Contents

1 Introduction 2
2 Day 1: February 3, 2020 4
3 Day 2: February 5, 2020 5
4 Day 3: February 10, 2020 9
5 Day 4: February 12, 2020 13
6 Day 5: February 18, 2020 16
7 Days 6-8: February 19, 23, and 25, 2020 19
8 Day 9: March 2, 2020 20
9 Day 10: March 4, 2020 23
10 Day 11: March 9, 2020 26
11 Day 12: March 11, 2020 29
12 Day 13: March 30, 2020 31
13 Day 14: April 1, 2020 35
14 Day 15: April 6, 2020 38
15 Day 16: April 8, 2020 41
1 Introduction

These notes were typeset live in 5.08 lecture. Special thanks to Andrew Lin for providing his LaTeX formatting template.

Today’s lecture is being taught by Prof. Imperiali, and we’ll be going through an overview of the course and a bit about nucleic acids. We’ll first talk about some guiding questions of chemical biology:

Question 1. What is Chemical Biology?? Can you define it? What types of studies exemplify chemical biology? What are the big frontiers?

There are many right answers to these questions, and each chemical biologist has their own answer. Chemical Biology is about the genesis of tools and approaches (mostly from chemistry, but also physics and engineering) that allow us to study biological systems. Essentially, chemical biology is an interdisciplinary tool that gives us more insight into biology. We utilize chemical principles to manipulate systems to investigate the underlying biology (systems biology) or to create new functions or materials (synthetic biology). Biochemistry investigates the chemistry that underlies biological systems; chemical biology attempts to understand biological systems themselves.

Note 2

Example 3
Not only is chemical biology a broad topic, but there are also broad applications, including:

- Site directed mutagenesis (Molecular Biology)
- Sequence analysis (Bioinformatics)
- Structure analysis (Biophysics)
- Intermolecular interactions (Biophysics)
- Yeast screening (Molecular Biology)
- Chemical Synthesis (Organic Chemistry)
Now we’re going to move onto course logistics. The course is designed to encompass the above main tools. We’ll cover the 6 major topics as follows:

- Nucleic Acids
- Proteins and Enzymes
- Biophysical Methods
- Manipulating the Protein Architecture
- Post-Translation Modifications
- Frontiers of Chemical Biology

Prof. Imperiali also emphasizes the importance of communication between chemists and biologists, with a brief historical interlude:

Fact 4
The first surge of chemical biology was in the 1950s, but there were fundamental disagreements between biologists and chemists. Biologists often saw chemists as annoyances; no dialogue resulting in very few problems being solved. However, there is now resurgence of chemical biology all around. “Biologists have the problems. Chemists have the tools.”

An example of the failure of communication was on a bacteria in Mono Lake:

Example 5
This bacteria was discovered to grow on arsenic rather than phosphorous. Biologists proposed that arsenic completely replaced phosphorous in proteins and nucleic acids; chemists thought that this didn’t make any sense. No spectrophotometric measurements done; later found that transporters within the cell still heavily favour phosphate. A 10000x increase in arsenic only results in 3x more arsenic within DNA (still extremely small). Chemical studies showed that half life of phosphate = $3 \cdot 10^7$ years, that of arsenate = 0.06 s. So, talk to chemists!

Most of the grading is from homeworks (60%); the last homework is a proposal. Late policy - 90% credit for one day late, 80% for two days late, no credit for later. There will be 5 take-home quizzes (mostly of ‘vocab’, 15%). If you can’t trust yourself, take it with a group - “Misery loves company.” There is also a final Presentation (25%) at the end of the semester, teams of 2. Graduate students have presentations through the course.
2 Day 1: February 3, 2020

We’re now going to talk a little about nucleic acids. As we know from previous courses, we have the central dogma of information transfer: DNA to RNA to protein. We can also make new variations on the central dogma, namely post-translational and post-transcriptional modification (both pre-mRNA splicing and protein splicing, etc) Each step can be modified (for example, introducing unnatural amino-acids, etc).

The structure of nucleic acids were originally covered in Franklin’s X-ray diffraction experiment and Watson/Crick’s double helix proposal.

Note 6
It’s important to not learn wrong structures - no carbons with 5 bonds, etc.

“I’m too lazy to talk about nucleic acid synthesis today, so we’ll do it on Wednesday.”

Question 7. How did DNA come to make DNA?

It’s like the chicken and egg problem. You need DNA to make DNA! And if its DNA polymerase, you need a primer and a DNA to make DNA. However, the state of the art DNA synthesis is not dependent on either primer nor DNA!
3 Day 2: February 5, 2020

Today’s lecture is being taught by Prof. Raines. We’ll continue with our previous discussion of nucleic acids.

The central dogma, involving the transcription of DNA to RNA then translation to protein, gives both a way where we can understand the process and how it can be modified to suit our needs.

Fact 8
In the 1900s, Linus Pauling and Chargaff met on a ship, and Chargaff mentioned his work about the measurements of purine and pyrimidine equivalences. Pauling ignored this due to somewhat of a personal vendetta and his model of DNA, published in Nature in 1953 and PNAS, had a triplex DNA structure with phosphate groups on the outside (assuming that DNA was an ionic crystal and that phosphate groups were protonated, impossible). This was revealed by Crelin Pauling (the son of Linus Pauling) in 1995.

Watson and Crick ended up publishing their correct structure two months later, and all that was left for was experimental verification.

“What I cannot create I do not understand” - Feynmann.

The first attempt at synthesis of nucleic acids was with a DCC-mediated phosphate coupling. From Prof. Raines’ own experience, it’s really ugly chemistry, the yields are low, and there are many side products.

Now, solid phase methods are much more common in synthesis of biopolymers. The first example was Merrifield’s solid phase synthesis of peptides (Nobel Prize 1984), and has been extended to Carruthers’ solid phase nucleic acid synthesis.

Question 9. How is DNA integrity preserved? After all, the \(t_{1/2} \) of phosphodiester bonds is 30 million years (Ref: Wolfender 2006, 103, 4052), so why can’t we get DNA of dinosaurs?

Fact 10
The amines of the nucleotide bases can become hydrolyzed, for example, cytosine can be hydrolyzed to uracil. This happens about 100 times per human cell per day, but cells have enzymatic correcting methods. There are also other enzymes, such as adenosine deaminase, which convert adenosine to inosine, which allows us to manipulate the genome. David Liu (Harvard) is a pioneer of such methods.
Phosphates are also an integral part of DNA, especially owing to the long half life and stability of phosphodiester bonds. A more thorough discussion is given in "Why Nature Chose Phosphates" by Westheimer.

Fact 11
There is quite a misconception of the phosphate anion. The common depiction has the phosphate as an unsymmetric molecule with a double bond, but a more accurate depiction is given by a phosphate with T_d symmetry and negative partial charges on all oxygens which protect the phosphorous from nucleic attack. “You’d be hard-pressed to find a biochemistry text that depicts the phosphate in this way” (Anslyn does)!

Now we’ll get to the meat of Carruthers’ DNA Synthesis. The basis of Carruthers’ synthesis is to start with a protected nucleotide, with the 5’-hydroxyl protected by a dimethoxytrityl (DMT) group and the nucleobase being protected by either a benzyol or N-2 isobutryoyl group. On the 3’-hydroxyl, there is a phosphoramidite group (phosphorous in +3 state), connected with diisopropyl amine and an O-ethylcyanide.

The DMT protecting groups from the ribose can be removed from with acid, and the product results in an orange color, allowing us to monitor the course of the reaction. The protecting groups on the nucleobases can be removed from base-labile. To form the phosphodiester linkage, a 1H-tetrazole first substitutes the diisopropyl amine, and then the 5’-hydroxyl of the new base attacks the phosphorous and makes the tetrazole a leaving group. Oxidation with iodine oxidizes the phosphorous to +5, and basic conditions remove the ethylcyano group.

This doesn’t really work with RNA, however, because the 2’-hydroxy group will cyclize with the phosphate group in basic conditions. So, we need to protect the 2’-hydroxy group with a group that is orthogonal to both acidic and basic conditions, namely a TBDMS group. Other proposed suggestions were benzyl groups (hydrogenlysis) or with an Alloc group, but the logistic difficulties of hydrogenlysis or the expensiveness of palladium removal of Alloc make the silyl groups the best.

The danger of this solid-phase method is if one nucleotide is not attached accidentally, then it is super hard to separate between a 99-length and 100-length polymer. So, you cap the hydroxyl group after each step with something like acetic anhydride to stop that chain growth.

Note 12
There is an online website that explains this procedure in detail: https://www.atdbio.com/content/17/Solid-phase-oligonucleotide-synthesis
Previously, we would have machines in our own labs to make whatever oligonucleotides we wanted. Now, there are automated DNA synthesizers that make these and get them delivered within 48 hours.

There are also nucleotides that don’t form hydrogen bonds, but they are also forming double-stranded helixes (See: Eric Kool; Hirao: *Curr. Opin. Chem. Biol.* **2006**, 10, 622). This implies that hydrogen bonds do not play as crucial of a role as previously thought in maintaining stability. These new nucleobases form more stable duplexes, but are not amendable to DNA-polymerase mediated polymerization. You can get extremely versatile structures from modification of the ribose (xeno-nucleic acids) that actually get polymerized by DNA polymerase! (Ref: Hollinger, *Science* **2012**, 336, 341). In fact, Eschenmoser showed that 6-member sugars can even be incorporated into DNA, and these are also found to be more stable than 5-member rings!

Question 13. *Why did nature use 5-member rings instead then?*

The answer is unknown, but it is speculated that nature did so so that DNA could be taken apart as well for cellular purposes.

Note 14

A non-natural base-pair is essential for the propagation of the plasmid within the E. Coli. (Romesberg, *Nature* **2014**, 509, 385). In fact, this non-natural base-pair was necessary for the survival of the plasmid, and this was the first example of a non-canonical base pair in DNA. There is now a lot of research in non-canonical nucleic acids.

We’ll take a quick interlude to the “Most beautiful experiment in Biology,” which demonstrated the semiconservative nature of DNA replication. First, a double-stranded 15N DNA was made, and was allowed to grow in 14N medium. This resulted in two double stranded DNAs, each half 14N and 15N. Another round of replication revealed that you got pure 14N DNA only, which shows the semiconservative nature of DNA replication. This was ultimately measured with gravitational separation (since 15N is heavier than 14N). In fact, this experiment was actually done earlier, but with iodine replacing the methyl group in thymine as the tracker instead by Meselson in his PhD thesis, under Linus Pauling. This was however met with criticism since it was thought that iodine could perturb DNA replication, even though it was chemically similar.

For actual DNA manipulation, we can use **restriction enzymes**, which were discovered in the 1960s as a defense mechanism in E. coli. They are proteins that recognize palindromic DNA sequences and destroy them. The E. coli protects its own DNA by methylating their own sequences. Now, restriction enzymes are becoming phased out as well, and have mostly been replaced by the Polymerase Chain Reaction (PCR) and the Gibson Assembly.
Note 15

References:

Gibson Assembly: Nature Methods, **2009**, *6*, 343.
4 Day 3: February 10, 2020

Today’s lecture is given by Prof. Raines. We’ll be discussing some more facets of DNA and DNA manipulation.

Fact 16
In 1977, the rate of DNA sequencing was about 1 base pair per month. Now, with Sanger sequencing and Gilbert sequencing we can sequence the human genome (3.2×10^9 base pairs) in a few hours. The cost of sequencing originally followed a decreasing log-linear distribution (similar to Moore’s law), and with the advancement of next generation of DNA sequencing after 1977, has decreased even further than expected.

The method of DNA sequencing developed in 1977 was known as Sanger sequencing, also known as chain-termination sequencing. The way this process worked was that there were four tubes, each containing the following:

- DNA to be sequenced
- Oligonucleotide primer
- All four dNTPs
- One type of 32P-labeled ddNTP
- DNA polymerase

Since the ddNTPs do not have a 3’-hydroxy group to continue polymerization, they essentially act as caps for the growing DNA molecules. They are present in much smaller concentrations than the dNTPs, and each uniquely caps one base pair. Probabilistically, this means that each DNA fragment may get terminated at a certain nucleotide. Repetition with the other ddNTPs allows for complete sequencing of the DNA. After completing the reaction, the DNA from all four tubes were subject to gel electrophoresis and exposed to an X-ray film. This gel electrophoresis has resolution of individual DNA molecules. This process has mostly stayed the same through the decades, but has had some innovations, such as replacing radioactive nucleotides with fluorescent ddNTPs. Since each of the ddNTPs are uniquely labelled with a different color we can now use capillary electrophoresis, which can be scanned by computer.

Remark 17. Prof. Raines presents a gel that he himself ran a long time ago. He calls it ‘antique,’ and mentions that the ‘antique’ instruments he used may be found somewhere on campus.

Now, even Sanger sequencing has been replaced, with Next-Generation Illumina Sequencing. This works by having a chip with many small oligonucleotides attached to it, and then DNA
fragments (about 100 nucleotides) recognize the oligonucleotides and the oligonucleotides copy the DNA fragments. This amplifies the DNA and makes about 1000 copies of a fragment, and a computer tracks the synthesis of DNA and puts it back together.

https://www.youtube.com/watch?v=fCd6B5HRAZ8/ provides a good introduction to this process.

We’ll now talk a bit about DNA’s 3D structure. DNA has both a **major groove** and a **minor groove**, and proteins largely recognize DNA by the major groove, which an α-helix of a protein fits well into. Arginine is very good at forming hydrogen-bonds with Guanosine, and asparagine and glutamine are well-equipped to recognize Adenosine. Another method of a protein recognizing DNA is by the **coiled-coil**, or leucine zipper, which is when two α-helicies bound together. It binds as a dimer and has interactions that demonstrate cooperativity. This motif is found in many proteins, not just those that bind to DNA.

Note 18
The name of leucine zipper comes from the fact that the area of binding of the two alpha helicies are often leucine molecules, and it is hypothesized that the isopropyl groups on the leucine side-chains can interlock. However, this is probably not true, and now this term is not used often.

Another motif, often only found in transcription factors, is the **helix-turn-helix**. It is a short α-helix lies in the major groove and is stabilized by another short α-helix, separated by a turn in the DNA.

A third motif is known as the **zinc-finger**. It commonly consists of two cysteine and two histidine residues (but there are more possibilities!), which all coordinate to a Zn$^{2+}$ ion which organizes the structure of the protein, often making an α-helix more stable, and it is this helix that interacts with DNA. This is one of the more modular and stable motifs. The zinc is essentially redox inert and acts as a good coordinating agent.

Note 19

Small molecules can also interact and bind with DNA. Some molecules, such as Ethidium Bromide (DNA stain) or Doxorubicin (cancer drug), can intercalate with DNA, through interactions involving both H-bonding and pi-stacking. Other dyes, such as Hoeschst 33258, can bind instead in the minor groove through H-bonding (though non-specific), and can change color when bound to the DNA.
Other natural products, such as distamycin, can also bind in the minor groove, and can also show specificity through H-bonding.

In low concentrations, distamycin bonds in a 1:1 ratio, interacting with both DNA strands, but at higher concentrations, a 1:2 complex between distamycin and DNA is formed, with each molecule of distamycin binding only with one strand of DNA, mostly with A/T base pairs. Now, if these two molecules of distamycin are connected by a flexible link, and the pyrrole ring is replaced with imidazole, then this modified distamycin (now known as polyamides) has extremely high specificity for DNA.

Note 20

Now that we’ve developed models for interactions between molecules and DNA, we can see how these molecules can actually result in the selective cleavage and modification of DNA. In order of specificity, we have meganucleases, zinc-finger nucleases, TALEN, and CRISPR-Cas. Meganucleases function similarly to a restriction enzyme (about 20-40 bp of recognition), while zinc-finger and TALEN uses a fok-nuclease, a protein sidechain, to recognize DNA, to achieve about 1-3bp of specificity. CRISPR-Cas uses modern technologies to actually read the DNA itself, and uses base-pairing to uniquely specify base pairs.

Note 21
CRISPR Reference Videos:
mediaspace.wisc.edu/media/movie_CRISPR_1/0_h6dlrzdw/
mediaspace.wisc.edu/media/movie_CRISPR_2/0_zpj1uc9m/

The origin of CRISPR/Cas9 was originally from bacteria, which used it to recognize viral DNA sequences through a sequence of about 20 base pairs that paired with unzipped DNA. But natural selection means that these viruses have now created Cas9 inhibitors that essentially disables the Cas9 recognition machinery. CRISPR is good at detecting and cleaving genomes, but can also cause side effects, so now inhibitors may be used to essentially shut CRISPR down after a few seconds.

Now, there is quite a bit of research on CRISPR techniques, and genomes can be modified to create significantly different phenotypes (for example, Nature 2015, 523, 13.) Few human genetic diseases are actually curable with CRISPR alone, since it only allows for ‘cutting’ of the DNA sequence.
How do we edit DNA instead of just cutting it? Recall from previously that cytosine undergoes spontaneous hydrolysis to uracil. But there is also another enzyme cytidine deaminase that catalyses this process!

When we do this process to a C - G base pair, the C becomes replaced by a T. CRISPR/Cas9 recognizes the complementary strand and cleaves it, and then the cell’s own DNA repair machinery recognizes that this is not stable, and it replaces the G with an A, thus essentially changing C - G to T - A. A similar method with adenosine deaminase will change an A - T base pair to a C - G!
5 Day 4: February 12, 2020

Today’s lecture is again given by Prof. Raines, and will continue talking about modifying DNA. Last time we talked about spontaneous reactions with exocyclic amino groups, but we can also cause transversions, which are when purines and pyrimidines are interchanged. For example, when guanine gets oxidized at the 8-position, the syn variant now pairs with adenonine instead of cytosine.

To further modify DNA, we have an enzyme reverse transcriptase which can transcribe RNA back into DNA. However, it has no proof-reading ability, which means that it has a much higher error rate. The nice thing about reverse transcriptase is that it can actually be paired with CRISPR-Cas9’s guide RNA to synthesize entirely new DNA (known as a prime editor)!

Remark 25. Though there are still quite a few issues (Ref: Liu, Nature, 2019, 576, 149), this work has essentially made it possible to modify DNA directly into nearly any sequence we want.

ChIP Seq (Chromatin Immunoprecipitation Sequencing) can additionally be used to identify DNA sequences that interact with specific proteins, such as histones, transcription factors, RNA polymerase, DNA polymerase, and DNA-repair enzymes. The process first works by using formaldehyde to cross-link bound proteins to DNA, then sonication to shear the DNA, then precipitating the chromatin with an antibody that has specificity for the protein of interest. Removal of the cross-link and protein, results in the DNA fragments that the protein binds to.

Overall, in the modification of DNA, and biological molecules as a whole, a new way of thinking about chemical biology is thinking about molecules in a modular fashion, where essentially every part of a biological molecule can be thought of as a module that can be interacted with. These modules also offer possibilities for replacement by either other biological molecules or even synthetic compounds.

Example 26
One example of this is in human hormones, which cause transcription. Normally, the vitamin D-receptor binds to vitamin D (obviously!). However, sometimes there is a mutation that chances Arg274 to Leu, which reduces the necessary hydrogen bonding interaction to vitamin D and causes Rickets disease. Instead, by replacing vitamin D with a synthetic agonist, then activity can again be increased.
Now we’re going to shift gears a little bit and talk instead about RNA. RNA instead exists as the **A-form**, but we don’t have the technology to recognize RNA sequences (as compared to Dervan’s DNA technology). The major difference between RNA and DNA’s 3D structure is not the actual presence of the hydroxy group, but rather the puckering caused by the furanose ring. The difference is potentially because of gauche effects, caused by donation of lone pairs into antibonding orbitals that promote the endo isomer. This is relevant as the C3’ endo isomer is preferred, but the C2’ endo isomer is preferred when the C2’ hydroxy group is removed (for example, with ribonucleotide reductase). Another potential factor is the effect of more hydration in RNA, which also lowers overall system energy. The puckering of the ring allows for the hydroxy groups to be more accessible to the solvent.

Note 27

In DNA, a repair mechanism will methylate uracil bases to make them thymines, under the action of thymidylate synthase. This enzyme is inhibited by 5-fluorouracil. It is known as a **mechanism-based inactivator**, since the mechanism for the enzymatic methylation normally has a hydrogen deprotonation, but the 5-fluorouracil needs a fluorine to leave in the inhibitor mechanism, thus deactivating the enzyme.

RNA additionally modifies some of the bases within RNA, such as methylation on the exocyclic adenosine nitrogens and many modifications of uridine bases. It is hypothesized that these may promote transcription or alternative splicing, but not much is known.

Unlike DNA folding, RNA folding is much more versatile and has many local minimal structures. In order to combat this, we have the **polyelectrolyte effect** has shown that viscosity actually decreased when sodium chloride was added to a strand of charged polymers, since the polymer chain collapses. Similarly, double stranded regions of DNA and RNA are more stable at high salt concentrations. Thus, adding more salt could cause RNA to collapse to its global minimum structure.

Example 28

For the binding of protein and DNA, we have that ΔS (and thus affinity) is larger at low [salt] than at high [salt]. This is since DNA is negatively charged and attracts cations, while the positively charged protein is surrounded by anions. As the protein and DNA complexes, the anions and cations become more free, and thus ΔS increases. It is further found that $\log K_a$ and $\log [\text{salt}]$ give a linear plot, which allows us to quantify ion pairs.

Another structural feature of RNA is known as the **tetraloop**, where Base$_{i+3}$ makes a H-bond...
pair with Base, while Base$_{i+3}$ and Base$_{i+2}$ are stacked together. This makes RNA somewhat more stable.

Note 29
With regard to RNA-complexation, we see that RNA-ligand protein complexation rates is significantly lower than protein-ligand and protein-RNA rates. (Ref: Herschlag: RNA 2017, 23, 1745). We don’t know why, however.

RNA is speculated to have played a major role in early life forms, as seen in many metabolic pathways and in catalysis. These observations led to the proposal of the **RNA World Hypothesis**.

“One can contemplate an RNA world, containing only RNA molecules that serve to catalyse the synthesis of themselves.”

Further evidence for this theory comes from an analysis of the ribosome structure (Ref: Steitz: Science 289, 920 (2000)). In ribosomes, the proteins involved were simply for stabilizing the negative charge of the RNA within ribosomes! The ribosome itself worked without the proteins. It itself is a ribozyme!

Current evidence shows that an RNA world existed about 3.8 billion years ago. There are plausible prebiotic routes to RNA, for example, from glycoaldehyde, glyceraldehyde, cyanamide, and cyanoacetylene (Refs: Sutherland: Nature 2009, 459, 239 and ACS Chem. Biol. 2010, 5, 655.) Sutherland has also proposed plausible routes to all the natural amino acids, from H$_2$S, HCN and UV light (Sutherland: Nat. Chem., 2015, 7, 301.) Another unified synthesis of purines and pyrimidines is given in Carell: Science, 2019, 366, 76. Further, prebiotic mechanisms to copy RNA also exist (Ref: Szostak: Angew. Chem., Int. Ed. 2019, 58, 10812). We’ll expand on this in next lecture.
6 Day 5: February 18, 2020

Today’s lecture is again given by Prof. Raines. First of all, we have a take-home quiz, due Thursday, and standard MIT rules apply.

We’ll start off by talking about plausible prebiotic routes of RNA replication. One of the first methods proposed was that an 2-methylimidazole moiety connected to a phosphate would result in an activated mononucleotide that could facilitate replication, but measurements showed that this was a slow reaction. However, if there are two phosphoryl groups connected to the imidizole (respectively on the 1 and 3 positions), then the system becomes more organized and more electrophilic, resulting in a much faster reaction. An even faster reaction happens when the methyl group is replaced by an amino group. Essentially, this imidazole moiety acts as a catalyst to promote replication from a template strand. Crystal structures of this process are given in the above Szostak reference.

We’ll now take a step back and look at phylogenetics. Previously, we categorized species simply by how similar they looked. However, in 1965, Pauling proposed that DNA sequences could be an innate clock that can be used to infer phylogeny. (Ref: J. Theoret. Biol. (1965) 8, 357-366). Another relevant paper showed that most changes in nucleic acid sequence are “neutral (not changing the amino acid sequence),” and this allows for another method of monitoring this molecular clock. (Ref: Nature, 1968, 217, 624).

Original efforts in sequencing were based on small vertebrate proteins, such as hemoglobin and ribonuclease, which is common to all vertebrates. In the late 70’s, Woese instead proposed to use the DNA that encodes an organism’s rRNA, since ribosomes are present in all life and rRNA is homologous, and also changing very slowly, allowing more ancient comparisons. As a result of this classification, the phylogenetic tree was instead revised into three kingdoms of bacteria, archaea, and eucaryota. (Ref: Woese: PNAS, 1977, 74, 5088).
In order to clear up some ambiguities, we’ll define a few words in chemical biology. (Ref: Burgess: *Protein Expr. Purif.* 2016, 120, 106). Here are some word pairs/triplets that are somewhat misused:

- **mutant** - an altered organism or gene (NOT protein)
- **variant** - an altered protein
- **homologous** - evolutionarily related (yes or no answer, not % relation, etc)
- **identical** - the same (% relation is okay)
- **similar** - resembling (% relation is okay, with a definition of similarity)
- **Ref:** *Cell.* 1987, 50, 667

- **in vitro** - outside of a living organism
- **in cellulo** - within a cell taken from an animal
- **in vivo** - within a living organism

- **enzymatic** - by an enzyme (ex. enzymatic reaction)
- **enzymic** - of an enzyme (ex. enzymic residue)

- **cytoplasm** - everything in a cell except in nucleus
- **cytosol** - the solution within the plasma membrane; the soluble portion

After this interlude, we’ll now talk about **SELEX**, the Systemic Evolution of Ligands by Exponential Enrichment. It is a method for making **aptamers** (a short single-stranded nucleic acid that binds to a specific target) for target ligands, first discovered by Shoztack and Gold in 1990.

SELEX involves first making a library of ssDNA/ssRNA, adding the ligand on resin, washing away the unbound sequences, and amplifying the bound nucleic acids with PCR. This process is repeated many times, and what eventually emerges is a ‘winner’ that can bind the ligand the best.

Now, we’ve developed even more derivatives in the SELEX library, such as 2’-fluoro and 4’-thio nucleic acids, as well as other derivatives such as boranophosphates.

Another advancement is in using a live mouse in order to find binding to organs of interest. A random RNA pool is injected into a mouse, its liver is harvested, and the RNA is extracted and injected into another mouse. This is repeated similarly to SELEX and ultimately allows us to target diverse molecules.
One application of SELEX is in the development of `RNA GFP,’ where aptamers were made to bind to specific RNA sequences. The main small molecules, HBI and DMHBI, were able to bind to the aptamer termed 13-2 RNA, selected from a library of $5 \cdot 10^{13}$ molecules. This resulted in green fluorescence. Further, other molecules have been found to bind to different aptamers, and each gives off a different characteristic color, anywhere from red to blue.

Note 31
What has been found is that DFHBI has been found to be the optimal ligand, with the optimal aptamer being 84 nucleotides and having binding at a G-quadruplex. The quantum yield $\Phi = 0.72$.

Though this is a chemical technique, in 2002, natural aptamers termed riboswitches (mostly based on RNA) have also been discovered. (Ref: *Nature* 2002, 419, 952). These riboswitches have been found in bacteria, archaea, fungi, and plants (but not animals!), and can bind to coenzymes, nucleobases, amino acids, ions, sugars, metabolites, etc.

Example 32
One interesting riboswitch is in the binding of fluoride ions. This is used by an extremophile when fluoride concentrations are too high, and at first, it doesn’t make sense - how does negatively charged RNA bind negatively charged fluoride? The RNA actually incorporates three magnesium ions that create order within the RNA, and these magnesiums are the ones that bind fluoride.

An interesting observation amongst DNA sequences is Szybalski’s rule - the coding strand has more purines than pyrimidines. One possible explanation is that ancient organisms needs to have either many pyrimidines or purines in order to prevent double-stranded regions from forming in single-stranded DNA.
7 Days 6-8: February 19, 23, and 25, 2020

I was absent on these days, so no notes here.
Today’s lecture is by Prof. Imperali. She starts off by reminding us that the second PSET will be much harder than the first PSET, and will require a lot more time than simply one night of work. Additionally, lab experience will be very helpful in proposing methods/experiments for the PSET, especially with regard to the freshmen taking the course. Also, our second quiz will be passed out today.

We’re going to continue our discussion of proteases, from the last few lectures. If mRNA makes a protease, then “all hell would let lose.” As a result, proteases are expressed in an inactive form, primed for activation by an enzyme that modifies the protein with methods such as phosphorylation or carboxyhydroxalation. These are called zymogens. However, this doesn’t tell us about the scope of activity of this protein. This is why we need activity-based protein profiling (ABPP), which allows us to probe the protein at a functional level. These probes are typically tripartite, with a reactive group for labeling, a linker with substrate-type recognition, and a tag for visualization or a recovery from complex mixtures.

These ‘reactive groups’ are often developed specifically for a specific type of amino acid in the active site of the protein. For example, cysteine and serine proteases react quite well with halomethylketones, where the histidine interacts with the halomethylketones. Another electrophile, suitable for serine proteases and esterases, uses a fluorophosphonate, in which the serine attacks the phosphorous and displaces the fluoride. A third electrophile, an 2,3-epoxyester, is suitable for cysteine proteases, where the cysteine is modified.

Note 33
When using a halomethylketone, it is somewhat surprising that it is the histidine that reacts with the halomethylketone, rather than the cysteine, despite the fact that cysteine is a ‘soft’ nucleophile. Some explanations have been proposed to explain this.

Also, chlorine or bromine cannot be used in the fluorophosphonate labelling, because water would hydrolyze it much quicker than the protease!

Example 34
In the paper “Activity-based protein profiling for biochemical pathway discovery in cancer,” ABPP was used to evaluate the activity of inhibitors against various non-aggressive and aggressive cells in various types of cancer. Based off a gel, we can tell that the inhibitor is able to irreversibly bind to cancerous enzymes (see paper for image).

Remark 35. Some people suggest that a 2D gel should be ran to perform a similar experiment. Prof. Imperali says that anyone who has ran a 2D gel would never tell someone else to run one, since they are not easily reproduceable.

Example 36
Another method for labelling is to use a biotin affinity handle. Biotin has an extremely high affinity for streptavidin, and elution through a column filled with streptavidin-beads allows for purification of the protein. Then, treatment with trypsin and a further mass spec analysis allows for identification of the protein. This even allows for separation of mixtures of proteins, since we can compare it with a protein database!

Example 37
We can also use ABPP to not only identify irreversible inhibitors, but also reversible inhibitors! This uses a differential analysis, by first binding the reversible inhibitors, then the ABPP reagent. The ABPP reagent binds to the proteins that don’t have reversible inhibitors attached, and a gel (versus without inhibitors) reveals which inhibitors were successful. The advantage of this would be to check for cellular availability and labelling! (There are many inhibitors with high affinity that actually have no biological activity, since the inhibitor never gets into the cell).

Question 38. Our ABPP examples mostly relied on serine and cysteine residues, which are decently reactive and can react with our electrophilic reagents. However, how do we label proteins which have few nucleophiles at the active sites?

For example, we have aspartyl proteases, which has two carboxylic acids at their active site. These carboxylic acids aren’t very nucleophilic, and there are too many interactions between the side chains, water, and the actual substrate. If we attempt to label the nucleophile, we would end up labelling water! The solution is to change the linker in the ABPP to instead be a mimetic that interacts with the protein, since we don’t have the ability to label the active site. These mimetics are commonly dipeptides, and the inhibitor has a extremely similar structure to the actual substrate. However, the amide of the scissile bond is instead replaced with a methinine hydroxyl, and are extremely potent.

Example 39
The HIV protease is an aspartyl protease, which is a homodimer in which the Asp25 and Asp25’ residues form the active site of the bond. The HIV protease is able to cut up the polyprotein of HIV into many active proteins, which allow for the proliferation of HIV. Inhibitors use a mimetic extremely similar to the dipeptide mimetic, and many companies created drugs taking advantage of this. “It wasn’t that they were brilliant; they were just copying nature.”

For in-cell studies, we often just use the dipeptide mimic, that is attached to an alkyne, since sometimes larger molecules are hard to get into cells. Then, after lysing the cells, we use click chemistry (the CuAAC) to attach a biotin-azide that allows for subsequent characterization. These are bioorthogonal, since there are nearly no alkynes in natural products and virtually no azides.

Another method for protein degradation is **ubiquitination**, in which ubiquitin attaches to the protein to be degraded, tagging it for degradation with the 7-fold symmetric **26S proteasome**. First, ATP is used to phosphorylate the ubiquitin, and the ubiquitin E1 enzyme, which contains a free sulfhydryl group, displaces the O-AMP. Then, the E2 enzyme causes thioester exchange, and E3 ligates the ubiquitin to the protein target. More and more ubiquitin is added to create a polyubiquitin product with the same procedure, and these polyubiquitin chains mark the protein for destruction. The proteasome uses 4 interdependent parts - a capturing mechanism, a deubiquitination system, an ATP-dependent unfolding protein, and a proteolyze. This proteasome doesn’t care for the identity of any of these proteins; it just cuts them all!

This proteasome allows for some new drug discovery, specifically the **Proteolysis targeting chimeras (PROTACs)**. We start with the E3 ligase, which is bound to E2 with the ubiquitin that is ready to transfer the ubiquitin to a protein. We use a drug that has a ligand that binds E3, as well as the target protein, with a linker. This promotes ubiquitination of the target protein, which signals it for destruction. We don’t even need a whole equivalent of the drug, since it can just get reused! However, if we have too much of the drug, then we have many open-ended linkages, and activity is actually reduced. However, the problem with these drugs is that it needs two binding units and a linker, and it is hard to get it into actual cells.

Remark 40. In nature, there is a similar process, but with less specificity. Ubiquitin commonly binds to misfolded proteins which have different structures than the correctly folded protein, most likely through hydrophobic interactions.
Today’s lecture is again given by Prof. Imperali. She starts off by mentioning that LigPlot (required for the PSET) has some issues on macs; she says to just email her if you cannot get it to work. Today’s lecture will be quite a few topics smattered together.

We’ll continue our discussion of PROTACs from last lecture with a small quote:

“I like Joe Biden but I didn’t vote for him. I like PROTACs but I don’t vote for them either.”

PROTACs have a molar mass of about 700-1000 Da, which makes them hard to get into the body, mostly through intravenous, intra-peritoneal, or subcutaneous routes. However, once they are delivered, then they behave like small molecules, and have intracellular targets. They have been found to show good activity; for example, 90% degradation of Brd4 has been seen in tumors.

Now, we’re going to move onto N-terminomic analysis, which as the name implies, are methods for evaluating the activity of proteases through analysis of non-native protein N-termini. One of the methods of analysis is called Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC), which isn’t specifically for N-terminomic analysis, but rather just for studying cell perturbations. We use different lysine residues, light and heavy lysines (12C/14N vs 13C/15N), such that each heavy lysine residue is 8 Da more than the light variant. We grow cells in both light and heavy medium, and this environment will propagate to all the proteins in the cells. We also perform our perturbation on the heavy variant. After lysing the cells, we combine the heavy and light experiments, treat it with trypsin, and use LC-MS to look for peaks that are 8 Da apart. The ratios of the peaks then tell us about the effect of the perturbation. Then, bioinformatic methods can be used to put back the protein sequence.

Note 41
Deuterium isn’t used in these isotopic labelling experiments since they different biochemical properties, due to the kinetic isotope effect. On the other hand, the other amino acids can also be used, but Lysine is preferred since it can be easily grown and biosynthesized from heavy ammonium acetate.

Note 42
Mass Spectroscopy is known not to be quantitative. However, when these two extremely similar proteins are sent through the MS simultaneously, then this problem disappears and the ratio of the peaks is actually quantitative.
Now, we’re going to see exactly how to use SILAC to do N-terminomic analysis, called **Terminal amine isotopic labeling of substrates (TAILS)**. We likewise grow two groups of cells, one as normal and one with a perturbation. After lysing and fractionating these groups of cells, and then treating with trypsin, we perform reductive amination with formaldehyde (either normal formaldehyde or D$_2^{13}$CO) and NaBH$_3$CN, resulting in a N,N-dimethyl derivative where only the N-terminus reacts. This treatment is only done after the cell has grown, so it doesn’t interfere with growth. The molecular weight increases by 6 in the heavy variant per every N-terminus. Then, we can use a mass spec to check for the ratios between M and M+6 peaks to tell the effect of our perturbation.

Remark 43. The paper from which this technique originated is long and dense and horrible to read (*Kleifeld, 2010, Nat. Biotechnol., 28, 281–288*)

Remark 44. Before a compound gets a blessing from the FDA, it is not a drug, but rather just a probe.

We’re going to shift gears now and talk about **chemical genetics**, where we use small molecules to change protein function directly in live cells. We need these modifications to act on a scale of minutes, not too long, since otherwise it is impossible to attribute the effects directly to the small molecule. This differs from biological alternatives, such as temperature-sensitive mutations or gene modifications, which are often much slower but have high specificity. Chemical genetic techniques will have a range of specificities, depending on how good the probe is. They don’t replace, but rather complement the biological techniques through being much faster. This time domain can be made even shorter with light-activated changes (known as optogenetics).

Note 45

In enzyme kinetics, we have the standard Michaelis-Menten competitive inhibitor kinetics model, which has parameters K_m, K_i, and k_{cat}. There is another method of analysis IC_{50}, which is the necessary concentration to inhibit 50% of protein function. This can be helpful, but is concentration-dependent and hence not useful for outside comparisons.

In biological genetics, we have both forward and reverse genetics. Forward genetics involves introduction of a random genetic mutation (through, for example, radiation, since we only want a few mutations) to a species, looking at the progeny, and choosing mutants that have distinct phenotypes. Then, we identify the affected gene. On the other hand, in reverse genetics, we introduce a selective gene mutation, develop the organism with the mutation, and we then figure out the role of the gene via comparison with the wild type organism.
Chemical genetics also has forward and reverse methods. In forward chemical genetics, we introduce a library of diverse compounds, and use a visible phenotype to separate out the an active compound. This compound binds to the protein, which can be separated through affinity chromatography, and hence the protein is responsible for the phenotype. In reverse chemical genetics, we instead use libraries of chemical compounds against a purified protein. After identifying this ligand, we add it to developing organisms, and use phenotypic changes to determine the protein’s function. This allows us to find the function of a certain protein. This process, in fact, can be automated!

If we have compounds, then we can apply the methods of chemical genetics. But where do we find these compounds?

We have a few methods:

1. Rational Design - where we make analogs of native ligands, if they are known and have an understood mechanism
2. In silico modeling - where we use computers to predict binding with “hot spots” on the protein, followed with synthesis and measurement.
3. Compound libraries - where we make small molecules via synthesis, or from natural products and known pharmaceuticals. However, there are oftentimes undesirable compounds, which have ‘bad’ properties like reactivity, unstability, flourescence, insolubility, toxicity, etc. which have to be removed from the library. Another property we want to avoid in compound libraries is PAINS (pan assay interference compounds), which is when molecules aggregate and give many false positives in assays. These can be removed by adding 0.1% detergent.
4. Fragment-based screening - where small fragments of known inhibitors/drugs are screened, and is followed by chemical optimization.

Note 46

Antibiotic Discovery via deep learning has been a rapidly developing field (see Stokes, 2020, Cell, 180(4), 688). There is also another paper on using AI to find coronavirus inhibitors. However, these aren’t too successful.

For the compounds that we end up deciding on, we have a few desirable properties, such as the easy of synthesis, cell permeability, oral avaliability, non-toxicity, and non-degredation.

Remark 47. There has also been a **rule-of-five** analysis by Lipinski, which puts out properties of ‘good’ drugs, that ultimately ends up being useless.
Today’s lecture is given by Prof. Raines, about protein folding. One of the first methods developed to identify folding was based on H/D exchange. First, a folded protein is denatured in Guandium-HCl, in D$_2$O. This replaces all the amide protons with deuterium. Then, when diluted, the protein refolds. Some regions of the protein fold fast, and the deuterium is incorporated into intramolecular hydrogen bonds, while the slow-folding ones get exchanged with protons before folding. These fast-folding regions can then be identified with either NMR or mass spec.

On the other hand, if we want to perturb folding, we can use some isosteres, defined as follows:

Definition 48
An isostere is a molecule with the same number of atoms and valence electrons arranged in the same manner; for example, amides, thioamides, and esters.

Each isostere has different properties - for example, a thioamide has higher cis-trans rigidity and better H-bond donor, but weaker H-bond acceptor. These differential interactions can ultimately change protein folding patterns, and these derivatives can be installed and tested by protein ligation (covered later in the course).

In general, we have the Hofmeister series that gives the effect of small ions on protein denaturation. The series mostly follow the hard-soft scale, with hard ions being kosmotropes and soft ions named chaotropes. The hard ions increase protein stability, while the soft ions decrease protein stability. Since soft ions do not have strong interactions with water, they start to become attached to peptide bonds, which disrupts the folding framework. On the other hand, hard ions are attracted to water more than to peptide bonds, and prevent water from interacting with the peptide bonds, increasing their stability.

Therefore, to denature proteins, we want to use a combination of two soft ions - 4M guanidinium thiocyanate. We also want to add a bit of β-mercaptoethanol (0.1 M) to break disulfide bonds. This combination allows us to degrade ribonucleases and isolate RNAs.
Example 49
Let us identify the factors increasing protein stability in RNase T1. By making specific substitutions, we can test the strength of coulombic interactions. Making a salt bridge (for example, by introducing a lysine next to a glutamate) contributes about 1 kcal/mol of stability. Similarly, removing a salt bridge loses about 1 kcal/mol of stability. By doing these substitutions, there are a few sources of instability - namely, loss of enthalpy from hydrogen bonding, loss of configurational entropy, but also increases in stability - increase of enthalpy from coulombic interactions, and increase of entropy in liberated water. These interactions approximately cancel out, so that the magnitude of each interaction is not large.

We can also see the effect of charge on proteins - in general, we want the charge to be as close to neutral as possible. Each protein has its highest stability at the isoelectronic point, where the net charge is zero. In RNase, this has an effect of about 3 kcal/mol. This is since the charges essentially balance out and have paired coulombic interactions.

Remark 50. The isoelectronic point is the most likely pH for a protein to crystallize out.

We can also add ligand mimics (transition state analogues) that are similar to the protein’s active site, since active sites generally work by stabilizing these. For example, adding 0.2 M Na$_2$HPO$_4$ will increase stability of RNase T1 by about 4 kcal/mol, since RNase targets RNA molecules with phosphates!

Disulfide bridges also are quite prevalent and has a major impact on the stability of the protein. However, most of this is due to entropic factors - essentially, an entropy cost is already paid with the disulfide linkage. The disulfide bonds already decrease the folding conformational entropy prefolding, such that the magnitude of change in conformational entropy after complete folding becomes smaller. This increases stability by about 3-6 kcal/mol, depending on if the disulfide bond is over a short or long string of amino acids.

Finally, temperature has a profound effect - as temperature increases, the protein becomes less stable. Further, the stabilizing hydrophobic effect (an entropic effect) also decreases in magnitude. This follows directly from the Gibbs Equation.

Now that we’ve talked quite a bit about factors that contribute to protein folding stability, the question becomes - what are the effects of protein misfolding? One of the key discoveries are that proteins can become infectious diseases by themselves - a fact shown over and over again. This is discussed further in Soto: *Trends Biochem. Sci.* 2011, 36, 151.
The main hypothesis for these proteins is the **amyloid hypothesis**, which states that misfolded proteins form oligomeric amyloid fibrils which ultimately become insoluble and creates plaques and aggregates. The main method for this aggregation is through the beta sheets, which instead of folding upon each other rather just simply stack: **Griffin**: *J. Am. Chem. Soc.* **2016**, *138*, 9663. In fact, it is hypothesized that the fibril aggregate is the most stable form of the protein, which is kind of scary!

How to we counter this aggregation? One method is to use peptide mimics, for example, methyl peptides (**meptides**) that cannot hydrogen bond with another layer. Though it removes the problem of making the insoluble aggregate, it promotes accumulation of a neurotoxic soluble aggregate, which is still bad. In fact, it is even hypothesized that the solid precipitate is not itself neurotoxic, but rather just a reservoir for the neurotoxic soluble aggregates.

Another method to deter aggregation is to use a stabilizer of normal protein folding. The main protein that has been used for development is **transthyretin**, a human plasma protein that transports thyroid hormone (thyroxine) as a 55-kDa homotetramer. The mechanism for aggregation is first unfolding the tetramer, then aggregating the monomer, creating neurotoxicity. This is thermodynamically favored due to precipitation.

However, some substitutions on the protein structure can differentially affect the aggregation rate. These single amino acid substitutions can drastically reduce (or increase!) the aggregation rate - the most impactful is Thr119 → Met119.

Now, how do we do this without protein modifications? Well, the protein tetramer binds to two molecules of thyroxin, and this contributes to the tetramers’ stability through ligand binding (see above). As a result, competitive inhibitors such as **tafamidis** have been developed to take advantage of this property to prevent aggregation. The body does not need large amounts of thyroxine transport, so this method is actually pretty effective!

Note 51
This drug was approved in 2019, the first one that stops protein aggregation!

A third strategy for destroying aggregates was based on a racemic mixture of BRD4780 that remove aggregates of the protein MUC1 (Ref: Greka, *Cell* **2019**, *178*). The mechanism is not clear, but it seems to send the aggregates to a lysosome, and this new method has led to significant discussion.
Today’s lecture is quite nonstandard, due to the recent coronavirus outbreak. The main updates - lecture videos will be posted on the day of the actual lecture; there is now a forum on stellar; PSET 2 is due whenever (sometime during Spring Break); the other PSETs will be shortened; grad student presentations will still happen and be recorded; the final project is yet to be decided, but may be a review, wikipedia article, or NSF grant proposal. Also, the class was roughly split into two and assigned to the TAs.

Shifting back to chemical biology, we will talk about optogenetics, or the use of light to cause transformations within cells. We generally want to use light with more than 360 nm because otherwise DNA will be damaged. Other factors to consider are the efficiency of conversion, reversibility, and potential side product toxicity. The depth of penetration depends on the wavelength - generally, as the wavelength increases, the amount of tissue penetration increases as well. Red light has a penetration of about 5 mm, while violet light has a penetration about 1 mm. If cells are made in culture, then essentially any wavelength will be able to cause changes in cells. Additionally, we need the entity to be able to be delivered into or generated inside a cell, and have the kinetic parameters matching the observed phenomena.

There are two major classes of light-activated molecules - cages and switches. Cages are biological molecules that have a labile group that can be removed with light, usually irreversibly. Switches instead switch conformation when irradiated with light, such as azobenzenes that switch to the cis form. These azobenzenes will make the substituents much closer, but eventually switch back to the trans form. As a result, these transformations are reversible.

Remark 52. Organic chemists don’t really like the ‘cage’ nomenclature, in contrast to biologists. They would prefer ‘photolabile protecting group.’

Regarding cages, these molecules have a common structure - with an otho-nitro benzene ring connected to a biologically active leaving group. There are many common caging groups, including CNB, NPE, DMNPE, DMNB, CMNB, and NP, each with their own advantages in uncaging rate, quantum yield, inertness of by-product, solubility, and wavelength absorption. The mechanism is very similar for all, where the leaving group becomes converted to a carbonyl and the nitro group becomes converted to a nitroso group through a Norrish Type II reaction. There are many ways to get these caging groups into, including surface residue modification, reactive cysteine modification, or thiophosphorylation.
Example 53

A azobenzene has been used to regulate K$^+$ channels in neurotransmitters: see Shaker Channel Nature Neuroscience 2004, 7, 1381-1386, Trauner.

There are many classes of switches. One is a simple cis-trans isomerism, found in light-sensitive ion channels. (Historical Commentary: Dieseroff NATURE NEUROSCIENCE 2015, 18) There can also be LOV domains (Light-oxygen-voltage-sensing domain), coming from cysteine binding to flavin upon light irradiation.

Remark 54. All these optogenetic techniques look great on paper; however, these are often extremely unreliable.

Note 55

This part of the lecture was supposed to take 15 minutes, but it took an hour and 15 minutes. Thus, most of the second part of the lecture, on fluorescence, will be recorded.

There are MANY fluorescent techniques. There are some useful resources - mainly, Raines, ACS Chem Biol. 2008 and 2014, and “Principles of Fluorescence Spectroscopy.” This book is “very very valuble” and human readable and a very good resource. We’ll continue with this next time.
Day 13: March 30, 2020

The last week of classes was cancelled, and this is the first online lecture, post-spring break. Any questions can be posted in the online class forum after each lecture, and will be answered within 24 hours.

We’ll continue to talk about fluorescent methods, which have really grown to be one of the most prominent methods in chemical biology due to its wide applicability.

The general way fluorescence works is that a molecule in the ground state absorbs a photon and moves to a higher-energy excited state, and this excess energy is released as the molecule transitions back to the ground state. The energy released from fluorescence is lower than the energy put in, and hence the fluorescence spectrum has a higher wavelength peak as compared to the absorbance spectrum. This information is represented in a Jablonski diagram, with the $S_0 \rightarrow S_1$ transition being that of excitation, the $S_1 \rightarrow S_1$ being relaxation/internal conversion, and the $S_1 \rightarrow S_0$ being emission.

These fluorescent molecules have many properties, which can be tuned to suit one’s needs:

- λ_{maxEx} and λ_{maxEm}
- Quantum yield Φ (generally between 0.01 to 0.99). The brightness is equal to $\Phi \cdot \varepsilon$, the extinction coefficient.
- Excited state lifetime (usually ps - ns range, some metal ions in μs-ms range)
- Stokes shift - difference between λ_{maxEx} and λ_{maxEm}
- Photobleaching - irreversible damage due to conversion to the triplet, that results in an irreversible change in the molecule that prevents it from being excited again. However, in some cases, for example in diffusion, photobleaching a small area will allow for tracking.

How do we actually put these fluorophores into action? We can attach them to some protein handles, such as malemides or halomethylketones, which we remember from earlier can target specific amino acids such as lysine or cysteine. These dyes can be modified, for example, by adding a double bond to change the fluorescence wavelength, or by adding sulfonate groups decrease hydrophobicity.

Now that we have our fluorescent molecule, we can characterize it by using a spectrofluorimeter, which uses an excitation source, a wavelength filter or monochrometer, and sends light of a specific wavelength through the sample. Then, with an emission filter and an emission detector, we can detect the wavelength of light emitted. This process can be simplified with a fluorescence plate reader (which can read 96, 384, or even 1536 wells) or fluorescence scanners (that can read gels or
blots). Another thing to watch out for is in fluorescence microscopes - due to scattered light, the images may not be clear. This is overcome with a confocal microscope, which uses a field < 1\(\mu \)m thick to do so.

One of the most prominent applications is in fluorescence activated cell sorting (FACS), which can separate a mixture of labelled cells based on fluorescence. It uses vibrations to produce droplets containing individual cells, which are scanned with the fluorimeter, and then given a charge with current. These cells then pass through charged plates, where they can be separated by charge.

Example 56

One example of FACS is in the HTS screening of enzyme libraries. It starts with a library of genes, that produces different variants of enzymes. Addition of the genes to a water-in-oil emulsion results in the separation of the genes into discrete droplets, whose DNA/mRNA is translated into proteins. These enzymes can then bind to fluorescent molecules, and the FACS sorter will choose those with the highest intensity, and then the genes in those droplets are sequenced (C&B 2005, 12, 1291-1300).

In general, there are many applications of fluorescence. One application is in biomolecule labeling, that allows binding to a protein (either through a covalent or non-covalent molecule). Another application is to have a fluorogenic enzyme substrate, that can be used for assays. They can also be used as sensors for small molecules, such as protons are metal ions, if those cause changes in the fluorescent wavelength. We can also use them directly to mark cells, in fluorescent proteins.

A further application is in protease-substrate screening, of the P2 and P3 amino acids. We add a specific functional group to glass arrays, which our protein is then linked with via a chemical linker and a dot printer. Then, the sites where the protease cuts with highest efficiency (at P1 = Lys) will result in the most fluorescence, which we can screen.

Note 57

Cysteine is often not used in the screening, since its redox properties can cause problems. This means that screening two residues will require assaying \(19^2 = 361 \) distinct proteins.

A further system is with a donor-acceptor fluorophore, known as **Fluorescence Resonance Energy Transfer (FRET)**. Instead of emission of light directly from the donor, the energy instead emits from the donor fluorophore to the acceptor. For this to work, we need the emission of the donor to overlap with the excitation of the acceptor. Since the efficiency of the transfer is distance dependent, this allows us to measure distance on the cellular scale (10 Å to 150 Å)!!
Definition 58
We define the **Förster Radius** R_0 for a pair of fluorophores as the distance for which the energy transfer is 50% efficient.

Example 59
One example of the usage of FRET is in detecting the concentration of a zinc ion with a zinc finger protein. With a high zinc concentration, then two fluorophores (fluorescesin and rhodamine) in the protein become much closer, which results in a high acceptor:donor emission ratio. On the other hand, with no zinc, the emission of the donor is much lower.

Example 60
Another example of the usage of FRET is in **molecular beacons**, where there is a 18-30 base pair region which is complementary to the target sequence but not self-complementary, and a stem of about 5-7 base pairs that is. The ends of the stem contain a dye and a quencher (something that absorbs light, but does not emit light). When this molecular beacon binds to the specific DNA sequence, then the dye and quencher become far apart and fluorescence can be seen. This can be used in many applications, for example, in detection of mycobacterium tuberculosis resistance to antibiotics.

Now we're going to talk about fluorescent proteins - something which essentially shaped chemical biology. The first fluorescent protein isolated was the **green fluorescent protein**, isolated from jellyfish - the structure only had a protein and not a cofactor to cause fluorescence! This protein was chemically modified from a dimer to a monomer, and can be expressed through DNA recombination in many organisms.

The structure of GFP contains a protein basket made with many beta sheets, that surrounds a unique fluorophore inside the basket. The fluorophore is itself naturally made from a Ser-Tyr-Gly sequence (residues 65-67), in where the N of glycine condenses with the Ser-Tyr amide bond and is then oxidized by air to form a 5-membered heterocycle. This doesn’t happen in any protein, but rather only when water is excluded (from hydrogen bonding) and the protein is in a specific conformation.

There were a few problems with GFP. One problem was that the fluorescent signal had two peaks, and this was fixed by replacing Ser65 is with Thr65, resulting in breaking a H-bond and a much cleaner signal. Another problem was that GFP folded pretty slowly - once again, mutagenesis fixed this property.
A third problem was the actual color - how to we change it from a green color to any color we want? The answer was to change the aromatic amino acid and its environment, for example, changing Tyr -> Trp or Phe, which results in additional colors. But the most important advancement from this was that the cyan and the yellow variants formed a FRET pair!! This allowed the use of GFP for distance studies of other proteins.

Now we’re hungry for even more colors. Going back to the jellyfishes, we isolated red fluorescent protein, that we were able to modify to create a rainbow of colors. Similar to the GFP, the RFP also suffered problems - it was isolated as a tetramer, and also had a slow maturation time. When the tetramer was broken apart (in both interfaces), there was minimal fluorescence, and 33 mutations were needed to restore it fully.

How did we modify it and find out which specific amino acids to change? Some techniques were already mentioned earlier - the site-directed mutagenesis discussed earlier, casette mutagensis (changing multiple amino acids at a time), or error-prone PCR. However, the primary technique here is known as gene shuffling, where we take a family of related DNA sequences, fragment them into a pool of random fragments, and reassemble them into recombinants to be evaluated. (Curr. Op. Biotech. 1997, 8, 724-733)

Anyways, the end result is that we get a wide variety of colors that we can combine with FRET to observe cellular processes. Probably the most interesting observation is with FUCCI - Fluorescent Ubiquitination Cell Cycle Indicators - that allows us to visualize the entire cell cycle!!!!! It’s – amazing. (Cell 2008, 132, 487-498)
13 Day 14: April 1, 2020

Today’s lecture is given by Prof. Raines, and we’re going to talk about receptor-ligand interactions. The binding of a receptor to a ligand can be described simply by an equilibrium model as follows:

\[L + R \xrightleftharpoons[k_d]{k_a} L \cdot R \]

where we define \(K_d = \frac{1}{K_a} = \frac{k_d}{k_a} = \frac{[L][R]}{[L \cdot R]} \). The definitions of these constants are as follows:

- \(k_a \) is the **association rate constant**, with units \(M^{-1} \text{s}^{-1} \). It appears in the velocity of the forward reaction \(V_a = \frac{\partial[L \cdot R]}{\partial t} = k_a[L][R] \), which has units \(M \text{s}^{-1} \).
- \(k_d \) is the **disassociation rate constant**, with units \(\text{s}^{-1} \). For simple small-molecule ligands, \(k_d \approx 10^8 \), approximately the limit of diffusion. It appears in the velocity of the reverse reaction \(V_d = \frac{\partial[L]}{\partial t} = k_d[L \cdot R] \), which has units \(M \text{s}^{-1} \).
- \(K_d \) is the **equilibrium disassociation constant**, with units \(M \). The affinities range from approximately \(10^{-11} \) to about \(10^{-4} \), with the tightest binding (lowest \(K_d \)) being between antibody-antigen complexes, and the loosest binding being enzyme-substrate complexes.
- \(K_a \) is the **equilibrium association constant**, with units \(M^{-1} \).

Note 61

In the literature, capital \(K \) always refers to the equilibrium constants, while the lowercase \(k \) always refers to rate constants - they are not interchangeable. They are also italicized, in order to emphasize that they are simply variables.

Remark 62. Chemists sometimes use \(K_d \) to talk about host-guest interactions or binding affinities, but what is usually used in the literature is \(K_a \).

Note 63

In earlier times, there were many plots, such as the Scatchard plot, Eddie-Hofstee plot, Double-Reciprocal plot, and the Hill plot, which all linearized the data from receptor-ligand binding to be used in analysis. However, now there are many modern data-fitting methods that provide greater accuracy, so these plots are not used very often anymore.

For analysis, we’ll define the bound ligand concentration \(B = [L \cdot R] \) and the free ligand concentration \(F = [L] \). Some methods for obtaining \(B \) and \(F \) as follows:

- Filtration - simply filter a solution of ligand and receptor, such that the receptor cannot pass through the filter, but the ligand can. If we have some way of measuring the ligand and
receptor concentration (for example, absorbance measurements), then this can be used to quantify binding. However, keep in mind that the half life of such a ligand-receptor complex is usually on the order of milliseconds, which may make this methodology inaccurate.

- **Gel Filtration** - a mixture of receptor and ligand is passed through a gel-filtration column, and the receptor/receptor-ligand complex is eluted first due to the much higher molar mass. The ligand instead travels slowly through the column, and measurements of concentration allow us to find B and F. This can also be used to identify tight binding interactions, if we use a library of ligands, and see which ones come through at the highest concentration with the receptors.

- **Equilibrium Gel Filtration** - first, saturate the column with ligand, then perform gel filtration. Measure the concentration of the receptor-ligand complex as it passes through the column, and what should be observed is a straight line, with one peak first (due to the extra ligands that the receptor pulls through) and then one trough (depletion of ligand at the end). The area under the curve reports B.

- **Equilibrium Dialysis** - have a concentrated solution of ligand and receptor, and add it to solution of the solvent. The ligand will mostly diffuse out, and the resulting concentrations within the dialysis bag can be used to calculate the parameters.

- **Fluorescence Polarization** - a small ligand is labelled with a fluorophore and is excited by polarized light. If the fluorophore is not bound, then there will be rapid rotation and depolarization. However, if it is bound to a receptor, then it cannot rotate very quickly at all, and hence the emitted light is polarized, which gives us a way to measure the binding parameters.

These techniques only apply when there is a significant size difference between the ligand and the receptor, but what if there isn’t? Well, we have some more techniques:

- **Affinity Chromotography** - immobilize a receptor to a column, and add the analyte. The analytes that bind to the receptors are separated from the ones that don’t. This is a qualitative assay.

- **Immunoprecipitation** - again, a qualitative assay. Here, we add an antibody that binds to the receptor. Then, we add bacterial protein A or G to make an antibody-receptor complex that is insoluble, and centrifugation will separate it, along with the ligand that it is potentially bound to.

- **Surface Plasmon Resonance** - have a metal surface that has either the ligand or the receptor immobilized (commonly the ligand), and have the partner flow through the top. We shine a single wavelength fixed angle beam of light onto the metal surface, and record its reflection. If the ligand binds to the receptor, then the light instead is absorbed (not reflected), and our detector can detect this. This technique, in fact, allows us to determine k_a and k_d!
• Ultracentrifugation - this separates molecules based on their hydrodynamic properties (including but not limited to size). An analytical ultracentrifuge allows continual monitoring, and in fact a similar centrifuge was used to detect the $^{14}N/^{15}N$ differences that ultimately proved the semiconservative replication of DNA! This difference in isotope weight was able to work, and the differences between ligands and receptor are often greater.

• Electrophoresis - look for shifts in the gel separation between a probe and different molecules added. By adding different amounts of ligands, then we can measure K_d to a factor of about 5.

• Isothermal Titration Calorimetry - “The Gold Standard.” Measure the amount of heat released when ligands are added, and the data can give us K_d, n, ΔH, and ΔS.

Example 64

Rapamycin is a natural product that has immunosuppressant and antiproliferative properties, and it can bind to both FKBP12 and mTOR. mTOR was the target of rapamycin, but only in the presence of FKBP12, which was shown with a column. (Sabatini: PNAS 2017, 114, 11818). It is known as a chemical inducer of dimerization (CID), which more generally binds to two different proteins. These CIDs can allow for actual control of cellular properties, by linking two different proteins. There is one thing to watch out for - if we add too much of the CID, then the proteins themselves become saturated and do not link well, known as the Hook Effect.
Today’s lecture, and all the lectures from now on, will be given as a narration of the slides instead of a live lecture, since MIT has made it even more difficult to access on-campus resources. We’re going to talk about bioorthogonal labeling, which ultimately allows us to track where and how molecules move within cells.

There are a few criteria to be aware of when designing a bioorthogonal label - selectivity, reaction biocompatibility, biological inertness, chemical inertness, accessibility, and kinetics. Additionally, we select these based on context as well - on what specific target our probe is targeted at.

Definition 65

Based on these criteria, we define a **bioorthogonal reaction** as one that can occur in the context of biomacromolecules and even in living systems, without interfering with native biochemical processes.

One example of a bioorthogonal reaction is one we have already seen before - the Cu(I) catalyzed azide alkyne cycloaddition. To evaluate it, we look at the criteria mentioned before. The selectivity is great, it is compatible with synthesis, and the kinetics are great! However, it may not be biologically inert, especially due to the copper involved.

Thus, some new methods were developed to not use copper instead. One example is to use a cyclooctyne as the alkyne partner, where the strain of the ring system promotes a cycloaddition, known fittingly as the **Strain promoted azide alkyne cycloaddition**. These molecules can also be modified to add handles to allow for fluorophore or affinity labelling.

Remark 66. One of the commonly used cyclooctynes is known as BARAC, which is an abbreviation that stands for some of the functional groups. It was, fittingly, developed during the time of Barack Obama’s presidency.

Note 67

A quick note on rates - amine-carbonyl condensation has 10^{-4} rate constant, clearly not suitable, but it provides a basis for comparison. The CuAAC has a rate constant of about $10 - 200$, while the SPAAC only has a rate constant of about 10^{-2}. However, a new methodology of reacting strained cyclooctynes not with an azide, but rather a tetrazene in an inverse-electron demand Diels-Alder cycloaddition, achieves rates anywhere between 1 to 10^5. (all units in $M^{-1}s^{-1}$, since these are second order reactions).
Alkynes and azides are small functional groups, and can be incorporated into proteins by modifying an amino acid and making the amico acyl tRNA synthetases (AARS) attach the modified amino acid to the tRNA, and then the protein. Oftentimes, methionine is modified, since it is a relatively rare amino acid that is usually present in only about one or two amino acids per proteins. It is intuitive, and true, that knocking out the original cellular machinery for biosynthesis of methionine and increasing the concentration of the unnatural methionine will increase its incorporation into the protein! The most successful methionine analogue is to replace the SMe group with an alkyne, and this allows us to perform click chemistry on it! Another method involves adding an azide to alanine, and once again a CuAAC or SPAAC allows for visualization. We can use CuAAC here if we are studying bacteria, since they are relatively tolerant to copper, and can also use this to track the growth of mixtures of cultures!

Another technique used is known as native chemical ligation (NCL). Here, we have two peptides and we ligate them together by changing one carboxylic acid to a thioester, and having a cysteine residue on the other N-terminus. Then, the sulfur of the cysteine undergoes thioester exchange with the thioester, and then the free amine displaces the newly formed thioester to join the two peptides together. Only the cysteine at the N-terminus can react, since we need the amide to form to make it irreversible. Due to the requirement of cysteine, this is a chemoselective ligation, and is carried out under native conditions.

There are two methods for performing NCL. One method is to create the thioester from SPPS (solid phase peptide synthesis that can create peptides about 30 units long), and then ligate it with a much longer peptide, created with standard molecular biological techniques. Another method is to make the thioester of unlimited length with an Intein Approach, and ligate it with a SPPS made peptide.

For the first technique, we can make peptide thioesters with standard solid phase techniques. The peptide comes out protected, so we simply couple the free acid with the thiol, and then subject it to global deprotection to create our target thioester. The other protein can be synthesized by standard methods (with a ribosome), and having the first metionine being cleaved by a specific enzyme.
Example 69

One example of these techniques is in cell migration. The process is a cycle of extension, adhesion, translocation, and de-adhesion, and the central player is paxillin, which can interact with many parts of the machinery. It, in effect, is a scaffolding protein, that has over 40 phosphorylation sites. The pTyr31 is our target. We add a caged phosphate to the tyrosine unit to our peptide chemically (about 30 amino acids), and then using NCL to connect it to the rest of the 500+ amino acids. Then, by shining light, the photolabile protecting group falls off and our tyrosine becomes ‘phosphorylated,’ and we can see its impacts on the system.

To confirm this, we first make the natural part of the paxillin, with the key cysteine residue (Cys37) attached to a GST purification tag. Then, cleavage with a protease results in the loss of the tag, which we can detect. Then, adding our thioester reveals a change in molecular weight, which we can detect with a gel. We can also use an antibody that binds to a specific phosphorylated site to confirm our synthesis - if the photolabile protecting group is there, then the antibody cannot bind to it.

Now, we use total internal reflectance fluorescence microscopy (TIRF) to see this. We transflect the cells with GFP-vincullin, a focal adhesion marker. Then, plating on fibronectin allows us to track movement, after injection of the cells with the modified paxillin. There is no movement. However, once light is shined, the photolabile protecting group falls off, and now we know that the phosphorylation at Tyr31 is what causes cell movement!
This native chemical ligation, as seen above, is pretty powerful. Now, we’ll talk about the other variant of NCL - where we express a protein with a C-terminal thioester, and ligate them with an SPPS-made N-terminal cysteine. However, our previous technique (esterification then removal protecting groups) is clearly not compatible with living conditions, so how do we do it?

First we’ll have a refresher on RNA splicing - the DNA is transcribed into normal mRNA, whose introns are removed, and then the mRNA is translated. In protein translation, a similar process occurs - where we have the protein sequence as an N-extein, then an intein, then a C-extein. The intein itself is marked with certain amino acids, including a cysteine at the end of the N-extein and Asn-Cys at the start of the N-extein. After protein splicing the N-extein and C-extein are joined by a native amide linkage (through an N to S shift, transthioesterification, Asn cyclization, and S to N shift), and the intein is removed. This process is autocatalytic (no other enzyme required) and in cis (another term for intramolecular, antonym in trans = intermolecular).

So how can we exploit this to get a C-terminal thioester? Let’s instead replace the Asn with an Ala residue - then, the Asn cyclization is unable to proceed. Addition of an excess of the thiol then results in a thioester being formed at the C-terminus of the N-extein. In practice, the C-extein often has an affinity tag attached to a carbohydrate framework, which allows for easy separation of the thioester.

Now let’s look at an application of this semisynthesis technique. For more, see: Muir Accounts Chem Res 2009.
Example 71

We'll investigate the potassium ion channel (of bacteria), which is made with four identical subunits. The amino acids numbered 1 to 125 make up the membrane spanning region that is responsible for potassium selectivity.

The selectivity filter (residues 75-79) make the four ion binding sites, where the carbonyl groups of the protein (two from each subunit, for a total of 8) bind each of the metal ions. To investigate how this filter was so specific, this was investigated with NCL techniques.

The membrane spanning region was synthesized, with the amino acids 1-73 being synthesized with the protein splicing technique (with the aforementioned Asn/Ala variant) and residues 74-125 synthesized with chemical synthesis techniques.

The key modification was to change the 78-79 amide instead to the ester. Previously, in the wild type variant, we saw potassium ions almost waiting to go through the channel, with decent electron density even before S1 (through x-ray diffraction studies). However, with the ester there, the electron density of S1 is already lower, and there is much less before S1. The change ultimately results in the loss of a hydrogen bonding network and the ion binding site cannot bind water as well as the wild type, so the potassium ion cannot replace it. This, based on thermodynamic arguments, ultimately screws up the ion passage.

Now we’ll focus on enzyme-catalyzed labeling. The first method is with the SNAP self-labeling protein, based on O6-alkylguanine-DNA alkyltransferase (hAGT), a DNA repair protein that removes the alkyl substitutent from an O-alkylated guanine. We attach the hAGT to our protein of interest. Now, if we alkylate our guanine ourselves with a probe, then the hAGT will take our probe with it when fixing the guanine, and thus allow us to attach it to the target.

There is also the CLIP variant associated with this. This causes hAGT to bind O-alkylated cytosine. If we combine these, then we can cause double-tagging by adding our probes attached to guanine and cytosine. This can also be used for real-time differentiation! Overall, our variant proteins SNAP or CLIP to these tags, and this offers complementary functionality to GFP.

The second method of enzyme-catalyzed labeling is with sortases, which are transpeptidases from gram-positive bacteria. The Sortase A was a transmembrane protein that recognizes a C-terminal sequence LPXTG (X can be any amino acid), and can sort the surface proteins. It is 206 AA long, but removal of the transmembrane portion results in a soluble protein 147 AA long.
Remark 72. The sortases were named for the ‘sorting hat’ in Harry Potter.

The mechanism is that sulfur of the Cys184 attacks the amide bond between T and G, ultimately removing glycine from the peptide. Then, the sortase causes the peptide thioester to react with a N-terminal GG or GGG-peptide. If we replace with our peptide with our unnatural molecule simply with a diglycine/triglycine tail, then we can ligate it to the C-terminus of the target. Similarly, we can ligate to the N-terminus via making an unnatural molecule with an LPXTG tail.

There are many sortases found in nature that allow orthogonal labelling. The one from *Streptococcus pyogenes* instead recognizes an AA-tailed N-terminus. If we ligate both unnatural molecules, then we can even make a FRET pair!

Example 73
This example comes from the Imperiali lab itself, in collaboration with the Griffith group. With a hydrogel polymer, LPXTG was linked to the polymer, and then epidermal growth factor was attached via sortase A. To quantify the amount of attachment, a large excess of GGG peptide could be added, resulting in the release of the growth factor. Finally, we could crosslink the gels to make a 3D polymer framework, whereupon cells were grown on and were broken upon addition of sortase, which lent itself to further analysis. This takes just 5 minutes!