and V ar(ct|at−1)
and the simulated relation between at−1 and V ar(lnCt|at−1). There is a
strong negative relation between lagged wealth holdings and the variability
of consumption reflecting the fact that a low variability of the residual is a
sign of better ability to insure against adverse income shocks.
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Figure 1: Wealth and variability of consumption (c)

Notice that the relationship above is strictly related to the concavity of
the function h (see Carroll and Kimball (1996), and Parker (2001)). Notice
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Figure 2: Wealth and variability of consumption (lnC)

that for a given a we have the approximate relation

V ar(cit|a) ≈ (h′)2(aσ2
1/ε + σ2

η)

Two effects are present here, on the one hand there is a simple scale effect,
according to which when financial wealth is larger A/X is more volatile, on
the other hand the concavity of h makes the term (h′)2 larger for low levels
of wealth. The figures above show that the second effect seems to dominate
for realistic parameter values.

In quantitative terms the effect is sizeable and non-linear in the simu-
lated model. An increase in financial wealth from 0 to 20% of permanent
income reduces the standard deviation of consumption from 6.2% to 3.2%
percentage points. Further increases in the wealth to permanent income
ratio have a much smaller effect on the volatility of consumption. Notice
that we have experimented with various values for γ and the results are very
similar: the main effect of increases in γ is that the stationary distribution
of wealth levels moves to the right but the wealth-variability frontier does
not change much.

Summing up, models (1), (2) and (3) differ markedly for their prediction
regarding the conditional variability of consumption. In models of full insur-
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ance and in quadratic models of the permanent income hypothesis the condi-
tional variability of consumption does not depend on accumualted wealth, in
simulated models of precautionary savings models instead household wealth
reduces consumption variability especially for low levels of wealth to per-
manent income ratios. In the empirical section I will use the PSID data
on consumption to estimate a nonparametric regression of V art−1(lnCt)
on some measures of lagged asset holdings, and I will compare it with the
negative relationship depicted in figure 2.

Let me now briefly compare this test with other similar tests designed
to test the full insurance hypothesis and the precautionary saving model
separately. The test is close in spirit to the test of liquidity constraints
performed by Zeldes (1989). In that article a low level of wealth is associ-
ated with a higher probability of facing a liquidity constraint. The presence
of binding liquidity constraints makes the Euler equation invalid for con-
strained consumers and therefore Zeldes tested wether the conditional mo-
ment E(ut|at−1) was dependent on at−1. Here we are essentially studying
the behavior of E(u2

t |at−1) as a function of at−1. The latter conditional mo-
ment is decreasing over the whole wealth range and it does so also in cases
in which the consumers are facing a binding constraint very rarely. In these
cases a direct test of the liquidity constraint may be inconclusive due to the
small number of observations where the constraint is actually binding.

This test is also related to tests of the full insurance model based on the
first order properties of the residual as the tests performed by Townsend
(1990), Cochrane(1991) and Mace (1991). On the one hand, the present
test has more power because it tests the full insurance case against a specific
alternative. On the other hand it may be less convincing because it relies
on the additional assumptions that taste shocks and measurement error are
homoskedastic conditional on lagged values of wealth holdings and income
shocks.

We can also compare this test with the a wide class of tests that have
been used to study the precautionary motive looking at the relation between
individual income variability and wealth holdings, on the grounds that the
expectation of higher income veriability induces individual to accumulate
more wealth ex ante (Browning and Lusardi, Lusardi (1997)). These tests
assume some (exogenous) heterogeneity in income varibility across individ-
uals, and include this variability in a reduced form savings function. Apart
from the use of an explicit saving function these tests rely basically on ex-
ogenous cross-sectional heterogeneity in income variability, while the test
proposed here exploits the fact that the ex-ante identical consumers may
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be differently exposed to residual variability depending on their asset hold-
ings. In a sense their approach relies on individual heterogeneity to obtain
identification, while the approach taken here relies on having a sufficiently
homogeneous population of consumers, so that one can look at the cross sec-
tional dimension to have information about the time series path of income,
wealth and consumption.

3 Linearization and Identification

The original form of the Euler equation is a conditional moment restrictions
and can be written in the form

E[eu|z] = 1 (1)

where z is any variable that is in the individual information set at time
t−1 —in particular, it may be a lagged value of wealth holdings or income—
and u is the traditional log-linearized residual at time t. The expression for
u I will use in the following is

ui
t+1 = log βi + log(1 + ri

t+1) + b∆di
t+1 + ∆(log U ′(ci

t+1)) + ηi
t+1

where β is the discount factor, r is the real interest rate, d is a vector of
household characteristics (i.e. observable taste shocks), U is the istantaneous
utility function, c is consumption and η captures the effect of unobservable
taste shocks.

The usual estimation strategy is to use the linearized version of (1), that
is E[u|z] = 0.

This approximation may be more or less accurate in different cases. Con-
sider first the simple case in wich z and ut are jointly normally distributed.
In this case the condition above implies E(exp(u + z)) = E(exp(z)) which
can be transformed into an expression involving only the moments of ut and
z, that is

Eu +
1
2
(V ar(u) + 2Cov(u, z) + V ar(z)) =

1
2
V ar(z)

Using this expression when z is a constant we derive the restriction
Eu + 1/2V ar(u) = 0 that in turns gives us Cov(u, z) = 0. The latter
equality is exactly the identification assumption required to estimate the
traditional linearized version of the Euler equation, thus under joint nor-
mality the traditional approach is fully jusified. 3 Unfortunately, not only

3Under normality absence of linear correlation is equivalent to independence, thus the
condition E[u|z] = 0 follows as well.
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the joint normal case is a special case, but is also particularly ill-suited in
this context, because it embeds homoschedasticity by construction.

In the general case we can take a Taylor expansion of eu − 1 around
u = 0. Rearranging terms we have

E(u|z) = −E(1/2u2 + 1/6u3 + ...|z) (2)

and if the right hand side of this condition is constant in z we can derive
the identification condition E(u − Eu|z) = 0.

Many researchers have encountered some version of equation (2), that
is they have recognized that the mean of u will not be zero and that a
variance term should appear in the residual of the regression expression.
Usually they have dealt with the problem just redefining appropriately the
residual and the constant term in the regression, that is assuming –more or
less explicitely– that E(1/2u2 + 1/6u3 + ...|z) is constant in z. .

This last assumption is crucial for the identification of the linearized
model. Notice that the first term appearing in the expectation is E(1/2u2|z),
and this term reflects the heteroskedasticity of u conditional on the instru-
ment z. Zeldes recognises correctly this problem: ”the conditional variance
of the forecast error could be a function of wealth or disposable income. For
example, when household assets are especially low, uncertainty about the
growth rate of consumption could be higher. (...) In each of these cases the
estimation scheme presented below will be inconsistent.” 4

Therefore when we do our test of homoschedasticity we are also testing
the accuracy of the linearized expression, and if we reject E(u2|z) = 0 this
implies that our identification assumption is incorrect. In this setup the
presence of heteroskedasticity has negative implications for the consistence
of our estimator and not only for its efficiency, due to the form of our original
identification assumption and the fact that we are using an approximation
of it. After rejecting the homoschedastic hypothesis we cannot rely anymore
on the estimates obtained by using E(u|z) = 0. At this point we can either
go back to the non-linear specification or find some fix for the linear identifi-
cation condition. From the point of view of matching theoretical predictions
with identification assumptions the ideal would be to work directly with the
nonlinear form, as Hansen and Singleton originally did on aggregate data,
and as Runkles did on individual data. But when using panel data there
are substantive gains by keeping linearity in the individual effects, so some
type of linearization seems useful.

4Zeldes (1989), p.319
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One possibility is to add a term of the Taylor expansion and use as the
identification condition

E(u + 1/2u2|z) = 0 (3)

Clearly to obtain linearity in the individual effects from (3) we need to
make additional assumptions. The nature of the problem is the following.
We don’t actually observe ui

t, instead we observe vi
t = ui

t − αi − ηi
t. Here αi

is an individual effect constant over time, in our model it corresponds to a
different discount factor, that is to log βi in (3). ηi

t is a time-varying effect,
in our model it correspond to the unobserved taste shock part, but it may
also include measurement error in consumption. If we rewrite (3) in terms
of observables and parameters (the parameters are implicit in vi

t), we have:

E[vi
t + 1/2(vi

t)
2 − αi − ηi

t|z] − K(z) = 0 (4)

Where K(z) = E[(αi + ηi
t)2 + ui

t(αi + ηi
t)|z].

If we are willing to make the additional assumption that K(z) is constant
we have an identification assumption which is linear in the individual effects
and we can carry out a richer analysis using most of the tools of linear
panel data models. Actually, in this paper I simply analyze a random effect
specification (that is I will assume E(αi|z) = 0), but I plan to extend the
analysis and do the appropriate specification tests in future work.

4 Data and Estimation Strategy

The estimates are computed using a sample of 2,350 families from the Panel
Study of Income Dynamics (PSID) covering the years 1976 to 1985. The ad-
vantages and disadvantages of using this data set for studying intertemporal
consumption have been discussed at length in the literature5. One specific
disadvantage in our context is the recognized presence of large measurement
error in the consumption data. Apart from the additional assumptions that
need to be done in presence of measurement error to get identification, its
presence here means also that we have little information about the total
variability of the residual. For this reason we are limited in our ability to
make statements about the importance of wealth accumulation in reduc-
ing variability in proportional terms, even if we have good estimates of its
absolute effect.

5Studies on consumption using the PSID include: Hall and Mishkin (1982), Zeldes
(1989), Keane and Runkle (1992), Gruber and Dynarski (1997).
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The variables used are: food consumption, the real rate of interest,
household disposable income, family wealth and two demographic variables.

The food consumption variable is constructed adding the value of food
stamps to the food at home variable and then adding food at home and food
out of home, each deflated by the appropriate consumption price index.
The rate of interest is computed by applying the household marginal tax
rate to the rate of return on 3-months Treasury bills, and the real rate
of interest is obtained by subtracting the rate of inflation for consumption
goods. Disposable income is computed subtracting taxes and social security
payments from the total income of the family unit, disposable income is
deflated using the price index

The first measure of family wealth available is housing wealth, and is
computed subtracting the value of the outstanding mortgage from the value
of the house. The second measure is actually a flow measure: the income
from interests and dividends. An approximate stock measure can be ob-
tained dividing this measure by an appropriate rate of return. In the es-
timation of the euler equation wealth levels are used only as instruments
and in that case I have preferred to use the two wealth variables separately,
keeping the second one as a flow variable. For the nonparametric regressions
of u2 instead I have computed an aggregate measure of wealth, converting
the second measure to a flow using the rate of return on treasury bills. 6

The demographic variables used are the age of the head of the household
and the size of the family unit.

We can use the definition of the observable residual v in section 2, assume
CRRA utility ( c1−γ

1−γ ) and rewrite the expression for the linearized residual
in (3) as:

vi
t+1 = b0 + log Ri

t+1 + b∆di
t+1 − γ∆(log ci

t+1) (5)

To estimate the parameters of this expression I use the GMM estimator
based on the condition E(Z ′

tvt) = 0 where Zt is a vector of instrumental
variables that are uncorrelated with vt. The demographic variables used
are: the age of the head, the age of the head squared, and the change in
family size. To take into account aggregate forecast error I have added time
dummies to the right hand side of (5). Zt includes lagged values of the
wealth variables, lagged values of disposable income (2 lags), and the lagged
value of the marginal tax rate.

6In the construction of the variables above I have followed closely Zeldes (1989), there-
fore I refer to that article’s appendix for a careful discussion of this construction.
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In principle one could use a different set of instruments for every time
period (more lags are available for larger t), and one could make efficient use
of the period-by-period distinct conditions plimN→∞(Z ′

tvt)/N = 0 for t =
2, 3, ..., T , where N is the number of families and T the number of time peri-
ods. Here, for simplicity, I have used the same set of instruments for each pe-
riod and I have used the time aggregate condition plimN→∞

∑
t(Z

′
tvt)/NT =

0, that is the weighting of the different time period orthogonality conditions
is not efficient.7

Therefore, my estimation is reduced to a simple efficient instrumental
variable regression on the model ∆ log ci

t = bxi
t + εi

t, where each (i, t) is
treated as a separate observation, xi

t includes all variables on the r.h.s. of
(5) except consumption, and εi

t = −(1/γ)vi
t.

I am not differencing the vt to eliminate the individual effect, that is I
am considering a random effects estimator. In making this choice I rely on
results by Keane and Runkle (1992). They adapt the Hausman and Taylor
(1981) specification test to the case of not strictly exogenous instruments
and do not reject the hypothesis of individual effects uncorrelated with the
instruments. Therefore, in the following I use the random effects specifica-
tion.

Still, the panel dimension was taken account of in computing a con-
stistent estimate of the variance matrix Ω = E(Z ′εε′Z) needed for efficient
weighting. In doing that I have considered the presence of the individual
component in vi

t and I have allowed for non-zero values of E(εi
rε

i
s) for all

r, s. The expression below is the appropriate extension of White’s (1980)
heteroskedasticity consistent covariance estimator, assuming E(εi

rε
j
s) = 0 for

any r, s, i, j such that i 6= j.8

Ω̂/N = (1/N)
T∑

t=1

N∑
i=1

(ε̂i,t)2zi,tz
′
i,t + 2(1/N)

T−1∑
l=1

T∑
t=l+1

N∑
i=1

ε̂i,tε̂i,t−lzi,tz
′
i,t−l (6)

The heteroskedasticity test is simply based on the regression of ε2i,t on the
vector of instrumental variables in Z. In that regression I have also tested
the joint significance of the four variables immediately related to availability

7The efficient use of period-by-period orthogonality conditions separately is computa-
tionally more demanding but would allow one to construct a sequence of GMM estimators
with asymptotic variances approaching the information bound as the set of instruments
is expanded, as shown in Chamberlain (1992).

8Compare it with (3.12) in Holtz-Eakin, Newey and Rosen and notice that here period-
by-period orthogonality conditions are aggreg5ated in a fixed (inefficient) way.
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of liquid assets, namely the two measures of wealth and the two lagged values
of disposable income.

A second set of parameter estimates is obtained from the following or-
thogonality condition, adjusted by a quadratic term,

E(Z ′
t(εt − 1/2γε2t ) = 0. (7)

which is derived from (4) and, as argued in section 2, is more reliable in
case of heteroskedasticity of the residual.

The GMM estimation strategy is analogous to that for the linearized
model. Letting h = Z ′(ε + γ1/2ε2), I have first obtained an estimate of the
parameters, minimizing h′Wh with W = I. Then, using the residuals ε̂, I
have computed the efficient weighting matrix W = Ω−1 using an expression
analogous to (6) with the adjusted residual ε̂ − γ̂1/2ε̂2 replacing ε̂. Using
this efficient weigthing matrix I have obtained the parameter estimates.

5 Results

5.1 Some preliminary results

In order to estimate V ar(lnCt+1|wit) we need to make assumptions about in-
dividual heterogeneity and about aggregate risk. If aggregate risk is absent,
as in the model simulated in section 2, then the cross sectional variability of
lnCit provides information about the perceived variability of consumption
for a single consumer. Let us assume, for the moment that aggregate risk has
negligible effects, and let us focus on the problem of individual heterogene-
ity. Denote with θit all sources of individual heterogeneity except the wealth
level, in the model in section 2 the only element of heterogeneity, aside from
the wealth to permanent income ratio, was the level of permanent income
and θit = Xit. Then we can write

V ari(lnCit+1|wit) = Ei(V ar(lnCit+1|wit, θit)|wit)+V ari(E(lnCit+1|wit, θit)|wit)

Where with V ari we denote a cross sectional variance. Clearly, we are in-
terested in characterizing only the first term on the right hand side. In the
model in section 2 V ar(lnCit+1|wit, θit) is actually constant in θit, and equal
to V ar(lnCit+1|wit), therefore if we could isolate this first element on the
right hand side we could immediately test the predicted decreasing shape
of V ar(lnCit+1|wit). Isolating this effect requires a number of identifica-
tion assumptions. As a preliminary exercise we adopt a rough approach
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to eliminate the ’level’ effect generated by the second term, by just taking
differences. If we compute

V ari(∆ lnCit+1|wit) = Ei(V ar(∆ lnCit+1|wit, θit)|wit)+V ari(E(∆ lnCit+1|wit, θit)|wit)

and include Cit in the list of the θit variables, we can exploit the fact that
E(∆ lnCit+1|wit, θit) is approximately zero if consumption is close to a ran-
dom walk. In the context of the simulated model in section 2 this procedure
is correct for any wit greater than zero if an approximate Euler equation
holds.

Therefore as a preliminary result I have estimated the regression of
(∆log(ct+1))2 on the wealth level wt, computed summing the two measures
of housing and financial wealth. That is, I have estimated the statistical re-
lation between lagged wealth holdings and variability of consumption. The
kernel estimate of this regression appear in figure 3 and 4. 9 The picture
seems to support the idea that larger wealth holdings are associated with
lower consumption variability. The change in log consumption is an imper-
fect estimate of the Euler equation residual, for example it does not take
into account that changes in demographics may make a given consumption
change have different impact on the houshold marginal utility of income.
Therefore we turn now to the estimation of the parameters of a fully spec-
ified Euler equation in order to recover the residual from this estimation.
After that we will go back to the nonparametric analysis of the conditional
behavior of the residual.

5.2 Euler equation estimates and tests of heteroskedasticity

The results of the estimation of the linearized model are reported in the
first half of table 1. Column II displays the coefficients for an alternative
specification that tests for excess sensitivity by adding current income to
the group of explanatory variables.

The coefficients of the demographic variables are all significantly different
from zero. The coefficient on the interest rate is considerably larger than that
usually found in the literature (usually smaller than 1 and often around 0.5
corrsponding to an estimated value of γ around 2). Actually the estimates
of this coefficient have pretty large standard errors in all the specifications
considered, maybe more efficient estimation procedures (as those discussed
in footnote 9) would give results in line with the literature. Observing the

9A simple quadratic kernel was used and various bandwidth values where tried. Figure
3 and 4 correspond to a bandwidth value of 0.15.
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Figure 3: Wealth and consumption variability (w=0 included, band-
width=.15)

coefficient on disposable income in column II we see no evidence of excess
sensitivity in the data, in accordance with the findings of Keane and Runkle
and of other studies that allow for a certain richness in the specification
of the demographic part (see Attanasio and Browning (1995)). The table
reports also the Sargan test of overidentifying restrictions, in both cases the
test does not reject the specification used.

The second half of table 1 reports the results of the heteroskedasticity
regression, the value of the χ2 statistic is reported for the general test of
homoskedasticity (all coefficients in the regression equal zero), and for the
specific test of homoskedasticity conditional on past income and wealth levels
(the relative degrees of freedom are reported in parenthesis). Both tests
strongly reject the hypothesis of homoskedasticity.

We can take this as prima facie evidence in favor of the insurance role of
accumulated wealth. Given the correlation of the income and wealth vari-
ables and the fact that they are all included to account for the same factor
(availability of liquid assets at time t + 1) we do not expect to get negative
and significant coefficients on all variables. The lagged income term carries
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Figure 4: Wealth and consumption variability (w > 0, bandwidth=.15)

most of the explanatory power and it is the only one which has a coefficient
significantly different from zero. The coefficient on lagged income is negative
and —according to our interpretation— it implies that a 10% increase in
disposable income in period t allows the consumer to reduce residual con-
sumption variability in the next period by 2.6%. This elasticity is computed
using the mean value of the measure of consumption variability, which is
0.1253. Here we encounter the problem mentioned above regarding mea-
surement error. Measurement error affects total observed variability and
therefore inflates the value of the average residual variability. At the same
time measurement error should not affect our coefficient estimates (at least
we hope so, otherwise our identification assumption would be incorrect). As
a consequence elasticities of the type just reported will be in general un-
derestimated. Under heteroskedastic errors we know that the identification
condition is inaccurate, so I have used the identification condition (7) to
get new parameter estimates. The results are reported in Table 2. The het-
eroskedasticity regression has been performed also for this model, because of
its economic interpretation. The first four coefficients do not show striking
differences with the simple linearized specification.
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Table 1: Log Linearized Model
I II

Indep. Variable Coeff. S.E. Coeff. S.E.
Age 0.01430 0.00166 0.01458 0.00171
Age2 -0.00017 0.00002 -0.00017 0.00002
∆(Family size) 0.11487 0.00537 0.11511 0.00538
Real interst rate 1.65004 0.21259 1.29191 0.54788
Disposable income -0.00647 0.00917
Overidentif. Restr. 0.93720 (4) 0.42004 (3)

Regression of squared residuals
Indep. Variable Coeff. S.E. Coeff. S.E.
Lagged disp. income -0.03284 0.00482 -0.03301 0.00482
2 Lagged disp. income -0.00740 0.00392 -0.00747 0.00392
Housing wealth -0.00341 0.00312 -0.00343 0.00312
Non-housing wealth 0.00186 0.00237 0.00187 0.00237
χ2 490.610 (16) 492.288 (16)
χ2 income/wealth vars. 106.610 (4) 107.816 (4)

The coefficient of ε̂2 is an additional parameter which is directly esti-
mated in this case and corresponds to γ (see (7)). Also this estimated γ is
much smaller than the estimates obtained in most empirical studies and it
is actually not significantly different from zero. In this specification we have
also another available estimate for γ, that is obtained as the inverse of the
coefficient of the interest rate, which corresponds to 0.7468. We can test the
difference of the two by using a delta method to derive the variance of the
difference. Even though both estimates have high standard errors we reject
the hypothesis that they are equal10

The result that the variability term has a coefficient close to zero is puz-
zling. This result bears some resemblance with a result obtained by Dynan
(1993). She uses a different approxiamte expression for the Euler equation
that allows for a general form of the utility function, and she obtains a
condition analogous to (7) with a variability term represented by (∆logc)2

instead of ε2. She shows that the coefficient of the variability term is ap-
proximately equal to cu′′′/u′′, a measure of consumer ’prudence’. Notice
that the CRRA specification imposes cu′′/u′ = cu′′′/u′′, so our test of equal-
ity between the two estimated γ can be considered —in Dynan setup— as

10The difference is 0.5088, and it is asymptotically normal with standard error 0.2145.
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Table 2: Model with quadratic term correction
Indep. Variable Coeff. S.E.
Age 0.01578 0.00254
Age2 -0.00019 0.00003
∆(Family size) 0.11555 0.00550
Real interst rate 1.33907 0.47128
1/2ε̂2 0.23798 0.15664
Overidentif. Restr. 0.39969 (4)
N. obs. 18880
N. Indep vars 12
N. instr. 16 Regression of squared residuals

Regression of squared residuals
Indep. Variable Coeff. S.E.
Lagged disp. income -0.03284 0.00483
2 Lagged disp. income -0.00759 0.00392
Housing wealth -0.00359 0.00313
Non-housing wealth 0.00185 0.00237
χ2 493.83874 (16)
χ2 income/wealth vars. 107.75742 (4)
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a test of the CRRA specification, and our result would imply a rejection
of this specification. Secondly the fact that the coefficient on the squared
residual is not significantly different from zero would imply a rejection of
the prudence assumption. Starting from the approximate Euler equation
Dynan follows a different strategy than ours: first aggregates across time
periods and then uses the individual observations obtained in this way to
test the significance of the prudence coefficient. She reaches a similar result
as that obtained here, namely that the coefficient on the variability term is
not significantly different from zero. The approach of aggregating along the
time dimension and then using the individual cross section of aggregate data
can be criticised because the identification of the Euler equation is basically
a time series property, and the identification assumptions needed for cross-
sectional analyisis may be unwarranted. Carrol(1997) (pp.22-23) contains
a detailed critique of Dynan’s test along this lines. In the present setup
we are exploiting the time-series dimension therefore the result seems more
disturbing. At the same time, the time series dimension of the panel is so
short that would be ridicolous to claim asymptotic validity in that direction.
It is outside the scope of this paper to analyse the delicate question of the
use of a time-series identifying assumption with a ’short’ panel dataset11,
let me just notice that an implicit assumption that justifies the standard
approach is the assumption that the shocks realized in the population re-
flect the shocks experienced by a typical individual across his lifetime. This
implicit assumption is perfeclty valid for example in the simple model simu-
lated in section 2 where only idiosyncratic shocks are present. In presence of
aggregate shocks the question is if these aggregate shocks are ’small’ enough
and if the time dimension available is large enough to average them away.
In this sense it would be interesting to redo the estimation above exploiting
the full length of the PSID that covers now 25 years.

Incidentally, it is interesting to observe that a recent article by Attanasio
and Browning (1995) seems to bring some indirect comfort to the estima-
tion approach based on condition (7). They use coohort data, and in this
way they have a much longer time dimension to exploit. Thus, we hope
that they are better protected from Chamberlain’s critique. In their IV
regressions they include the growth of squared consumption among the ex-
planatory variables and the coefficient they obtain is always significant and
positive. This is not the same as including the squared residual but the two
variables are likely to be highly collinear. Actually, their interpretation of

11The point was first raised by Chamberlain(1984). See also Hayashi (1992) and the
reply by Keane and Runkle (1992).
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that additional term is quite different from the one given here: they stick to
the standard linearized Euler equation, but they use a generalized version
of the CRRA utility function which, in the end, leads them to write the
squared term among the explanatory variables. It would be very interesting
to try the estimation strategy outlined above on that dataset, and see which
conclusion we obtain regarding consumers’ prudence.

5.3 Non-parametric regressions

We now return to the attempt to estimate non-parametrically V ar(lnCit+1|wit, θit).
Now we will use the decomposition

V ari(∆ lnCit+1|wit) = Ei(V ar(uit+1|wit, θit)|wit)+V ari(E(uit+1|wit, θit)|wit)
(8)

This decomposition is very convenient, because if the approximate Euler
equation holds, then the second term will have a negligible effect. Unfortu-
nately, the results in the previous section warn us that this cannot be the
case, actually this cannot be the case exactly when the decreasing relation
between w and the variability of consumption are correlated. So in a sense
our exercise is self defeating, because is leads to a specification test that in-
validates our estimation. On the other hand the Dynan result, obtained also
in the previous section, could be taken to indicate that, the second order
terms are quantitatively small, so that V ari(∆ lnCit+1|wit) mostly capture
the behavior of Ei(V ar(uit+1|wit, θit)|wit). Here we take this approach and
we simply look at estimates of the left hand side of 8. The alternative would
be to fully spell out a set of identification assumptions that would allows us
to estimate the first term in isolation.

Notice that the results reported below are robust to the use of residual
from the standard linearized specification and using the residuals from the
adjusted specification.

We report the results for the last specification for brevity and because
we still hope it provides a better approximation to the behavior of the actual
residual. Figures 5 to 7 show the results of a kernel estimate of the nonlinear
regression of the squared residual on w. For this estimates we have used
a simple quadratic kernel. Given the skewness of the distribution of w
we found more convenient to transform the wealth variable according to
w′ = log(1 + w) and to use the transformed variable as the explanatory
variable in computing the nonparametric regressions12. Notice though that

12I also computed some regression without transforming the wealth variable, the results
were not very different but the choice of the bandwidth was difficult: increasing the band-
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the figures display the estimated conditional expectation as a function of
the original wealth variable. Wealth is expressed in terms of the average
income.
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Figure 5: Wealth and residual variability (w >= 0)

Figure 5 confirms the preliminary result obtained in figure 3. Even after
controlling appropriately for demographic variables and the real interest rate
the residual variability is clearly influenced by the wealth level of the house-
hold. From the picture it appears that most of the reduction in variability is
achieved at the lower levels of wealth holdings. The analysis is made more
difficult because the distribution of w is clearly not continuous, since 30%
of the data correspond to zero wealth holdings. Moreover at zero wealth
holdings the conditional variabilty spikes at 0.1651. This accounts for the
steep portion of the regression for low values of wealth, and for the fact that
decreasing the value of the bandwidth the steep part shifts left. At this
point it is interesting to reestimate the regression admitting a discontinuity
at wealth zero. Table 6 displays the results of an estimation using only data
with w > 0. To get an idea of the jump at zero recall that the mean variabil-

width implied the use of a lot of observations for low levels of wealth and and decreasing
it implied the use of too few observations at high levels of wealth.
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Figure 6: Wealth and residual variability (w >= 0)

ity at w = 0 is 0.1651. In any event the general result is quite clear. There
is a very large reduction in variability passing from zero wealth to some
limited amount of wealth holdings, for higher values of wealth holdings the
reduction is slower but, interstingly enough, it continues all over the wealth
range (the 98% percentile of the distribution is 2.26). Another interesting
piece of evidence is contained in the joint distribution of the residual and the
wealth variable. The picture of the estimated joint density does not seem
very informative, but if we compute the conditional density of the residual
at different levels of wealth we can obtain the plot in Figure 8 that confirms
the results above, at higher wealth levels corresponds a distribution of the
residual that is more concentrated around zero.

6 Concluding remarks

In this paper I have analysed the relationship between household wealth and
consumption variability. The relationship has been analysed for its bearing
on two different questions: (1) the comparison of a precautionary savings
model against models of full insurance or quadratic models of the perma-
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Figure 7: Wealth and residual variability (w > 0)

nent income hypothesis, and (2) the econometric use of the approximate
consumer Euler equation. Regarding the first question the results seems to
support the insurance role of wealth displayng a strong negative relationship
between wealth holdings and residual variability. As a clarification is impor-
tant to notice the objective of this study was not to determine the direction
of causation between the two variables, that is we did not try to estimate
the direct effect of wealth holdings in reducing consumption variabilty or the
effect of greater ex-ante income variability on wealth accumulation. Rather
we estimated the equilibrium (reduced form) relationship between the vari-
ability and wealth, and we have observed that the shape of this equilibrium
relationship seems consistent with the predictions of precautionary savings
models.

From the econometric point of view the results show that the use of
the traditional linearized Euler equation may lead to inconsisten estimates,
being the identification condition an inaccurate approximation of the original
condition. At the same time, trying to improve the traditional setup has
led to puzzling results similars to those of Dynan (1993). These results
may be due to a classical weakness of the Euler equation approach with
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Figure 8: Conditional density of the residual

short panel data, that is, the unwarranted use of a time series identification
condition with a small number of time periods. Or they may be due to more
fundamental flaws in the specification of consumer preferences.

When the approximate Euler equation holds we can estimate in a simple
way the non-parametric relation between wealth and consumption variabil-
ity, even in presence of individual heterogeneity. When the approximate
Euler equation fails, though, this direct estimates are no longer reliable. So
in a sense our specification test is self defeating. If our specification test
rejects the approximate Euler equation, we can no longer use it as a starting
point to study the conditional variance of consumption. Thus, in future work
we need to attack directly the problem of identifying the relation between
wealth levels and consumption variability without the help of the linearized
Euler equation.
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