
7 Innovation Communities

It is now clear that users often innovate, and that they often freely reveal

their innovations. But what about informal cooperation among users?

What about organized cooperation in development of innovations and

other matters? The answer is that both flourish among user-innovators.

Informal user-to-user cooperation, such as assisting others to innovate, is

common. Organized cooperation in which users interact within communi-

ties, is also common. Innovation communities are often stocked with use-

ful tools and infrastructure that increase the speed and effectiveness with

which users can develop and test and diffuse their innovations.

In this chapter, I first show that user innovation is a widely distributed

process and so can be usefully drawn together by innovation communities.

I next explore the valuable functions such communities can provide. I

illustrate with a discussion of free and open source software projects, a very

successful form of innovation community in the field of software develop-

ment. Finally, I point out that innovation communities are by no means

restricted to the development of information products such as software,

and illustrate with the case of a user innovation community specializing

in the development of techniques and equipment used in the sport of

kitesurfing.

User Innovation Is Widely Distributed

When users’ needs are heterogeneous and when the information drawn on

by innovators is sticky, it is likely that product-development activities will

be widely distributed among users, rather than produced by just a few pro-

lific user-innovators. It should also be the case that different users will tend

to develop different innovations. As was shown in chapter 5, individual

From Democratizing Innovation by Eric von Hippel - MIT Press, 2005
Free Download Under Creative Commons License at http://web.mit.edu/evhippel/www

users and user firms tend to develop innovations that serve their particular

needs, and that fall within their individual “low-cost innovation niches.”

For example, a mountain biker who specializes in jumping from high plat-

forms and who is also an orthopedic surgeon will tend to develop innova-

tions that draw on both of these types of information: he might create

a seat suspension that reduces shock to bikers’ spines upon landing from a

jump. Another mountain biker specializing in the same activity but with

a different background—say aeronautical engineering—is likely to draw on

this different information to come up with a different innovation. From the

perspective of Fleming (2001), who has studied innovations as consisting of

novel combinations of pre-existing elements, such innovators are using

their membership in two distinct communities to combine previously

disparate elements. Baldwin and Clark (2003) and Henkel (2004a) explore

this type of situation in theoretical terms.

The underlying logic echoes that offered by Eric Raymond regarding

“Linus’s Law” in software debugging. In software, discovering and repair-

ing subtle code errors or bugs can be very costly (Brooks 1979). However,

Raymond argued, the same task can be greatly reduced in cost and also

made faster and more effective when it is opened up to a large community

of software users that each may have the information needed to identify

and fix some bugs. Under these conditions, Raymond says, “given a large

enough beta tester and co-developer base, almost every problem will be

characterized quickly and the fix obvious to someone. Or, less formally,

‘given enough eyeballs, all bugs are shallow.’” He explains: “More users

find more bugs because adding more users adds more ways of stressing the

program. . . . Each [user] approaches the task of bug characterization with

a slightly different perceptual set and analytical toolkit, a different angle

on the problem. So adding more beta-testers . . . increases the probability

that someone’s toolkit will be matched to the problem in such a way that

the bug is shallow to that person.” (1999, pp. 41–44)

The analogy to distributed user innovation is, of course, that each user

has a different set of innovation-related needs and other assets in place

which makes a particular type of innovation low-cost (“shallow”) to that

user. The assets of some user will then generally be found to be a just-right

fit to many innovation development problems. (Note that this argument

does not mean that all innovations will be cheaply done by users, or even

94 Chapter 7

done by users at all. In essence, users will find it cheaper to innovate when

manufacturers’ economies of scale with respect to product development are

more than offset by the greater scope of innovation assets held by the col-

lectivity of individual users.)

Available data support these expectations. In chapter 2 we saw evidence

that users tended to develop very different innovations. To test whether

commercially important innovations are developed by just a few users or by

many, I turn to studies documenting the functional sources of important

innovations later commercialized. As is evident in table 7.1, most of the

important innovations attributed to users in these studies were done by

different users. In other words, user innovation does tend to be widely dis-

tributed in a world characterized by users with heterogeneous needs and

heterogeneous stocks of sticky information.

Innovation Communities

User-innovators may be generally willing to freely reveal their informa-

tion. However, as we have seen, they may be widely distributed and each

may have only one or a few innovations to offer. The practical value of

the “freely revealed innovation commons” these users collectively offer

Innovation Communities 95

Table 7.1
User innovation is widely distributed, with few users developing more than one major

innovation. NA: data not available.

Number of users developing this

number of major innovations

1 2 3 6 NA Sample (n)

Scientific Instrumentsa 28 0 1 0 1 32

Scientific Instrumentsb 20 1 0 1 0 28

Process equipmentc 19 1 0 0 8 29

Sports equipmentd 7 0 0 0 0 7

a. Source: von Hippel 1988, appendix: GC, TEM, NMR Innovations.

b. Source: Riggs and von Hippel, Esca and AES.

c. Source: von Hippel 1988, appendix: Semiconductor and pultrusion process equip-

ment innovations.

d. Source: Shah 2000, appendix A: skateboarding, snowboarding, and windsurfing

innovations.

will be increased if their information is somehow made conveniently

accessible. This is one of the important functions of “innovation

communities.”

I define “innovation communities” as meaning nodes consisting of indi-

viduals or firms interconnected by information transfer links which may

involve face-to-face, electronic, or other communication. These can, but

need not, exist within the boundaries of a membership group. They often

do, but need not, incorporate the qualities of communities for participants,

where “communities” is defined as meaning“networks of interpersonal ties

that provide sociability, support, information, a sense of belonging, and

social identity” (Wellman et al. 2002, p. 4).1

Innovation communities can have users and/or manufacturers as mem-

bers and contributors. They can flourish when at least some innovate and

voluntarily reveal their innovations, and when others find the information

revealed to be of interest. In previous chapters, we saw that these conditions

do commonly exist with respect to user-developed innovations: users inno-

vate in many fields, users often freely reveal, and the information revealed

is often used by manufacturers to create commercial products—a clear indi-

cation many users, too, find this information of interest.

Innovation communities are often specialized, serving as collection

points and repositories for information related to narrow categories of inno-

vations. They may consist only of information repositories or directories in

the form of physical or virtual publications. For example, userinnova-

tion.mit.edu is a specialized website where researchers can post articles on

their findings and ideas related to innovation by users. Contributors and

non-contributors can freely access and browse the site as a convenient way

to find such information.

Innovation communities also can offer additional important functions to

participants. Chat rooms and email lists with public postings can be pro-

vided so that contributors can exchange ideas and provide mutual assis-

tance. Tools to help users develop, evaluate, and integrate their work can

also be provided to community members—and such tools are often devel-

oped by community members themselves.

All the community functionality just mentioned and more is visible in

communities that develop free and open source software programs. The

emergence of this particular type of innovation community has also done

a great deal to bring the general phenomenon to academic and public

96 Chapter 7

http://userinnovation.mit.edu/
http://userinnovation.mit.edu/

notice, and so I will describe them in some detail. I first discuss the history

and nature of free and open source software itself (the product). Next I out-

line key characteristics of the free and open source software development

projects typically used to create and maintain such software (the

community-based development process).

Open Source Software

In the early days of computer programming, commercial “packaged” soft-

ware was a rarity—if you wanted a particular program for a particular pur-

pose, you typically wrote the code yourself or hired someone to write it for

you. Much of the software of the 1960s and the 1970s was developed in aca-

demic and corporate laboratories by scientists and engineers. These indi-

viduals found it a normal part of their research culture to freely give and

exchange software they had written, to modify and build on one another’s

software, and to freely share their modifications. This communal behavior

became a central feature of “hacker culture.” (In communities of open

source programmers, “hacker” is a positive term that is applied to talented

and dedicated programmers.2)

In 1969, the Defense Advanced Research Projects Agency, a part of the

US Department of Defense, established the ARPANET, the first transconti-

nental high-speed computer network. This network eventually grew to link

hundreds of universities, defense contractors, and research laboratories.

Later succeeded by the Internet, it also allowed hackers to exchange soft-

ware code and other information widely, easily, and cheaply—and also

enabled them to spread hacker norms of behavior.

The communal hacker culture was very strongly present among a group

of programmers—software hackers—housed at MIT’s Artificial Intelligence

Laboratory in the 1960s and the 1970s (Levy 1984). In the 1980s this

group received a major jolt when MIT licensed some of the code created

by its hacker employees to a commercial firm. This firm, in accordance

with normal commercial practice, then promptly restricted access to the

“source code”3 of that software, and so prevented non-company person-

nel—including the MIT hackers who had been instrumental in develop-

ing it—from continuing to use it as a platform for further learning and

development.

Richard Stallman, a brilliant programmer in MIT’s Artificial Intelligence

Laboratory, was especially distressed by the loss of access to communally

Innovation Communities 97

developed source code. He also was offended by a general trend in the soft-

ware world toward development of proprietary software packages and the

release of software in forms that could not be studied or modified by oth-

ers. Stallman viewed these practices as morally wrong impingements on the

rights of software users to freely learn and create. In 1985, in response, he

founded the Free Software Foundation and set about to develop and diffuse

a legal mechanism that could preserve free access for all to the software

developed by software hackers. Stallman’s pioneering idea was to use the

existing mechanism of copyright law to this end. Software authors inter-

ested in preserving the status of their software as “free” software could use

their own copyright to grant licenses on terms that would guarantee a num-

ber of rights to all future users. They could do this by simply affixing a stan-

dard license to their software that conveyed these rights. The basic license

developed by Stallman to implement this seminal idea was the General

Public License or GPL (sometimes referred to as copyleft, in a play on the

word “copyright”). Basic rights transferred to those possessing a copy of free

software include the right to use it at no cost, the right to study its source

code, the right to modify it, and the right to distribute modified or unmod-

ified versions to others at no cost. Licenses conveying similar rights were

developed by others, and a number of such licenses are currently used in

the open source field. Free and open source software licenses do not grant

users the full rights associated with free revealing as that term was defined

earlier. Those who obtain the software under a license such as the GPL are

restricted from certain practices. For example, they cannot incorporate GPL

software into proprietary software that they then sell.4 Indeed, contributors

of code to open source software projects are very concerned with enforcing

such restrictions in order to ensure that their code remains accessible to all

(O’Mahony 2003).

The idea of free software did not immediately become mainstream, and

industry was especially suspicious of it. In 1998, Bruce Perens and Eric

Raymond agreed that a significant part of the problem resided in Stallman’s

term “free” software, which might understandably have an ominous ring to

the ears of businesspeople. Accordingly, they, along with other prominent

hackers, founded the open source software movement (Perens 1999). Open

source software uses the licensing practices pioneered by the free software

movement. It differs from that movement primarily on philosophical

grounds, preferring to emphasize the practical benefits of its licensing prac-

98 Chapter 7

tices over issues regarding the moral importance of granting users the free-

doms offered by both free and open source software. The term “open

source” is now generally used by both practitioners and scholars to refer to

free or open source software, and that is the term I use in this book.

Open source software has emerged as a major cultural and economic phe-

nomenon. The number of open source software projects has been growing

rapidly. In mid 2004, a single major infrastructure provider and repository

for open source software projects, Sourceforge.net,5 hosted 83,000 projects

and had more than 870,000 registered users. A significant amount of soft-

ware developed by commercial firms is also being released under open

source licenses.

Open Source Software Development Projects

Software can be termed “open source” independent of how or by whom it

has been developed: the term denotes only the type of license under which

it is made available. However, the fact that open source software is freely

accessible to all has created some typical open source software develop-

ment practices that differ greatly from commercial software development

models—and that look very much like the “hacker culture” behaviors

described above.

Because commercial software vendors typically wish to sell the code they

develop, they sharply restrict access to the source code of their software

products to firm employees and contractors. The consequence of this

restriction is that only insiders have the information required to modify

and improve that proprietary code further (Meyer and Lopez 1995; Young,

Smith, and Grimm 1996; Conner and Prahalad 1996). In sharp contrast, all

are offered free access to the source code of open source software if that code

is distributed by its authors. In early hacker days, this freedom to learn and

use and modify software was exercised by informal sharing and co-

development of code—often by the physical sharing and exchange of com-

puter tapes and disks on which the code was recorded. In current Internet

days, rapid technological advances in computer hardware and software and

networking technologies have made it much easier to create and sustain a

communal development style on ever-larger scales. Also, implementing

new projects is becoming progressively easier as effective project design

becomes better understood, and as prepackaged infrastructural support for

such projects becomes available on the Web.

Innovation Communities 99

Today, an open source software development project is typically initi-

ated by an individual or a small group seeking a solution to an individual’s

or a firm’s need. Raymond (1999, p. 32) suggests that “every good work of

software starts by scratching a developer’s personal itch” and that “too

often software developers spend their days grinding away for pay at pro-

grams they neither need nor love. But not in the (open source) world. . . .”

A project’s initiators also generally become the project’s “owners” or

“maintainers” who take on responsibility for project management.6 Early

on, this individual or group generally develops a first, rough version of the

code that outlines the functionality envisioned. The source code for this

initial version is then made freely available to all via downloading from an

Internet website established by the project. The project founders also set

up infrastructure for the project that those interested in using or further

developing the code can use to seek help, provide information or provide

new open source code for others to discuss and test. In the case of projects

that are successful in attracting interest, others do download and use and

“play with” the code—and some of these do go on to create new and mod-

ified code. Most then post what they have done on the project website for

use and critique by any who are interested. New and modified code that is

deemed to be of sufficient quality and of general interest by the project

maintainers is then added to the authorized version of the code. In many

projects the privilege of adding to the authorized code is restricted to only

a few trusted developers. These few then serve as gatekeepers for code writ-

ten by contributors who do not have such access (von Krogh and Spaeth

2002).

Critical tools and infrastructure available to open source software project

participants includes email lists for specialized purposes that are open to all.

Thus, there is a list where code users can report software failures (“bugs”)

that they encounter during field use of the software. There is also a list

where those developing the code can share ideas about what would be good

next steps for the project, good features to add, etc. All of these lists are

open to all and are also publicly archived, so anyone can go back and learn

what opinions were and are on a particular topic. Also, programmers con-

tributing to open source software projects tend to have essential tools, such

as specific software languages, in common. These are generally not specific

to a single project, but are available on the web. Basic toolkits held in com-

mon by all contributors tends to greatly ease interactions. Also, open source

100 Chapter 7

software projects have version-control software that allows contributors to

insert new code contributions into the existing project code base and test

them to see if the new code causes malfunctions in existing code. If so, the

tool allows easy reversion to the status quo ante. This makes “try it and see”

testing much more practical, because much less is at risk if a new contribu-

tion inadvertently breaks the code. Toolkits used in open source projects

have been evolved through practice and are steadily being improved by

user-innovators. Individual projects can now start up using standard infra-

structure sets offered by sites such as Sourceforge.net.

Two brief case histories will help to further convey the flavor of open

source software development.

Apache Web Server Software

Apache web server software is used on web server computers that host web

pages and provide appropriate content as requested by Internet browsers.

Such7 computers are a key element of the Internet-based World Wide Web

infrastructure.

The web server software that evolved into Apache was developed by

University of Illinois undergraduate Rob McCool for, and while working at,

the National Center for Supercomputing Applications (NCSA). The source

code as developed and periodically modified by McCool was posted on the

web so that users at other sites could download it, use it, modify it, and

develop it further. When McCool departed NCSA in mid 1994, a small

group of webmasters who had adopted his web server software for their own

sites decided to take on the task of continued development. A core group of

eight users gathered all documentation and bug fixes and issued a consoli-

dated patch. This “patchy” web server software evolved over time into

Apache. Extensive user feedback and modification yielded Apache 1.0,

released on December 1, 1995.

In 4 years, after many modifications and improvements contributed by

many users, Apache became the most popular web server software on the

Internet, garnering many industry awards for excellence. Despite strong

competition from commercial software developers such as Microsoft and

Netscape, it is currently used by over 60 percent of the world’s millions of

websites. Modification and updating of Apache by users and others contin-

ues, with the release of new versions being coordinated by a central group

of 22 volunteers.

Innovation Communities 101

Fetchmail—An Internet Email Utility Program

Fetchmail is an Internet email utility program that “fetches” email from cen-

tral servers to a local computer. The open source project to develop, main-

tain, and improve this program was led by Eric Raymond (1999).

Raymond first began to puzzle about the email delivery problem in 1993

because he was personally dissatisfied with then-existing solutions. “What

I wanted,” Raymond recalled (1999, p. 31), “was for my mail to be delivered

on snark, my home system, so that I would be notified when it arrived

and could handle it using all my local tools.” Raymond decided to try and

develop a better solution. He began by searching databases in the open

source world for an existing, well-coded utility that he could use as a devel-

opment base. He knew it would be efficient to build on others’ related work

if possible, and in the world of open source software (then generally called

free software) this practice is understood and valued. Raymond explored

several candidate open source programs, and settled on one in small-scale

use called “popclient.” He developed a number of improvements to the pro-

gram and proposed them to the then maintainer of popclient. It turned out

that this individual had lost interest in working further on the program,

and so his response to Raymond’s suggestions was to offer his role to

Raymond so that he could evolve the popclient further as he chose.

Raymond accepted the role of popclient’s maintainer, and over the next

months he improved the program significantly in conjunction with advice

and suggestions from other users. He carefully cultivated his more active

beta list of popclient users by regularly communicating with them via mes-

sages posted on an public electronic bulletin board set up for that purpose.

Many responded by volunteering information on bugs they had found and

perhaps fixed, and by offering improvements they had developed for their

own use. The quality of these suggestions was often high because “contri-

butions are received not from a random sample, but from people who are

interested enough to use the software, learn about how it works, attempt

to find solutions to the problems they encounter, and actually produce an

apparently reasonable fix. Anyone who passes all these filters is highly

likely to have something useful to contribute.” (ibid., p. 42)

Eventually, Raymond arrived at an innovative design that he knew

worked well because he and his beta list of co-developers had used it, tested

it and improved it every day. Popclient (now renamed fetchmail) became

standard software used by millions users. Raymond continues to lead the

102 Chapter 7

group of volunteers that maintain and improve the software as new user

needs and conditions dictate.

Development of Physical Products by Innovation Communities

User innovation communities are by no means restricted to the develop-

ment of information products like software. They also are active in the

development of physical products, and in very similar ways. Just as in the

case of communities devoted to information product, communities devoted

to physical products can range from simple information exchange sites to

sites well furnished with tools and infrastructure. Within sports, Franke and

Shah’s study illustrates relatively simple community infrastructure. Thus,

the boardercross community they studied consisted of semi-professional

athletes from all over the world who meet in up to 10 competitions a year

in Europe, North America, and Japan. Franke and Shah report that com-

munity members knew one another well, and spent a considerable amount

of time together. They also assisted one another in developing and modify-

ing equipment for their sport. However, the community had no specialized

sets of tools to support joint innovation development.

More complex communities devoted to the development of physical

products often look similar to open source software development commu-

nities in terms of tools and infrastructure. As an example, consider the

recent formation of a community dedicated to the development and dif-

fusion of information regarding novel kitesurfing equipment. Kitesurfing

is a water sport in which the user stands on a special board, somewhat like

a surfboard, and is pulled along by holding onto a large, steerable kite.

Equipment and technique have evolved to the point that kites can be

guided both with and against the wind by a skilled kitesurfer, and can lift

rider and board many meters into the air for tens of seconds at a time.

Designing kites for kitesurfing is a sophisticated undertaking, involving

low-speed aerodynamical considerations that are not yet well understood.

Early kites for kitesurfing were developed and built by user-enthusiasts who

were inventing both kitesurfing techniques and kitesurfing equipment

interdependently. In about 2001, Saul Griffith, an MIT PhD student with a

long-time interest in kitesurfing and kite development, decided that kite-

surfing would benefit from better online community interaction.

Accordingly, he created a site for the worldwide community of user-

Innovation Communities 103

innovators in kitesurfing (www.zeroprestige.com). Griffith began by posting

patterns for kites he had designed on the site and added helpful hints and

tools for kite construction and use. Others were invited to download this

information for free and to contribute their own if they wished. Soon other

innovators started to post their own kite designs, improved construction

advice for novices, and sophisticated design tools such as aerodynamics

modeling software and rapid prototyping software. Some kitesurfers con-

tributing innovations to the site had top-level technical skills; at least one

was a skilled aerodynamicist employed by an aerospace firm.

Note that physical products are information products during the design

stage. In earlier days, information about an evolving design was encoded

on large sheets of paper, called blueprints, that could be copied and

shared. The information on blueprints could be understood and assessed

by fellow designers, and could also be used by machinists to create the

actual physical products represented. Today, designs for new products are

commonly encoded in computer-aided design (CAD) files. These files can

be created and seen as two-dimensional and three-dimensional renderings

by designers. The designs they contain can also be subjected to automated

analysis by various engineering tools to determine, for example, whether

they can stand up to stresses to which they will be subjected. CAD files can

then be downloaded to computer-controlled fabrication machinery that

will actually build the component parts of the design.

The example of the kitesurfing group’s methods of sharing design infor-

mation illustrates the close relationship between information and physi-

cal products. Initially, users in the group exchanged design ideas by means

of simple sketches transferred over the Internet. Then group members

learned that computerized cutters used by sail lofts to cut sails from large

pieces of cloth are suited to cutting cloth for surfing kites. They also

learned that sail lofts were interested in their business. Accordingly, inno-

vation group members began to exchange designs in the form of CAD files

compatible with sail lofts’ cutting equipment. When a user was satisfied

with a design, he would transmit the CAD file to a local sail loft for cut-

ting. The pieces were then sewn together by the user or sent to a sewing

facility for assembly. The total time required to convert an information

product into a physical one was less than a week, and the total cost of a

finished kite made in this way was a few hundred dollars—much less than

the price of a commercial kite.

104 Chapter 7

http://www.zeroprestige.com

User-to-User Assistance

Clearly, user innovation communities can offer sophisticated support to

individual innovators in the form of tools. Users in these innovation com-

munities also tend to behave in a collaborative manner. That is, users not

only distribute and evaluate completed innovations; they also volunteer

other important services, such as assisting one another in developing and

applying innovations.

Franke and Shah (2003) studied the frequency with which users in four

sporting communities assisted one another with innovations, and found

that such assistance was very common (table 7.2). They also found that

those who assisted were significantly more likely to be innovators them-

selves (table 7.3). The level of satisfaction reported by those assisted was

very high. Seventy-nine percent agreed strongly with the statement “If I

had a similar problem I would ask the same people again.” Jeppesen (2005)

similarly found extensive user-to-user help being volunteered in the field of

computer gaming.

Innovation Communities 105

Table 7.2
Number of people from whom innovators received assistance.

Number of people Number of cases Percentage

0 0 0

1 3 6

2 14 26

3–5 25 47

6–10 8 15

> 10 3 6

Total 53 100

Source: Franke and Shah 2003, table 4.

Table 7.3

Innovators tended to be the ones assisting others with their innovations (p < 0.0001).

Innovators Non-innovators Total

Gave assistance 28 13 41

Did not give assistance 32 115 147

Total 60 128

Source: Franke and Shah 2003, table 7.

Such helping activity is clearly important to the value contributed by

innovation communities to community participants. Why people might

voluntarily offer assistance is a subject of analysis. The answers are not fully

in, but the mysteries lessen as the research progresses. An answer that

appears to be emerging is that there are private benefits to assistance

providers, just as there are for those who freely reveal innovations (Lakhani

and von Hippel 2003). In other words, provision of free assistance may be

explicable in terms of the private-collective model of innovation-related

incentives discussed earlier.

106 Chapter 7

