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Abstract

This paper identifies themes and heuristics involved in the solutions to analytic-flavored
olympiad problems, which is a rising trend in mathematical olympiads but has received
little attention both in literature and in discussions. It deals with a class of problems that fo-
cuses on the long-term and large-scale behavior of sequences as well as other problems with
implicit sequences or functions. The author selected thirty-six problems that have at least
one solution involving analytic reasoning and examined the main ideas in their solutions.
The main ideas were organized into twenty-four heuristics, which were later condensed
into eleven and subsequently categorized under three main themes, namely taking a global
view, refocusing, andinvestigating dynamics or processes. This article presents an exposi-
tion into these themes, providing an informal, intuition-based discussion to the heuristics
involved. The discussion is based on past mathematical olympiad problems that incorporate
the specific heuristics as their main ideas.

Keywords: mathematical analysis, problem-solving, problem-solving heuristics, analyt-
ical reasoning, mathematical olympiads, sequences, functions, convergence
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List of abbreviations

Throughout this paper, the following abbreviations are used to label problem sources:

APMO X PY Problem Y of the X Asian-Pacific Mathematics Olympiad

Benelux X PY Problem Y of the X Benelux Mathematical Olympiad

Canada MO X PY Problem Y of the X Canadian Mathematics Olympiad

IMO X PY Problem Y of the X International Mathematical Olympiad

ISL X (abbr.) Y International (Mathematical Olympiad) Shortlist Problem Y under Algebra,
Number theory, Combinatorics, Geometry

MOSC Mathematical Olympiad Summer Camp (Philippines IMO Team Selection)

PEM Handout PY Problem Y of the handout Problems on Convergence of Sequences
from the September 3, 2016 session, advanced group, Program for Excellence in
Mathematics

PFTB Example X Example X of Problems from the Book Chapter 17

S#, M# Small idea with score #, major idea with score #

USA TST X PY Problem Y of the X United States of America Team Selection Test

USA TSTST X PY Problem Y of the X United States of America Selection Test for the
Team Selection Group

USAMO X PY Problem Y of the X United States of America Mathematical Olympiad.

USAMTS X/Y/Z Problem Z of the Yth round of the Xth United States of America Math-
ematical Talent Search

3



1 Introduction

A considerable portion of problems (approximately 10%, increasing recently) featured in
mathematical olympiads may be described as analysis-flavored. While most such problems
are within algebra and involve examining the long-term behavior of sequences that fit the
given conditions, similar ideas emerge in problems within number theory or combinatorics,
whose solutions identify a pertinent function and understands its large-scale, rather than
term-specific, properties.

According to Wolfram MathWorld, analysis “is the systematic study of real and complex-
valued continuous functions” (Renze and Wesstein, n.d.). While analysis is a large field
composed of numerous sub-topics such as calculus, integration, and topology, analytical
concepts in olympiad problems cover a much narrower domain, focusing on the behavior
of sequences or functions, commonly known as calculus. An analytical approach to solving
an olympiad problem involves understanding a sequence or function from a global perspec-
tive, typically foregoing details in order to focus on large-scale behavior. In these solutions,
techniques and arguments involved are “primarily simple, bare-hands deductions based on
inequalities, size considerations, infinitesimal, or asymptotic heuristics” (Wang, personal
communication, March 27, 2017).

Analytical reasoning may be considered as a thought framework where one considers
a notion of sizes or estimates (such as a quantity being sufficiently large) that is typically
not done in more rigid problems (Chen, personal communication, March 9, 2017). It may
involve first understanding the scenario locally and then generalizing to understand the
whole picture, also known as the local-global principle.

1.1 Background

The term analysis-flavored to describe a particular class of problems is not in wide use: the
only two explicit mentions found as of writing are the second section (Analytic-flavored
stuff ) of the article MOP Experiment (Wang, 2014) and the seventeenth chapter (At the
Border of Analysis and Number Theory) of the book Problems from the Book (Andreescu
and Dopinescu, 2010).

The article MOP Experiment compiles problems from themes typically not covered in
olympiad handouts, one which is analytical considerations in number theory and sequences.
In a personal correspondence, the author categorizes mathematical topics and arguments as
analytical, structured (algebra), or visual (geometry). The main idea in analytical reasoning
is the understanding of structure versus noise; the latter is ignored in favor of the former.
While few problems are purely analytical, some have primary analytic techniques.

Analytical reasoning leans heavily towards global (the subtleties of how the pieces in-
teract with each other) rather than local (how individual points or pieces or a small portion
works) methods. In the context of problem solving, this implies that in analysis-flavored
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problems, the value of a function at x = 2, for example, is far less important than its overall
rate of change. Such reasoning may be done purely based on intuition, size estimates, and
an understanding of the function in general, without having to examine the details (Wang,
personal correspondence, March 27, 2017).

The chapter At the Border of Analysis and Number Theory in Problems from the Book
focuses on the application of analytic techniques in number theory. The solutions to the
problems featured all exhibit convergent integer sequences, which must eventually reach its
limit which is a fixed value. It offers analytical reasoning (particularly, that of bounded or
convergent integer sequences) as an alternative to difficult-to-design elementary solutions
to several number theory problems. It claims that the difficulty is in manipulating and
understanding the problem sufficiently to identify the underlying sequence (Andreescu and
Dopinescu, 2010).

1.2 Objectives

This paper intends to deconstruct the class of analytic-flavored olympiad problems by ex-
amining and categorizing the heuristics involved in the solutions to thirty-six analytic-
flavored problems. Typically, such problems are categorized into detail-based categories
such as sequences, functions, or sets; sometimes as miscellaneous problem-solving. Ac-
cording to the article Some Thoughts on Olympiad Material Design (Chen, 2017), these
categories do not adequately describe nor convey the understanding of the style of thought
and arguments involved.

As this category of problems encompasses many different types, from typical sequence-
based problems (such as IMO 2010 Problem 6) to combinatorics problems (such as IMO
2012 Problem 3), identifying problems belonging in this category may be difficult. Al-
though on a surface level, the solutions look different, they are related to the small number
of main ideas, which are far more important than technical details (Chen, 2017). This va-
riety in problem statement styles may explain the lack of literature as well as the lack of
awareness on this approach. Thus, another objective of this article is to expound on the
vague notion of analytical thinking in the context of olympiad problems.

In his article, Chen further stresses the importance of proper “olympiad taxonomy”, or
the classification of olympiad problems. Typically, problems are sorted based on “partic-
ular technical details” that appear in the problem, which do not necessarily represent the
main ideas. His recommendation, instead, is to “classify the main ideas into categories and
themes” in order to exemplify connections between problems. Therefore, this article clas-
sifies the selected analytic-flavored olympiad problems based on their key heuristics and
main ideas.
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1.3 Organization and preparation

With the above guidelines in consideration, the author first skimmed through problems
from the following sources: International Mathematical Olympiad Shortlist 2000–2015,
United States of America Mathematical Olympiad 2000–2015, Canadian Mathematical
Olympiad 2000–2015, United States of America Mathematical Talent Search 2000–2015,
Asian-Pacific Mathematics Olympiad 2000–2015, United States of America Team Selec-
tion Test 2000–2015, Benelux Mathematical Olympiad 2011–2015, Philippines IMO Selec-
tion Quizzes 2016–2017, Problems from the Book Chapter 17 (Andreescu and Dopinescu,
2010), Problems on Convergence of Sequences (Chan Shio, 2016), and MOP Experiment
(Wang, 2014). He then selected problems which involve examining a situation for an infi-
nite number of iterations (approximately 150 problems). Afterwards, he read the solutions
to these 150 problems and then selected 66 problems that contain analytical ideas, taking
note of the role of analytical reasoning in their solutions. He then narrowed the list to
thirty-six problems that best exemplify the nature of and heuristics involved in analytical
reasoning.

For each of the thirty-six problems, the author examined the solution by recording its
key ideas, summarizing them in a sentence with elaboration if necessary. Each key idea was
classified as either small (mainly a technical detail) or major (a pivotal aspect in solving
the problem) and assigned a point value from 1 to 10, with the constraint that the sum of
points assigned from a problem is exactly 10. He then collated the list of key ideas and
matched the ideas under twenty-three heuristics. As some heuristics were overly narrow or
better classified as tools, the author combined some heuristics with one another, resulting
into eleven broader heuristics. He then grouped the fifteen heuristics under three categories,
namely themes: (1) taking a global view, (2) refocusing, and (3) investigating dynamics or
processes.

The succeeding sections will discuss the three themes and the heuristics within them.
Each heuristic will be described by one or two problems, followed by a thematic discus-
sion and a list of problems for further reference (taken from the thirty-six problems that
were analyzed). Problems are listed according to index number; heuristic scores and addi-
tional comments are listed in each entry. The problem discussion will maintain an informal
yet instructional tone, including all thought motivation and guiding the reader through the
motivation to the solution of the problem. Some details (not necessarily minor) may be
left to the reader as exercises in order to focus the discussion to the heuristics and main
ideas at hand. The text is interspersed with parenthetical comments to verify the reader’s
understanding of analytic techniques.
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1.4 Use of bounding

Bounding is commonly used to establish the relative position of a term of a sequence
or a defined quantity. Bounding may be either one-sided (only one of either � or ) or
two-sided (both � and ).

Some problems that involve bounding a quantity are listed below:

A.2. Benelux 2011 P3 (S2) – squeezing between for bounding and contradiction

A.31. USAMTS 20/3/5 (S10)

A.33. USAMTS 26/3/3 (S1) – squeezing powers to solve both sides simultaneously

Once a discrete (i.e. taking only whole numbers) function is bounded both above and
below (one may be a natural bound such as “positive integers”), its possibilities are limited.

The problems below involve bounded discrete functions as a central idea. As they are
rather advanced, it is recommended to read the rest of the article first before attempting
these problems.

A.7. ISL 2009 A6 (S2)

A.15. ISL 2015 N4 (M5) - find an aspect in which it is bounded; reinterpreting using mod-
ulo may be helpful

A.27. PFTB Example 12 (M7)

2 Taking a global view

Taking a global view is the essence of analytical reasoning: focusing on the “big picture”
rather than point-based properties. A main idea in this heuristic is the concept of local
discrepancies, which is inconsistent, deviant, or erroneous behavior relative to the norm.
Sometimes, local discrepancies would compound as the sequence indices grow and become
large, thus contradicting hypotheses of normalcy or boundedness. At other times, these
discrepancies may be shown to have negligible effect over the long run and hence (after
sufficient justification) may be ignored. A related concept is that of density of a sequence
– in simple terms, this refers to the approximate or asymptotic proportion of the numbers
from 1 to n, with n sufficiently large, represented by at least one term in the sequence.

The concept of taking a global view is used to finish the details to solutions in problems
of succeeding sections, after applying another theme or heuristic.
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2.1 Exploiting local discrepancies together with bounds

Although some discrepancies may seem minuscule, they may add up as the sequence iter-
ates, ultimately causing a contradiction. This heuristic is frequently paired with bounded
gaps, meaning that even later throughout the sequence, the discrepancy is not allowed to
grow unbounded.

Example 2.1 (PEM Handout P2). Let (an)n be a sequence of real numbers that satisfies the
recurrence relation an+1 =

p
a2

n +an �1 for n � 1. Prove that a1 is not within (0,1).

Solution. Since we are showing that a1 may not fall within (0,1), a natural approach would
be to assume otherwise and examine what occurs. Looking backwards, a clear contradiction
would occur if one of the ai’s is such that a2

n + an � 1 < 0, as an+1 would not be a real
number. This is equivalent to a2

n+an < 1, which is true for all an  1
2 (this is merely a loose

bound used to simplify computations; the actual bound is approximately an  0.618.)
We analyze the relation of an+1 to an by trying some examples:

• If an = 0.8, then a2
n +an �1 = 0.48, an+1 =

p
a2

n +an �1 ⇡ 0.68.

• If an = 0.9, then an+1 =
p

a2
n +an �1 =

p
0.71 ⇡ 0.84.

• If an = 0.95, then an+1 =
p

0.952 +0.95�1 =
p

0.8525 ⇡ 0.923.

It seems that an+1 < an whenever an+1 is defined and an < 1. Indeed, as we are only
interested in the case where a2

n + an � 1 > 0, we may square both sides of the equationp
a2

n +an �1 < an to get

a2
n +an �1 < a2

n

an �1 < 0

an < 1,

which is true by assumption. Hence among defined ai, the sequence (an) is strictly decreas-
ing if a1 < 1, as a2 < a1 < 1, a3 < a2 < a1 < 1, and so on.

Despite the contradiction being apparent, the proof is not yet complete, as we merely
have shown that the sequence is monotonically decreasing – nothing was shown about the
rate of decrease. It is possible for a sequence to be monotonically decreasing yet never goes
below a certain number; for example, the sequence 0.81,0.801,0.8001, . . . is monotonically
decreasing yet is always above 0.8. Thus, we must find a stronger claim.

We examine the values of an+1 relative to an a bit more: Consider f (x) =
p

x2 + x�1.
As seen earlier, f (0.8)⇡ 0.69, f (0.9)⇡ 0.84, and f (0.95)⇡ 0.923. It seems that applying
f to an x in (0.7,1) decreases it in a somewhat predictable manner: the gap from one is
multiplied by slightly more than 1.5. If we are able to prove that 1� f (x)> 1.5(1�x), this
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Figure 1: Visualization of an, an+1, and an+2 on the number line.

becomes 1�an+1 > 1.5(1�an). However, if there exists ai < 0.5 ! 1�an > 0.5 then we
arrive at a contradiction.

If we let the initial distance from 1 (i.e. 1�a1) be d, then

1�a2 > 1.5d,1�a3 > 1.52d,

and so on. In general, as long as ai is defined, 1�ai > 1.5i�1d. As 1.5i�1 is unboundedly
large (it is well-known that ax where a > 1 goes to infinity as x grows large), we are able to
find i such that 1�ai > 0.5; hence, this establishes the contradiction.

It remains to prove that 1� f (x)> 1.5(1� x). We arrange, substitute, and manipulate:

f (x)< 1.5x�0.5
p

x2 + x�1 < 1.5x�0.5

x2 + x�1 < 2.25x2 �1.5x+0.25

1.25x2 �2.5x+1.25 > 0

1.25(x�1)2 > 0,

which is true. Thus, 1� f (x)> 1.5(1� x) and our proof is complete.

Discussion. This is an example of how a small discrepancy (i.e. the value of 1� f (x); with
the alternative hypothesis being that it stays near 1 so that there would be no contradiction)
grows larger over the terms. The motivation for considering the expanding discrepancy is
observation and working backwards to our goal, which is to get a contradiction. Note that
the discrepancy need not be exponential (as is the case in this problem), as long as it is
unbounded.

Below is another example on exploiting a local discrepancy. This problem is signif-
icantly more difficult than Example 2.1, and the motivation for considering “ballooning”
local differences is harder to spot. A hint to exploit local discrepancies is the ability to
quantify a term’s influence on later terms, typically through a straightfoward recurrence-
style equation.
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Example 2.2 (USAMTS 26/3/3). Let a1,a2,a3, ... be a sequence of positive real numbers
such that:

(i) For all positive integers m,n, we have amn = aman.

(ii) There exists a positive real number B such that for all positive integers m,n with
m < n, we have am < Ban.

Find all possible values of log2015(a2015)� log2014(a2014).

Solution. Our first step is to examine condition (i), as this seems to be be the most useful to
analyze the long-term behavior of the sequence.

Set m = n in (i) to get an2 = (an)(an). Use this equation to set m = n2 in (i) to get

an3 = (an2)(an) = (an)(an)(an) = a3
n.

By induction, ani = ai
n for all i � 1 (verify this). We seek an invariant for this. Notice that

both the index and the exponent grow exponentially (with the same power). Together with
the fact that

logni ai
n = logn an, (1)

we get that logk ak is constant for k 2 {n,n2,n3, · · ·}. Observe the similarity to what the
problem is asking; therefore, it is natural to hypothesize that logk ak is constant for all k, or
more narrowly, it is the same for k = 2015 and k = 2014.

Write log2015(a2015) = a, log2014(a2014) = b, and f (x) = logx ax. Our discrepancy
right now is a versus b, so we assume that they are different. We have, however, that
log2015i(a2015i) = a and log2014 j(a2014 j) = b by Equation 1. We may set these close to-
gether (up to a factor of 2015 by setting j such that 2015i < 2014 j < 2015i+1). The reader
can verify that for every i, there exists a j. Hence, even at large indices, f (x) still maintains
differences that originated from comparably small indices (a2014 and a2015). Taking the
logarithm of condition (ii) gives

log(am)� log(an)< log(B) (2)

for m < n.
We apply this first to the left hand side of the equation, giving that log(a2015i)�log(a2014 j)

is bounded, using this to show that a  b. Suppose that a > b. By Equation 1,

log(a2015i)� log(a2014 j) = i log(a2015)� j log(a2014) = ia log2015� jb log2014,

and this quantity is bounded above. As 2015i < 2014 j < 2015i+1,

i log2015� j log2014 > i log2015� (i+1) log2015 =� log2015 >�4.
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Hence we know that i log2015 is smaller by only a constant when compared to j log2014.
However, if we grow i linearly, then j would grow linearly as well (at the order of (a�b)x),
then ia log2015� jb log2014 would grow linearly and would be unbounded (positive, as we
assumed that a > b), contradicting the assumption that this is bounded above. (The reader
is encouraged to formalize this argument, as the proof in this paragraph is rather informal.)

Just as the left hand side of 2015i < 2014 j < 2015i+1 was used to prove that a  b, the
right hand side of the same compound inequality may be used to prove that a � b. As the
proof is very similar, it is left as an exercise to the reader.

Exercise 2.3. Adapt the proof in the previous paragraph to prove that a � b.

Combining a  b and a � b gives a = b, which is the desired conclusion; thus, our
answer is 0.

Discussion. The key ingredients to this heuristic are the ability to maintain properties seen
in terms with small indices to terms with large indices (here, we repeatedly used the amn =

aman) and the presence of a rigidly-bounded quantity that holds for all terms. Rigid depends
on the problem, but is typically something constant. When a growing discrepancy (at least
linear) is together with a constant-bounded quantity, there is a likely contradiction, just as
seen in the bounding part of the solution.

The ideas in the related problems below are even more subtle than the second example,
but nevertheless play a pivotal role in their solutions. If stuck, “forcing something until it
breaks” is the proper mindset for this heuristic: examine what occurs if a local discrepancy
is forced to remain as indices grow large, and lead this to a contradiction.

Related problems

A.4. ISL 2001 A2 (M7) – measuring differences (using a specialized function or interpre-
tation) and summing them up

A.5. ISL 2003 A3 (S3) – let small quantities repeated many times add up (as long as they
are not decreasing by much)

A.12. ISL 2014 A1 (M7) – force it until it breaks, find something that would make it break

A.30. USAMO 2015 P6 (M3) – discrete conditions forcing ’steps’ that would cause con-
tradictions

A.31. USAMTS 20/3/5 (S3) – increase ’tightness’ of a fixed-length bound by iterating
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2.2 Minimizing local discrepancies’ impact by considering large

Just as local discrepancies may have multiplied impact as indices grow, they may also have
reduced / divided impact, as seen in the examples below. Typically, this occurs when we
are able to show that the discrepancy either stays constant or decreases as the index grows
large, and we are concerned with the relative size of the discrepancy with an asymptotically
larger quantity.

Example 2.4 (USAMTS 28/3/4). Let {A1, . . . ,An} and {B1, . . . ,Bn} be sets of points in the
plane. Suppose that for all points x,

D(x,A1)+D(x,A2)+ · · ·+D(x,An)� D(x,B1)+D(x,B2)+ · · ·+D(x,Bn)

where D(x,y) denotes the distance between x and y. Show that the Ai’s and the Bi’s share
the same center of mass.

Solution. Suppose, for the purpose of contradiction, that the centers of mass are different.
Let the centers of mass of the sets {A1, . . . ,An} and {B1, . . . ,Bn} be X and Y , respectively.
There is no apparent contradiction when we consider a point Z near X and Y , as two-
dimensional distances are difficult to compute. As we want the distances to be more quan-
tifiable, we let Z be far away from X and Y along the line Y X . Hence, we claim that there
exists a point Z on the extension of ray Y X such that

D(x,A1)+D(x,A2)+ · · ·+D(x,An)� D(x,B1)+D(x,B2)+ · · ·+D(x,Bn)

is false.
As Z goes away from X along ray Y X , D(Z,Ai) appears to be increasingly solely-

affected by the distance from Z to the foot of the perpendicular from Ai to XY . This
leads us to consider splitting D(Z,Ai) into two components: the horizontal and residual
components. Define the horizontal component as the distance from Z to the foot of the per-
pendicular from Ai to Y X , and label this as H(Z,Ai). On the other hand, define the residual
component as D(Z,Ai)�H(Z,Ai), and label this as R(Z,Ai). Define H and R similarly for
Bi, 1  i  n.

Based on the above reductions, we quantify the sum of distances given in the problem:

D(Z,A1)+D(Z,A2)+ · · ·+D(Z,An) =H(Z,A1)+H(Z,A2)+ · · ·+H(Z,An)

+R(Z,A1)+R(Z,A2)+ · · ·+R(Z,An).

Similarly,

D(Z,B1)+D(Z,B1)+ · · ·+D(Z,Bn) =H(Z,B1)+H(Z,B2)+ · · ·+H(Z,Bn)

+R(Z,B1)+R(Z,B2)+ · · ·+R(Z,Bn).
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Figure 2: Visualization of D(Z,Ai) and H(Z,Ai).

Note that H(Z,A1) + · · ·+ H(Z,An) is simply nZX because X is the center of mass of
{A1, . . . ,An}. Similarly, H(Z,B1)+ · · ·+H(Z,Bn) is nZY . Note that ZY �ZX is equal to
the length of segment Y X , so nZY �nZX is equal to n times the length of segment Y X .

Thus,

(H(Z,B1)+H(Z,B2)+ · · ·+H(Z,Bn))� (H(Z,A1)+H(Z,A2)+ · · ·+H(Z,An)

is constant regardless wherever we place Z on ray Y X . From the inequality given in the
problem statement, we have to show that

(R(Z,A1)+R(Z,A2)+ · · ·+R(Z,An))� (R(Z,B1)+R(Z,B2)+ · · ·+R(Z,Bn)) (3)

is always at least this constant. We have, however, observed that as Z goes far from X and
Y , the non-horizontal component has less and less effect. A possible approach is to show
that the value of

(R(Z,A1)+R(Z,A2)+ · · ·+R(Z,An))� (R(Z,B1)+R(Z,B2)+ · · ·+R(Z,Bn))

tends to 0 as Z goes further from X and Y along the ray Y X . If this occurs, then Equation 3
will be less than this constant, implying that the centers of mass must be identical.

Note that it suffices to show that each of R(Z,Ai) and R(Z,Bi) would tend to 0 as the
distance from Z to Y grows large – because, if this is so, then the sum of any number of the
R’s (or their negative) would also tend to 0. We quantify R(Z,Ai) (similar for R(Z,Bi)). Let
the foot of the perpendicular from Ai to Y X be Pi. Then by the Pythagorean Theorem

R(Z,Ai) = ZAi �ZPi =
q

ZP2
i +PiA2

i =
PiA2

iq
ZP2

i +PiAi +ZPi

.

Note that the numerator is constant, while the denominator tends to infinity as Z goes ar-
bitarily far from Y (and also arbitrary far from Pi). Hence, R(Z,Ai) tends towards 0.

Discussion. The main idea here is observing that as we take a point far from all the given
points, then the sum of the distances are more predictable due to local discrepancies (i.e.
the residual parts) having lessened effect. Note that throughout the solution, we needed to
quantify our vague, intuitive observations, hence the choice of Z along ray Y X .
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The next problem is a number theoretic problem on sets and divisibility. Although there
are multiple constructions, a construction which exemplifies the ideas of this section will
be presented. By ignoring (with justification) the effect of “small” components in favor
to the “large” components, it becomes possible to deal with them separately and ignore
interdependencies, greatly simplifying the problem.

Example 2.5 (MOSC 4/27/17 AM Quiz). Give a set of 2016 numbers such that there does
not exist two distinct subsets, the sum of elements one of which divides the sum of elements
of the other.

Solution. We start by finding simplifications. A potential complication is that there is no
restriction on the number of elements of the “divisor” and the “dividend” subsets. It would
be more convenient if we restrict the possible number of elements somehow, and this is
made possible by limiting the range of the sum of elements when we consider a subset of a
particular size.

To do this, it is helpful to add an extremely large “base value” for each element in
our set. Let this be K (to be defined later) that is large enough such that everything aside
from the “base value” virtually do not matter at all, as long as subset-sum whole number
quotients are concerned. This would restrict the subset pair in consideration to a pair of
subsets, one of whose cardinality divides that of the other.

Exercise 2.6. Why is this? Provide an intuitive explanation.

Figure 3: Visualization of K’s role in the construction.

As K is dependent on the small, non-base values, we assign these first. It is well-known
that to prevent subset-sum collisions, one could take powers of 2. Although we are proving
something stronger - not only collisions, but also one being divisible by another - this is an
ideal starting point. Hence, we make the small values 20, 21, · · · , 22015.

Now, we find a suitable value of K, to be able to state our subset and justify why it
satisfies the problem statement’s conditions. The sum of a subset of {20,21, . . . ,22015} is
a positive integer that is less than or equal to 22016, as 20 + 21 + · · ·+ 22015 = 22016 � 1.
Hence, if our subset contains m elements, the sum of elements in our subset is between mK
and mK +22016. As the number of elements in a subset ranges from 1 to 2016, the subset-
sum-quotient may be as high as 2016, so our potential “swing” may be up to 2016 ·22016. It
makes sense to let K = 2016 ·22016. For later convenience, however, we arbitrarily increase
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K to avoid tight bounds and hard-to-prove details. Write K = 24032, which is clearly greater
than 2016 ·22016.

With K = 24032, our set S is {24032 +20,24032 +21, · · ·24032 +22015}.
The proof that this set has no two subsets A and B such that the sum of the elements in

A divides the sum of elements in B is left as an exercise to the reader. It contains two major
parts: one to bound large values (i.e. K = 24032) and the other to bound small values (i.e.
the 2is, 0  i  2015). First, we show that the cardinality of A divides the cardinality of
B by contradiction, writing |B| = p|A|+ q, 0 < q < |A|. Next, given this, we show that it
is impossible to find two disjoint subsets of {20,21, · · ·22015} such that the cardinality and
sum of one both divide the cardinality and sum of the other, respectively.

Discussion. This problem is related to the heuristic of “minimizing local discrepancies’
impact by taking large numbers” because we are separating the small (local) and the large
(global) in order to reduce interdependencies, which would only complicate the proof. A
significant portion of the solution was spent identifying K. Indeed, finding a suitable K
involves having a thorough understanding of the sequence its minor discrepancies, so that
K would surpass all of the minuscule “bumps”.

The two examples on this heuristic show just a small portion of the wide variety of prob-
lems that incorporate this heuristic. Although one problem involves finding a contradiction
and the other is aimed at proving that a configuration works (i.e. no contradiction), their
main idea is the same: distinguishing the large and the small.

Related problems

A.1. APMO 2013 P3 (M6) – consider the difference between floor and actual values

A.6. ISL 2004 A2 (M4) – the anti-asymptotic/mainstream behavior is local and has little
impact

A.11. ISL 2013 A3 (M3)

A.14. ISL 2015 C5 (M3)

A.26. PFTB Example 8 (M5) – tightening ranges as we make things large; oscillations are
asymptotically negligible

2.3 Considering density of number occurrence

Another heuristic related to taking a global view is considering density of number occur-
rence. Density may be restated as: “approximately what proportion of integers within a
certain range is represented in the sequence?” This may be a linear function (e.g. n

2 , 2n
3 ), a

radical quantity (e.g.
p

n, 3pn), a logarithmic quantity (e.g. lnn, log2 n), or a combination
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of them (e.g. n
logn , the density of primes). A quantity may be constructed to measure the

density - a common one is the reciprocal or a modification of it.
The example problem below devises a seemingly-unintuitive quantity that efficiently

establishes a contradiction, and the exposition attempts to explain the intuition behind this.

Example 2.7 (PFTB Example 6). Suppose that f is a polynomial with integer coefficients
and that (an) is a strictly increasing sequence of positive integers such that an  f (n) for all
n. Then the set of prime numbers dividing at least one term of the sequence (an) is infinite.

Solution. We proceed by contradiction; suppose that the set of prime numbers S dividing at
least one term of the sequence (an) is finite. Then all terms of the sequence are distinct and
are composed only of prime factors from S. One may recall that that the sum of reciprocals
of all powers of a prime p is equal to 1+ 1

p +
1
p2 + · · · = p

p�1 . This is generalizable to the
scenario when more than one prime is considered through the fact that

Â
a1,a2,··· ,aN�0

1
pa1

1 · · · paN
N

=

 

Â
a1�0

1
pa1

1

!
· · ·
 

Â
aN�0

1
paN

N

!
=

N

’
j=1

Â
i�0

1
pi

j
=

N

’
j=1

p j

p j �1
,

which is a finite quantity. (The reader is encouraged to verify this equation.) Hence, the
sum of reciprocals converges.

The problem would be solved if the sum of the reciprocals of f (i), i � 1 converges.
This, however, is not the case. Take, for example, f (x) = x2: it is well known that

•

Â
k=0

1
k2 =

p2

6
.

We attempt to modify the sum of the reciprocals of f (i) in such a way that it will diverge,
but in such a way that is still compatible with the earlier prime-reciprocals computation.

A possible approach would be to “reduce” the degree of f (x) by instead taking f (x)k,
where k < 1. This way, it is still possible to proceed with the prime computations, as we
are instead taking the sum of the kth powers of the reciprocals. Indeed, we modify the
equations to

Â
a1,a2,··· ,aN�0

1
pka1

1 · · · pkaN
N

=

 

Â
a1�0

1
pka1

1

!
· · ·
 

Â
aN�0

1
pkaN

N

!
=

N

’
j=1

Â
i�0

1
pki

j
=

N

’
j=1

pk
j

pk
j �1

,

which is still a finite quantity.
As the sum of the reciprocals of the natural numbers diverges, it may be a good idea

to take k = 1/2deg( f ). Then, 1/( f (n))k diverges. (Intuitive; try devising a formal proof.)
Thus, if there exists a finite number of primes, consider the sum R of the kth powers of the
reciprocals of the terms in (an). As an  f (n) for all n,

R > Â
n�1

1
f (n)k = •.
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Based on the sum of kth powers of the reciprocals of primes, however,

R 
N

’
j=1

pk
j

pk
j �1

,

which is finite, contradiction.

Discussion. The premise of a finite set of prime numbers being the only prime factors of
a set of numbers implies that almost all natural numbers are ineligible, and the density is
roughly logarithmic. This gives a large amount of “leeway” to apply polynomial-magnitude
modifications, such as taking the kth power.

Density problems typically allow extremely loose bounds, as long as the magnitude
of the largest term is maintained, so when solving such problems, it is recommended to
focus on the overall magnitude rather than specifics, and repeatedly argue ”let N be large
enough” in order for a high-magnitude term to overtake any lower-magnitude term. The
three problems below are rather varied, but all of them involve calculating the density of a
function or a set to establish some contradiction.

Related problems

A.10. ISL 2012 A6 (M3) – relating function growth to density of occurrence

A.25. PFTB Example 7 (M10) – reciprocals to quantify sparsity, use counting for loose
estimates

A.29. USAMO 2014 P6 (M7) – estimating the quantity based on primes, show that primes
large enough must occur

3 Refocusing

The four heuristics in this section all involve considering the sequence from another point of
view: either for the terms considered or for the sequence as a whole. Sometimes, examining
the sequence at face value would not suffice: manipulations must be performed to make the
analytic arguments more apparent. Refocusing may be done by focusing on a subsequence,
reinterpreting the sequence, considering an alternative quantity, or considering a sequence
of subsequences.

3.1 Focusing on a subsequence

Some problems provide information about the sequence at all indices n, and some others
ask us to prove that a specified property holds for infinitely many positive integers n. While
it may seem more “efficient” and less error-prone at first by considering all n 2 Z+, this
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may complicate the proof. Only utilizing specific information or restricting attention based
a subsequence may significantly simplify arguments.

Example 3.1 (PFTB Example 4). Let a1, a2, · · · ak be positive real numbers such that at
least one of them is not an integer. Prove that there exists infinitely many positive integers
n such that n and ba1nc+ ba2nc+ · · ·+ baknc are relatively prime.

Solution. Just as in previous problems, we take an indirect approach: since the problem
statement asks to prove that there exists infinitely many such positive integers n, we suppose
otherwise - that there exists only finitely many such n. This implies that there exists M 2Z+

such that n and ba1nc+ · · ·+ baknc share a common factor for all n � M.
We examine what it means for a quantity to share a common factor with n, for various

n 2 Z+. If n = 2016, then it suffices for the quantity to be even, a multiple of 3, or a
multiple of 7. If n = 2015, then it suffices for the quantity to be a multiple of 5, 13, or
31. On the other hand, if n = 2017, which is a prime number, then the quantity must be
divisible by 2017. As considering a single property is far simpler than considering three
properties (where the requirement is that at least one has to be true), we restrict the numbers
that would give only one possible common factor: the prime numbers.

Thus, we would attempt to contradict the slightly stronger statement: “there exists M 2
Z+ such that n and ba1 pc+ · · ·+bak pc share a common factor for all primes p � M.” Note
that p must divide ba1 pc+ · · ·+ bak pc. Let the primes considered be p1, p2,· · · . Write
ba1 pnc+ · · ·+ bak pnc= xn pn, then

xn =
ba1 pnc+ · · ·+ bak pnc

pn
. (4)

Upon careful examination of Equation 4, we observe that without the floors, this is equal
to a1+a2+ · · ·+ak. We use a heuristic from the previous section, namely minimizing local
discrepancies’ impact by considering large: the distance of the quantity to the a1 + a2 +

· · ·+ak is less than k
pn

, as each floor function makes the numerator at most 1 away from the
actual value. As n grows large, this difference becomes infinitesimally small, and thus xn

must converge to a1 + a2 + · · ·+ ak. As this is a sequence of an integers, for large enough
n, xn = a1 +a2 + · · ·+ak.

This means that for large enough n, the floor functions in Equation 4 will have no effect,
as its value is the same as if there were no floor functions. A floor function would only have
no effect if the term were an integer, so we need ai pn to all be integers for all large enough
n. But this is impossible: if ai is irrational then ai pn will be irrational and cannot be an
integer; if ai is rational then there exists a prime pm that does not divide its denominator
(when ai is reduced to lowest terms).

Discussion. By only considering a specific subsequence, the problem statement’s condition
was slightly weakened but is still true. After deciding to only consider prime numbers for
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n, the problem is greatly simplified, then the remainder is routine analysis based on the
concepts of the previous section.

Considering a specific subsequence would not always yield a solution because some
problems require use of all information, and it is possible for the natural subsequences to
be “too weak” to give any meaningful conclusions.

The subsequence chosen need not to be predefined or even a well-known set: it could
be any subsequence that possess a certain property (see ISL 2012 A4 from the related
problems, where the solution focuses on a convergent subsequence). The property may be
dependent on the sequence’s dynamics, such as in ISL 2004 A2.

Related problems

A.6. ISL 2004 A2 (M3) – focus on a segment where there would be a contradiction

A.9. ISL 2012 A4 (M5) – focusing on convergent subsequence (twice)

A.10. ISL 2012 A6 (M4) – focus on a segment that is useful (somewhat clear from problem
statement)

A.33. USAMTS 26/3/3 (M3) – focus on a segment where there would be a contradiction

3.2 Reinterpreting the sequence

The solution to a problem may not be apparent when the sequence is taken at face value,
as problem statements may tend to obscure hints to their solutions. A common technique
to approach analytical-flavored problems, where the idea is conceptually simple yet hidden
deep into the problem, is examine “what is actually going on” in the sequence, and then
devise an alternative interpretation.

Example 3.2 (ISL 2003 A3, part (a)). Consider two monotonically decreasing sequences
(ak) and (bk), where k � 1, and ak and bk are positive real numbers for every k. Now, define
the sequences

ck = min(ak,bk)

Ak = a1 +a2 + ...+ak

Bk = b1 +b2 + ...+bk

Ck = c1 + c2 + ...+ ck

for all natural numbers k. Construct two monotonically decreasing sequences (ak) and (bk)

of positive real numbers such that the sequences (Ak) and (Bk) are not bounded, while the
sequence (Ck) is bounded?
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Solution. The problem statements defines ck in terms of ak and bk, so it may be natural
to assume that we must first construct unbounded sequences ak and bk, then prove that the
resulting ck is bounded. Although this is possible, it is certainly difficult as we have to make
sure that when identifying the values of each of the ais and bis, Ak and Bk do not converge,
meaning that the terms must not be too small. On the other hand, the minimum of them
may not be too large; otherwise, Ck may become unbounded.

This motivates the alternative view, where we first construct (ci) such that its partial
sum sequence converges, and then construct (ai) and (bi) accordingly. Suppose that we
have a sequence ci such that its sum converges to some finite value and is monotonically
decreasing. We attempt to construct (ai) and (bi), one whole number at a time. Since
ck is the minimum of ak and bk, it suffices to keep one small, following ck, while the
other maintains some value. Recall the idea from the previous section on adding constants
infinitely many times. This maintained value, when sustained, would add whole numbers
to one of the sequences. If we show that this may be done infinitely, alternating between
(ai) and (bi), then we have constructed the desired sequences.

We desire to formalize this idea and establish the length intervals where a specific value
is placed for the purpose of adding to the sums Ak and Bk. As in the official solution,
we define a strictly increasing sequence of integers (km) starting with 1 and satisfying the
condition (km+1 � km)ckm � 1. The continuation of the solution is left as an exercise:

Exercise 3.3. Define the sequences (ai) and (bi) based on (km) and the ideas presented in
the second to the last paragraph. Complete the proof of Ak and Bk being unbounded.

Discussion. This example problem shows how alternative interpretation may be useful,
even though the problem statements strongly hints towards a standard interpretation. While
the problem may seem challenging at first, after the re-interpretation and the observation
that we may maintain a value on either (ai) or (bi) for an arbitrary length, the problem is
reduced to routine details.

A weakness of this heuristic, however, is that unless the solution is quickly seen or
the solver has accumulated enough experience to be confident that the reinterpretation is
more conducive to solving the problem than the original formulation, reinterpretations may
complicate the problem.

The first two of the three problems below have a somewhat-combinatorial reinterpreta-
tion despite their statements being sequence-based.

Related problems

A.8. ISL 2010 A7 (M3) – repeatedly use the recursive definition – what happens when the
process stops?

A.29. USAMO 2014 P6 (M3) – interpret as a grid of primes
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A.32. USAMTS 24/3/4 (M5)

3.3 Considering an alternative quantity

Some problems may be simplified by defining a quantity based on terms of the sequence
rather than dealing with sequence terms individually. The problem statement of the example
problem below has a clear alternative quantity to be considered and yields a quick solution.

Example 3.4 (USA TST 2008 P5). Two sequences of integers, a1,a2,a3, . . . and b1,b2,b3, . . .,
satisfy the equation

(an �an�1)(an �an�2)+(bn �bn�1)(bn �bn�2) = 0

for each integer n greater than 2. Prove that there exists a positive integer k such that
ak = ak+2008.

Solution. The given strongly hints to consider the quantities ci = ai�ai�1 and di = bi�bi�1.
It is simplified into

ci(ci + ci�1)+di(di +di�1) = 0

c2
i + cici�1 +d2

i +didi�1 = 0 (5)

The terms c2
i and cici�1 is reminiscent of the expansion (ci + ci�1)2 = c2

i +2cici�1 + c2
i�1.

We incorporate this in Equation 5. Indeed,

2c2
i +2cici�1 = (ci + ci�1)

2 + c2
i � c2

i�1,

and similarly,
2d2

i +2didi�1 = (di +di�1)
2 +d2

i �d2
i�1.

Hence, taking Equation 5 doubled gives

(ci + ci�1)
2 + c2

i � c2
i�1 +(di +di�1)

2 +d2
i �d2

i�1 = 0

(ci + ci�1)
2 +(di +di�1)

2 + c2
i +d2

i = c2
i�1 +d2

i�1

c2
i +d2

i � c2
i�1 +d2

i�1

Equality holds if and only if ci + ci�1 = 0 and di +di�1 = 0.
Note that the c2

n+d2
n only takes nonnegative integer values, but in each step either stays

the same or decreases. The number of decreases is finite; therefore, at some point, it stops
decreasing and stays constant throughout. Let this point be K. Then c2

n +d2
n is the same for

all n � K. By the equality case, we get that

ci + ci�1 = 0 =) (ai �ai�1)+(ai�1 �ai�2) = 0 =) ai = ai+2

. From this, the conclusion is clear. We may repeatedly apply the equation ai = ai+2 to get
that ai = ai+2 = ai+4 = · · ·= ai+2008, from which taking i = k solves the problem.
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Discussion. Despite being the second problem in a three-item test, the problem is relatively
straightforward after noticing the alternative quantity to be defined, which is clear from the
problem statement. A possible difficulty is the pitfall of work backwards, as the conclusion
is extremely loose and thus would avert any attempts towards a solution based on it. Solving
it forward based on the given, however, would yield a simple and motivated solution.

Not all problems have their alternative quantities spelled out as clearly in the problem
statement as in the example. In some problems, a clever observation or understanding of the
sequence’s dynamics may be required to discover the alternative quantity. Typically, before
identifying the alternative quantity, one must experiment with a few values and possible se-
quences. Among the related problems, a problem that is largely dependent on this heuristic
is ISL 2014 A1, whose simplest solution involves rearranging an inequality to uncover the
desired quantity.

Related problems

A.12. ISL 2014 A1 (M5) – expanding out ’averages’ to reinterpret our desired condition

A.13. ISL 2014 A2 (S3) – consider successive differences and their growth

A.23. PFTB Example 5 (S3) – perfect square =) consider square root

A.24. PFTB Example 6 (S4) – adjust the ’controlled quantity’ based on the other one in the
desired contradiction

A.30. USAMO 2015 P6 (M7) – write a quantity for the imperfection (deviation from ideal
scenario without restrictions) and focus on that

3.4 Considering a sequence of subsequences

The behavior of a sequence may sometimes be more suitably analyzed in chunks rather
than as separate terms. This is recommended when it is possible to determine subsequences
with distinctive behavior. The example below demonstrates this heuristic. As this example
is fairly involved, some details would be left as an exercise to the reader.

Example 3.5 (ISL 2015 N4). Suppose that a0,a1, · · · and b0,b1, · · · are two sequences of
positive integers such that a0,b0 � 2 and

an+1 = gcd(an,bn)+1, bn+1 = lcm(an,bn)�1.

Show that the sequence an is eventually periodic; in other words, there exist integers N � 0
and t > 0 such that an+t = an for all n � N.

22



Solution. The recurrence for (an) is interesting: an+1 is one more than the greatest common
divisor of an and another number. As when an is large, taking the greatest common divi-
sor of it and another number may only either keep it the same or reduce it by a significant
amount (by at least half of the number). This implies that an would have difficulty increas-
ing, so we may hypothesize that it is bounded. A similar analysis, on the other hand, would
not hold for (bn). (Why?)

In the previous paragraph, we noticed two types of behavior of (an). The first is if it
increases by 1, and this only happens if an|bn. On the other hand, if an is not a factor of
bn then it would decrease, as long as it is greater than 2. (Why?) We try the initial pair
(a0,b0) = (3,117). Following the sequence we get

(4,116),(5,115),(6,114),(3,341),(2,1022),(3,1021),(2,3062), . . .

Notice that the sequence occurs in chunks of increasing ai, drops down, increases again,
drops down, etc. Furthermore, we are sure that in any increasing contiguous subsequence,
it must eventually drop down when an|bn, i.e. an|(an + bn), which is kept invariant in a
purely increasing contiguous subsequence.

Figure 4: Visualization of the behavior of an.

Another observation we make that would imply (an) being bounded is that the “peaks”
of the sequence are non-increasing. To quantify the notion of “peaks”, define

Wn = {m = Z�0 : m � an and m - (an +bn)}

and wn = minWn. We split our proof into two cases: an | bn and an - bn.
If an | bn then an+1 = an + 1. As an | (an + bn), then by definition of Wn, an /2 Wn. We

also have an+1 + bn+1 = an + bn, so no element is added to the set Wn, and the condition
m - sn in the definition of Wn is maintained, so Wn+1 =Wn and wn+1 = wn.

For the other case, an - bn, we have an - (an+bn), so an 2Wn and wn = an. As we would
want to show that wn+1  wn, it would suffice to show that an 2Wn+1.
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As we analyze the differences between the cases an - bn and an | bn, we derive two key
observations: an � an+1 and an - (an+1 + bn+1). The proof of these two observations are
intuitive and thus are left as an exercise to the reader. By the definition of Wn+1, these two
observations imply an 2Wn+1.

Exercise 3.6. Prove that if an - bn, then an � an+1 and an - sn+1.

From here, we have an  wn  w0, so the sequence (an) is bounded. Hence, it takes
only finitely many values. The problem is, however, that (bn) is likely unbounded. As
(an) is bounded, however, and we are mainly concerned with (an) and its common factors
with (bn), this motivates us to consider the sequence (bn) taken modulo the least common
multiple of all the ais (the set of numbers is bounded, so the least common multiple is
finite). Let this sequence be (rn). Note that there are only finitely many possible pairs
(an,rn) as both an and rn are bounded and are positive integers.

Next, we observe that the pair (an,rn) uniquely determines the pair (an+1,rn+1). The
proof of this is again left as an exercise to the reader. Note that there are only finitely many
possible pairs (an,rn), so once it cycles, it would never leave the cycle, and the sequence
of pairs (an,rn) is eventually periodic. Hence, the sequence (an) is eventually periodic and
our proof is complete.

Exercise 3.7. Prove that it is possible to uniquely compute (an+1,rn+1) given (an,rn).

Figure 5: Visualization of cycling

Discussion. Although the above problem is difficult and contains a long solution with many
details, the motivation is simple: distinguish the behavior in the scenarios an | bn and an - bn.
After noticing this and dividing the sequence as follows, the details are simply routine
calculations.

This heuristic is relatively less common compared to the others. Below is a problem
discussed earlier in “reinterpreting the problem”, but also contains ideas related to focusing
on subsequences.

Related problems

A.5. ISL 2003 A3 (M4) – focus on chunks of a sequence to quickly prove divergence
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4 Investigating dynamics or processes

Investigating the dynamics or processes involved in a sequence is equivalent to gaining a
deep understanding of it. It involves examining the given information about the sequence to
deduce properties about it and to have a more intuitive understanding of how the sequence
grows as the indices grow large. The slope and rate of change and convergence are key
concepts to understanding a sequence’s long term behavior. Also essential in understanding
the problem are investigating the desired outcome (what we want to prove) as well as how
a sequence’s first terms affect its long-term behavior.

4.1 Determining the rate of change

This heuristic is applicable to sequences that grow at a linear or approximately linear rate.
It involves examining the given information about the sequence and substituting several
example sequences to make an educated guess on the approximate slope of the sequence.
The example below is a fairly simple problem utilizing this heuristic, and interprets a given
quantity as a common difference of a sequence.

Example 4.1 (APMO 2013 P3). For 2k real numbers a1,a2, ...,ak, b1,b2, ...,bk define a
sequence of numbers Xn by

Xn =
k

Â
i=1

[ain+bi] (n = 1,2, ...).

If the sequence XN forms an arithmetic progression, show that Âk
i=1 ai must be an integer.

Here [r] denotes the greatest integer less than or equal to r.

Solution. We observe that the problem statement involves the floor function. Similar to a
previous problem, Example 3.1, we examine the behavior of the sequence without the floor
function. The sequence becomes

X 0
n =

k

Â
i=1

(ain+bi) = n
k

Â
i=1

ai +
k

Â
i=1

bi,

which is an arithmetic sequence with common difference Âk
i=1 ai. Thus both Xn and X 0

n are
arithmetic sequences. They are related as follows: for every i, X 0

i < Xi < X 0
i +n. (The reader

is encouraged to prove this, using the fact x�1 < bxc  x.) This makes it apparent that the
common difference of Xi is close to that of X 0

i .
The problem wants us to show that Âk

i=1 ai, which is the common difference of X 0
i , is

an integer. As Xn is an integer arithmetic sequence, finding its common difference (which
is an integer) would be helpful. In particular, if we are able to show that Xn has the same
common difference as X 0

n (which is Âk
i=1 ai), then Âk

i=1 ai must be an integer, and we are
done.
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Observe that since both (Xn) and (X 0
n) are arithmetic sequence, the difference between

them (defined as the difference between the corresponding terms), is also an arithmetic
sequence. Call this sequence as (Dn) As X 0

i < Xi < X 0
i + n, however, (Dn) are bounded

below by 0 and above by n, then (Dn) must be constant (otherwise, after a sufficient number
of increases/decreases by a fixed common difference, the value of Di would either go below
0 or above n). Thus, (Xn) and (X 0

n) have the same common difference.

Discussion. The focus of the solution to this problem is finding the common difference
of (Xn). As we are aware of a closely-related arithmetic sequence, namely (X 0

n) that must
have a very close common difference, it becomes natural to hypothesize that the common
differences of (Xn) and (X 0

n) are equal, which soon solves the problem.

This idea is also extremely useful in more advanced problems where the is a sequence
whose slope / rate of change is roughly linear (meaning that small, local discrepancies are
allowed - recall the idea from the section on “taking a global view”). In some problems,
such as ISL 2010 A7, it is unclear from the given that the sequence increases roughly
linearly, but it becomes apparent when one works backwards from the desired conclusion.

Related problems

A.7. ISL 2009 A6 (M3) – work backwards

A.8. ISL 2010 A7 (M3) – work backwards

A.14. ISL 2015 C5 (M3) – it is zero, so what?

A.21. PFTB Example 2 (M6) – this is the convergent sequence

4.2 Proving convergence

Convergence is essentially a sequence approaching a certain value in the long-term, mean-
ing that after some point, the difference between the sequence’s terms to the suggested
value would be below a certain threshold. An important theorem in proving convergence in
real-numbered sequence is the Bolzano-Weierstrass Theorem, which states that a monotonic
bounded sequence must be convergent. A visualization of a bounded, monotonic sequence
is shown.

Example 4.2 (PEM Handout P5). Prove that for n � 2, the equation xn + x� 1 = 0 has a
unique root in the interval (0,1]. If xn denotes this root, prove that the sequence (xn)n is
convergent.

Solution. It is clear that x is bounded because xn is always within [0,1], so it suffices to
prove monotonicity (then it is bounded by Bolzano-Weierstrass). For n = 1, our root is
simply 2x�1 = 0 ! x = 1

2 , and for n = 2, our root is x2 + x�1 = 0 ! x =
p

5�1
2 ⇡ 0.618.
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Figure 6: Visualization of a convergent, monotonic sequence

We hypothesize that for all n � 1, the root of xn + x�1 is less than or equal to the root of
xn+1 + x�1. Proving this is a simple contradiction. Suppose that we have xn > xn+1 and

xn
n + xn �1 = xn+1

n+1 + xn+1 �1 = 1.

As xn > xn+1 and xn
n � xn

n+1 > xn+1
n+1, we combine them to get xn

n + xn > xn+1
n+1 + xn+1, which

contradicts xn
n + xn �1 = xn+1

n+1 + xn+1 �1.

Discussion. This is a standard exercise in using the Bolzano-Weierstrass Theorem, which
breaks down convergence into two conditions that are much easier to prove. The proofs,
however, may not be trivial and may involve careful examination of the sequence and some
bounding, just as seen in the problem.

For integer sequences, the Bolzano-Weierstrass Theorem is not necessary to establish
the same conclusion; it suffices to notice that at some point, our sequence must stop increas-
ing or decreasing and become constant (otherwise the whole number differences would ac-
cumulate past the bound). Take note that these are not the only ways to prove convergence,
as it is possible for non-monotonic sequences to be convergent: a proof that the difference
to the value the terms converge to would get infinitesimally small.

Related problems

A.5. USA TST 2008 P5 (M5) – finding a monovariant that takes on integers and is
bounded below

A.9. ISL 2012 A4 (S4) – Use Bolzano Weierstrass to prove a crucial lemma on bounded
numerator and denominator sequence of a rational number sequence

A.12. ISL 2014 A1 (M5) – anti-example: strictly monotonic function on integers

A.23. PFTB Example 5 (M7) – find a quantity that converges to zero

4.3 Interpreting the desired outcome

This heuristic is analogous to working backwards from what the problem asks to prove
and using this to identify an easier-to-prove statement about the sequence in consideration.
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It may also involve using information about some eventual large index (i.e. the desired
outcome) to deduce information about the first terms of the sequence, which is extremely
helpful in problems where the solver is asked to find sequences that satisfy a certain condi-
tion. Below is an example of such a problem.

Example 4.3 (Benelux 2011 P3). If k is an integer, let c(k) denote the largest cube that
is less than or equal to k. Find all positive integers p for which the following sequence is
bounded: a0 = p and an+1 = 3an �2c(an) for n � 0.

Solution. One would immediately notice that the condition an+1 = 3an � 2c(an) implies
that an+1 � an, as c(an) an with equality case when an is a perfect cube. Also, note that
if an is a perfect cube, then an+1 = an. an+1, however, is still a perfect cube, so this implies
that an+2 is a perfect cube, and so on, so for all i � 0, an+i is a perfect cube. Thus, if one
term of the sequence is a perfect cube, then all terms after a particular index will be, and
the sequence would be bounded.

It is natural to consider the contrary case, where no terms are a perfect cube. Then the
equality case in an+1 � an would never occur, and the sequence would not stop increasing.
As this is a sequence of integers, the sequence would become unbounded. Hence, at least
one term of a sequence is a perfect cube. This motivates us to think how one term being a
perfect cube could influence previous terms. If p is a perfect cube, then it is easy to see that
all succeeding terms would be perfect cubes. We try a non-cube. If p = 2, then

a0 = 2 a3 = 3(10)�2(8) = 14

a1 = 3(2)�2(1) = 4 a4 = 3(14)�2(8) = 26

a2 = 3(4)�2(1) = 10 a5 = 3(26)�2(8) = 62.

It appears that the first few ais are not perfect cubes.
We attempt to prove the stronger claim that if ai is not a perfect cube, then ai+1 would

not be a perfect cube. Its contrapositive is that ai+1 being a perfect cube would imply that
ai is, and since we know that at least one term of the sequence is a perfect cube, we may
induct backwards to show that a1 is a perfect cube, and the solution is all p that are perfect
cubes. (Why?)

Suppose the contrary and assume that ai is not a perfect cube while ai+1 is. Then we may
write k3 < ai < (k+ 1)3. Then ai+1 = 3ai � 2c(ai) = 3ai � 2k3. We, however, are unable
to show that this is less than (k+1)3, failing to prove a bound. We consider terms modulo
3 to get that ai+1 ⌘ k3 (mod 3) (why?). But as ai+1 > ai > k3, we need ai+1 � (k+ 3)3.
Bounding becomes much simpler:

ai+1 = 3ai �2k3

< 3(k+1)3 �2k3

= k3 +9k2 +9k+1

< k3 +9k2 +27k+27,
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thus ai+1 < (k+3)3, giving a contradiction.

Discussion. Working backwards would provide a natural motivation to the otherwise–
unguessable assertion that an being a perfect cube would imply that an�1 is a perfect cube,
and the proof of this assertion is a simple bounding argument. Essentially, we deduce that at
some point, we must have a cube for the sequence to be bounded, and then work backwards
from there.

The first problem below involves working backwards to reinterpret the sequence, which
may have no clear pattern from its origins at first. Its recursive formula gives multiple
possibilities for the term to be decided, of which the maximum is taken. It is helpful to
generalize using a backward-forward style, just as done in the .

Related problems

A.8. ISL 2010 A7 (M3) – interpret ”stabilizing” in an easy-to-process form

A.16. ISL 2015 N6 (S3) – proving infinitely many satisfies some property; gives an easier-
to-prove bound

A.36. USA TSTST 2011 P8 (S2) – guess the eventual value; work backwards from there

4.4 Investigating origins

Many sequences are defined recursively, meaning that terms with sufficiently large indices
are computed solely based on previous terms. A well-known example is the Fibonacci
sequence, which has a closed-form Binet’s formula. Some recursive sequences, however,
do not have each term’s relation to the starting numbers stated clearly. The example below
utilizes this heuristic by relating each term in a subsequence to a chosen set of starting
terms. As the proof is rather long and rigorous, details will be left as an exercise to reader,
so that the discussion may be focused to the heuristic at hand and the analytic thinking
involved.

Example 4.4 (ISL 2012 A6). Let f : N!N be a function, and let f m be f applied m times.
Suppose that for every n 2N there exists a k 2N such that f 2k(n) = n+k, and let kn be the
smallest such k. Prove that the sequence k1,k2, . . . is unbounded.

Solution. The problem statement gives a very loose condition on how a term in the sequence
may be related to later terms, so there is much freedom in constructing our sequence. We are
unsure which terms are directly related through the condition to a certain term as it depends
on the result of several compoundings of f . Looking instead at the problem statement, a
likely contradiction is that there is too little space for the values f (1), f 2(1), . . ., f 2k

n , if
f 2k
n = n+k, meaning that the terms in this subsequence must not be increasing, even in the
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analytical, non-rigid sense. This motivates us to focus on the set S = {1, f (1), f 2(a), . . .},
and hope for a contradiction if we assume the hypothesis to be false.

Another benefit of choosing this set is that for every x 2 S, we are certain that there is
another term y 2 S that is directly related through the problem condition, and it is possible
to access this by simply moving a given number of steps forward. As the only information
given about the sequence is the f 2k(n) condition, we are inclined to establish a link between
n and f 2kn(n). An array of chains visualization seems to be a good idea to visualize the
relationship between the elements of S. For this to be possible, however, we need f to be
injective on S and for g(n) = f 2kn(n) = n+ kn to also be injective on S. (Why are these
needed?) The proofs of these are left as an exercise to the reader.

Exercise 4.5. Prove that f and g are both injective on S. (Hint: use contradiction.)

Given the two conditions, it is possible to construct chains as follows: Take f (1),
g( f (1)), g2( f (1)), . . .. Repeatedly take the first term in S that does not belong yet in a
chain, and build its chain by applying g repeatedly (infinitely many times). Note that as g
is injective over S, these chains must be disjoint. Label the set of elements of S used as the
starting number of the chains as T . It is clear that this covers all elements of S.

From here, by tracing the value of f back using the equation f 2kn(n) = n+k repeatedly,
we are able to show that if f nt (1) is the start of the chain where f (n) is in, then f n(1) =
t + n�nt

2 . (Why?)

Exercise 4.6. Rigorously prove that f n(1) = t + n�nt
2 by using n = nt + 2a1 + · · ·+ 2a j,

where f n(1) = f 2a j( f 2a j�1(· · · f 2a1( f nt (1)))).

It appears that we are close, because note that each chain has a portion of the set S
that is completely blocked from other chains. As our conclusion wants us to show that the
gaps between two successive terms in a chain is unbounded, we prove that there exists an
infinitely number of chains, i.e. that T is infinite.

We suppose otherwise. Then if we let M be the last starting point, by f n(1) = t + n�nt
2 ,

we are sure that f i(1)  t + n�nt
2  M + N

2 for sufficiently large N and 1  i  n. As we
have earlier established that f is injective over S, this needs N +1  M+ N

2 , which yields a
contradiction if N is sufficiently large.

Now that we have proven that T is infinite, we only have to show that for any k2N, there
exists a gap between two successive terms in a chain that is of at least length k. For this, we
could consider only the first k+ 1 chains. Intuitively, it is apparent that we have k chains
to fill in the gaps between the one term in a chain and the next. To rigorize this, consider
M again. All of the chains has a term f i(1), where i  M. By the pigeonhole principle,
however, at least one of them does not contain any term among f M+1(1), f M+2(1), . . .
f M+k(1), so we are sure to have an index gap of at least k, and (ki) is unbounded.
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Exercise 4.7. Many details in this example are intuitive rather than rigorous. As this is the
last example problem for this article, it is recommended to attempt writing a full, rigorous
proof based on the above ideas.

Discussion. The central idea in this problem is to consider each term relative to some origin.
A far more advanced derivative of this problem is ISL 2015 N6, which involves similar
ideas. In solving this, however, we are not allowed to focus solely on a subsequence as we
have to show a property for the entire sequence.

Related problems

A.8. ISL 2010 A7 (M1)

A.14. ISL 2015 C5 (M4)

A.16. ISL 2015 N6 (M3) – interpreting functions as chains of input-output-input-output

A.36. USA TSTST 2011 P8 (M5) – constructing a term easily based on previous terms

5 Conclusion and Tips

Upon performing a thematic categorization of the heuristics involved in solutions to thirty-
six analysis-flavored olympiad problems, the author discovered that the three main themes
(categories of heuristics) are Taking a Global View, Refocusing, and Investigating Processes
and Dynamics. Each theme contains three to four heuristics, which are specific techniques
or approaches. While these may be viewed as merely techniques, they are in fact the central
ideas that appear in the problems. As seen in the previous examples, devising the solution
involves understanding the problem and how the given sequence behaves at the large-scale;
therefore, knowledge of the techniques and heuristics are insufficient.

The author has also noticed that the more difficult ISL problems, determined by the or-
der it appears at the ISL, require simultaneous or directed thought through multiple themes
and may have multiple key steps (e.g. ISL 2010 A7, ISL 2015 N6), unlike the easier prob-
lems whose key step rests on one theme or heuristic. This is consistent with the observation
in the article On Reading Solutions, that the more advanced olympiad problems involve a
larger number of main ideas compared to introductory problems (Chen, 2017).

5.1 Recommendations

The author noted several possible improvements to expand upon the ideas in this article
and improve its instructional value, which were not possible due to time constraints of the
course.
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1. Examine the low-level techniques involved in verifying routine details of the solution,
as this article is focused on high-level problem-solving strategies.

2. Include worked out solutions to advanced problems (at the level of the hardest IMO/ISL
problems), which likely incorporate ideas from different themes.

3. Expand on the examples given in the heuristics discussion by explaining how a
heuristic may be used as a minor idea in more advanced problems.

4. Classify problems for other prominent mathematical olympiads not included in con-
sideration for the problems discussed in this article.
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