
Splay Tree Variants: Theory and Experiment
Zhi Wei Gan
zgan@mit.edu

Edward Jin
ehjin@mit.edu

Pranav Krishna
pkrishna@mit.edu

Abstract—Splay trees are a special type of binary search
tree that perform well without storing additional data and are
conjectured to be optimal in all cases. We investigate both
deterministic and randomized variants of standard splay trees
and analyze them both theoretically and experimentally.

Index Terms—splay trees, randomization, data structures,
implementation

I. INTRODUCTION

We seek to solve the problem of somehow improving on the
performance of splay trees while still keeping some semblance
of its simplicity. In this paper, we present a variety of schemes
that have been discussed in other papers, and supplanted them
with novel schemes. While no breakthrough was made in terms
of improvements, we shed light on why this might be the case.

II. BACKGROUND ON SPLAY TREES

A. Implementation of Operations

The splay tree [1] is a revolutionary self-adjusting binary
search tree that was introduced by Sleator and Tarjan, support-
ing the operations INSERT, DELETE, and ACCESS in amor-
tized O(log n) per operation, without storing any additional
information. The central operation that allows for this runtime
is the SPLAY, which repeatedly performs double rotations on
the accessed node until it is at the root of the tree.

The rotations in the SPLAY operation depend on the relative
positions of the node x, its parent y, and its grandparent z:
• If the parent of x is the root, then apply a standard single

rotation to bring it to root. This is known as a zig step if
x is a left child, and a zag step otherwise.

• If x and y are both left or right children of their respective
parents, then apply a double rotation. First, rotate the edge
between y and z. Then, rotate the edge between x and y.
This has the net effect of bringing x to where g originally
was, and is known as a zig-zig step when x and y are both
left children, or a zag-zag step in the other configuration.

z

y

A x

B C

D

transforms to

x

y

A B

z

C D

Fig. 1: A zig-zag step.

• If x and y are different-sided children of their parents,
then first rotate the edge between x and y, and then the
edge between y and z. This is known as a zig-zag step
when x is a right child and y is a left child, and as a
zag-zig step in the other configuration.

The rotation operations are displayed below.
With the SPLAY operation, the INSERT, DELETE, and AC-

CESS operations can be readily implemented. We implement
these operations in the same way as in a standard binary search
tree, with the critical difference that we SPLAY after each
operation. For INSERT, we insert as usual, then splay the newly
inserted element. For DELETE, we first swap the node we want
to delete with a leaf node, then delete it, as is standard. Then,
we splay the parent of the deleted node. Finally, for ACCESS,
we do a standard tree traversal and then splay the element
requested. If the element is not found, we will instead splay
the last element visited in the traversal.

B. Runtime Analysis

We will first assign weights wx to each node x. We will
define the size of a node s(x) to be the sum of the weights of
all its descendants. We will also define the rank of the node
r(x) to be equal to lg s(x). Finally, we will use an amortized
analysis with the potential function Φ =

∑
r(x), where the

summation is over all nodes x.

Lemma 1. (Access Lemma) The amortized cost for a splay
that moves node x to the top of a splay tree with root t is at
most 3(r(t)− r(x)) + 1, where each rotation costs 1.

Proof. We show that each double rotation on node x costs at
most 3(r(z)− r(x)), where z is the grandparent of node x as
before. Then, the total cost of the SPLAY operation telescopes
to
∑

3(r(z) − r(x)) ≤ 3(r(t) − r(x)). We add a +1 at the
end to account for the potential single rotation from the zig
step at the end.

z

y

x

A B

C

D

transforms to

x

A y

B z

C D

Fig. 2: A zig-zig step.

Note that in each double rotation, aside from the node x,
parent y, and grandparent z, the rank of all other nodes stays
constant. The amortized cost of one double rotation is 2+∆Φ,
since we need to perform two rotations. Let r(x), r(y), and
r(z) be the original ranks of each node, and let the ranks of
the nodes after the splay operation be r′(x), r′(y), and r′(z).
For all cases, we have r(z) = r′(x), and so the amortized cost
of double rotation is r′(z) + r′(y)− r(x)− r(y) + 2.

For the zig-zig case, we have r(y) ≥ r(x) and r′(y) ≤
r′(x). This means that the amortized cost is bounded by 2 +
r′(z)+r′(x)−r(x)−r(x) = (r′(x)−r(x))+(2+r′(z)−r(x)).
Then, proving the latter term is bounded by 2(r(z)−r(x)) will
show the lemma, since the first term is equal to r(z)− r(x).

Rearranging the inequality, we need to show that

(r(x)− r(z)) + (r′(z)− r(z)) ≤ −2

If we consider the subtrees according to Figure 1, where
|A| denotes the size of subtree A, then we have that

r(x)− r(z) ≤ lg
|A|+ |B|

|A|+ |B|+ |C|+ |D|

and also that

r′(z)− r(z) ≤ lg
|C|+ |D|

|A|+ |B|+ |C|+ |D|

If we let q = |C|+|D|
|A|+|B| , then the sum of these two terms be-

comes lg 1
1+q +lg q

1+q . Mathematically, this quantity achieves
a maximum −2 at q = 1, which shows the required claim for
zig-zig rotations.

For the zig-zag case, we once again have that r(y) ≥ r(x).
Then, the relevant inequality for showing the claimed bound
is that

2 + r′(z) + r′(y)− r(x)− r(x) ≤ 3(r′(x)− r(x))

or after rearrangement, that

r′(z) + r′(y) + r(x)− 3r′(x)

= lg
r′(z)

r′(x)
+ lg

r′(y)

r′(x)
+ lg

r(x)

r′(x)
≤ −2

Considering Figure 2, we can find the values of the rank
functions in terms of the sizes of the subtrees. Substitution
in the above inequality shows that the first two terms turn out
to have the same values as in the zig-zig case, and thus we
know that the sum of the first terms is already upper bounded
by −2. The third term is clearly negative since r(x) < r′(x),
and so the original inequality bounding the cost of the zig-zag
case is verified.

Finally, the change in potential in a zig step is equal to
r′(y) − r(y) + r′(x) − r(x). Since r′(x) = r(y) then this is
bounded by r′(y)−r(x) ≤ r′(x)−r(x), which telescopes the
sum and adds at most 1 to the cost from the single rotation.

Corollary 1. The amortized runtime of any splay tree opera-
tion is O(log n).

Proof. Set the weights of every node to be 1. Then, the
amortized cost of a splay becomes 3(r(t) − r(x)) + 1 ≤
3(log(n)− 0) + 1 = O(log(n)).

Since accessing an element requires less work than the
actual splay operation, this means that an ACCESS opera-
tion takes amortized time O(log n). INSERT and DELETE
operations involve an access and O(1) pointer operations, in
addition to the splay at the end, and so they also take amortized
O(log n) time.

C. Optimality of Splay Trees

Splay trees seem to match the performance of other binary
search trees, with O(log n) runtime for all operations. How-
ever, they are also optimal in different ways:

Theorem 1. (Static Optimality Theorem) Suppose we perform
operations such that item x is accessed with probability px.
Then, the cost of all operations on a splay trees will be at
most a constant times the optimal static binary search tree,
without knowing the individual px.

Proof. To optimize the time of performing the operations, the
best thing to do is to put the most-accessed items in the levels
near the root. Each level k in the tree has 2k spots for elements,
meaning that all elements with px ≥ 2−k can be put in level k.
The expected search cost for an element in the optimal static
tree is then

∑
−px log2 px.

For a splay tree, the cost of any access is bounded by a
constant times the cost of a splay, as above. Let the weights
wx = px, and define W to be the size of the root. By the
access lemma, the cost of each splay is O

(
log2

(
W
wx

))
=

O
(

log2

(
1
px

))
. This means that the expected search cost

is O(px log2(1/px)), showing that our runtime is within a
constant factor of the static optimum.

A similar analysis can show that the second deterministic
scheme and all the randomized schemes presented in this
paper, for fixed p, also satisfy Static Optimality.

It was conjectured by Tarjan that splay trees are in fact
dynamically optimal, meaning that they do within a constant
factor of any binary search tree, even when the other has access
to all requests in advance. This conjecture is generally thought
to be true as no counterexamples have been found so far in
about 40 years.

III. DETERMINISTIC SCHEMES

In this section, we explore different deterministic schemes
that seek to improve the expected performance of splay trees.
As far as we are aware, these schemes are novel, though
a variant of even splaying, known as ‘semisplaying,’ was
proposed in [1].

A. Even Splaying

We first propose a variant of splaying called “even-
splaying.” After each operation, we will splay the node itself if
it is an even number of nodes away from the root, or splay the
parent otherwise. Since the splay operation itself is unchanged,

2

the Access Lemma and its corollary still applies. Thus, we can
still perform all of our tree operations in O(log n) time. The
main benefit of this approach is that it removes the necessity
of the zig step at the end of splaying, thus saving one rotation.

One of the main benefits of splay trees is that commonly
accessed elements will be moved to the root, such that repeated
accesses are cheap. We claim that even splaying also maintains
this property in expectation, such that only O(1) repeated
accesses are needed in expectation for an element to move
close to the root. We further claim that the worst case behavior
is needing O(log h) repeated accesses, where h is the depth
of the tree. To show these claims, consider the following cases
when we access an element that is an odd number of nodes
away, with the notation as in the above figures of rotations:
• If we need to perform a zig-zig step, the splayed element
x gets moved up by 2, subtree A moves up by 2, and
subtree B moves up by 1.

• If we need to perform a zig-zag step, then the splayed
element x move up by 2, and both of the subtrees move
up by 1.

Since the element we want to access still remains in a subtree
of the splayed node, every double rotation leads to the accessed
element moving up by at least 1. The parent moves to the root,
and so we move the element halfway up the tree in the odd
case, and fully in the even case. This means that we only need
2 accesses in expectation for the element to reach the root
or be close to it. If we are unlucky and our node is always
an odd distance away, then we will still move up halfway
towards the root, ultimately only needing O(log h) accesses
before achieving constant access times. Since h = O(log n)
in expectation, in practice, this means that even splaying will
maintain this characteristic property of standard splay trees.

B. k-Rotation Splaying

Another variant we propose is “k-rotation splaying.” We
consider performing only single rotations to be a 1-rotation
splay and we consider the original splay tree to employ 2-
rotation splays. Since a significant performance bump was
found when using double rotations, we hoped that further
generalizing would result in a better constant for splay tree
operations. The generalization to k-rotations is to perform
maximal l-zigs and l-zags that move the accessed node higher,
until we’ve done k rotations overall. We define l-zigs as
repeatedly performing zigs from the top down, for a total of
l rotations. We similarly define l-zags to be a series of l zag
rotations from the top down. An example is shown in Figure
3 on the next page.

Note that the 1-zig is just a single rotation, while the 2-zig
is the zig-zig case of the classic splay tree; the zig-zag case
of the splay tree can be formed through a 1-zig, then a 1-zag
operation.

We now provide an analysis for arbitrary k, proceeding
similarly to the analysis of the original splay tree. We assign
weights wx to each node x, define the size function s(x) and
rank function r(x) in the same way as before, and also use
the same potential function Φ =

∑
r(x) as before. Define xi

to be the ith ancestor of node x, and define x0 = x. Now, we
prove a key lemma:

Lemma 2. For a l-ZIG operation, the amortized cost is at
most γl(r(xl) − r(x0)), for all l ≥ 2, for some constant γl
that depends on l.

Proof. We must show that

l +

l∑
i=0

[r′(xi)− r(xi)] ≤ γl(r(xl)− r(x0))

By definition, we have that r′(x0) = r(xl), r(x0) ≤ r(xi) and
r′(x0) ≥ r′(xi) for all i. This means that the sum is upper
bounded by the quantity

(l − 1)r′(x0) + r′(xl)− lr(x0)

and so the amortized cost is bounded by

l + (l − 1)r′(x0) + r′(xl)− lr(x0).

We now claim that this quantity is bounded by γl(r′(x0)−
r(x0)) for a specific γl. If we substitute this quantity as an
upper bound for the amortized cost and manipulate, we see
that we need

(l − 1− γl)r′(x0) + r′(xl) + (γl − l)r(x0)

= (γl − l)(r(x0)− r′(x0)) + (r′(xl)− r′(x0)) ≤ −l

We have that s(x0) + s′(xl) ≤ s′(x0), since the subtrees
on the left hand side are disjoint, while the quantity s′(x0)
includes all subtrees. To simplify notation, we now define
s(x0)
s′(x0)

= q and d = γl − l. Applying the above inequality

on subtrees after dividing by s′(x0) gives that s′(xl)
s′(x0)

≤ 1− q.
This means that the left hand side of the inequality is

bounded above by d lg q + lg(1 − q). This function achieves
a maximum when q = d

d+1 , in which case the value is
d lg d

d+1 + lg 1
d+1 = lg dd

(d+1)d+1 . If this value is less than −l,
then we must have f(d) = (d+1)d+1

dd ≥ 2l. This means that
γl = l + f−1(2l) is sufficient to show the claim.

With this lemma in hand, we can bound the cost of a k-
rotation scheme:

Theorem 2. (Generalized Access Lemma) The total amortized
cost of the k-rotation splays that move node x0 to the top of
a splay tree with root t is at most γk(r(t)− r(x)) + 1, where
k ≥ 2, each rotation costs 1, and where γk < k+ 1

e (2k − 1).

Proof. Above, we showed that each l-ZIG for l ≥ 2 would
have cost bounded by γl, and the same bounds hold for l-ZAG
as well by symmetry. Now we deal with single rotations. If we
have two single rotations together undertaken in succession,
we get a zig-zag operation, which can be analyzed with the
original Access Lemma to have a cost bound of 3(r′(x)−r(x))
for the entire operation. Thus, the cost of any 2-rotation is
bounded by max{γ2, 3}(r′(x)− r(x)) = γ2(r′(x)− r(x)).

Otherwise, we analyze them as if they were combined
with the following l-ZIG operation, for some l. After the

3

x3

x2

A x1

B x0

C D

E

transforms to

x3

x0

x1

x2

A B

C

D

E

transforms to

x0

x1

x2

A B

C

x3

D E

Fig. 3: An example of a 3-rotation on x0. The transformation consists of a 2-zag, and then a 1-zig.

single rotation, the l-ZIG operation is performed with nodes
x0, x2 . . . xl+1. The relation that, r′(x0) ≥ r′(x1) and r(x0) ≤
r(x1) still holds, and by a similar analysis as above, the
constant in our amortized cost becomes at most γl+1 for the
l + 1 rotations. Then, any zig followed by a l-ZIG, has total
cost bounded by γl+1(r′(x)− r(x)).

Note that f(x) is a strictly increasing function, and thus
f−1(x) is also strictly increasing. This implies that γk ≥ γl
for all l ≤ k, meaning that the cost of every l-ZIG operation
and their combinations with single rotations cost at most
γk(r(xl) − r(x0)). If we add up the contributions from all
rotations in a k-splay, the sum telescopes, and hence our
overall cost is at most γk(r(xk) − r(x0)). The extra +1 in
the lemma comes from a possible single rotation at the end of
the k-splays, which cannot be combined with another l-ZIG.

Finally, note that f(d) is bounded below by ed + 1. This
can be graphically verified for small d, and since f(d) itself
rapidly converges to e(d + 1), this lower bound is also true
for large d. The inverse function f−1(d) must then be strictly
bounded above by the inverse of ed + 1, or 1

e (d − 1). This
means that f−1(2k) < 1

e (2k − 1), thus, γk < k + 1
e (2k − 1)

as desired.

Unfortunately, γk is exponential in k. However, one can
also notice that the worst case scenario is exponentially more
rare as k grows, which means that in practice the performance
of k-splaying for k > 2 may still be acceptable. We present
results for k = 2, 3, 4.

For k = 1, we do not achieve the O(log n) bound that we
do for the other k-rotation schemes, since there is no zig or
zag operation that we can associate the individual 1-rotations
with, and the proof above breaks down. In fact, we can prove
the following for a 1-rotation scheme:

Lemma 3. Given a binary search tree with n nodes with
keys 1 − n, where n is the root node and i − 1 is the left
child of node i for all 2 ≤ i ≤ n, the adversarial input that
involves querying the numbers 1 through n in increasing order
repeatedly results in an amortized bound of Ω(n).

Proof. We claim through induction on k that the structure after
splaying the nodes 1− k in order consists of k as the root of

the splay tree, n as the right child of k, and i−1 being the left
child of i for all 2 ≤ i ≤ n, i 6= k+ 1, where 1 ≤ k ≤ n− 1.
The base case n = 1 is satisfied, as it is easy to see that
each rotation performed is a right rotation, which means that
the current right child of node 1 after any number of rotations
will become the new left child of the next right child of 1. This
ends up making 1 the root node, with the nodes n through 2
still forming a chain.

Now for the inductive step. Suppose the inductive hypothe-
sis holds for some k. We now demonstrate that the hypothesis
holds for k+1. Consider the tree after splaying the node k+1
- first, similar to above, we can see that the first n − k − 1
rotations transform the tree into that where k is the root, k+1
is the right child of 1, which itself has a right child of n, and
all other i are the left child of i + 1 (for i 6= k, k + 1, n).
Then, we note that there is a final left rotation from k + 1 to
k, which just makes k the left child of k + 1 and k + 1 the
new root node (this is because at this point, k+ 1 has no left
children). Thus, we have a resulting tree where k + 1 is the
root node, n is the right child of k + 1, and i − 1 is the left
child of i for all 2 ≤ i ≤ n, i 6= k+2, satisfying the inductive
hypothesis.

Finally, to complete the proof of our original lemma, we can
see that the total cost of splaying node k for each k is n−k+1,
for 2 ≤ k ≤ n− 1 (it only costs n− 1 for k = 1), as the node
k must rotate with all n−k nodes whose keys are greater than
it, as well as the node k − 1. Moreover, we can see that for
splaying node n to the top costs 1, as it involves only a single
rotation; and the final structure after this splay is precisely the
structure that we had started with. This means that the average

cost of such a sequence would be 1
n

n∑
i=1

(n−k+1)−1 = Ω(n),

as desired.

Nevertheless, we include this scheme in our experimental
tests as a baseline.

IV. RANDOMIZED SCHEMES

In this section, we explore possible improvements to splay
trees through various randomization patterns, and generalize
them to k-rotations. Schemes I and II have been previously
reported for 2-rotations, while, to our knowledge, Scheme III
is new.

4

A. Scheme I

We first analyze the classic scheme where after accessing a
node, we perform a k-rotation splay with probability p and do
not splay with probability 1−p. The scheme was first proposed
in [2]. The intuition behind this scheme is that splaying is
expensive, and so we want to avoid it if we are accessing a
rare element. On the contrary, for an element that we access
many times, we will splay the element in expectation, thus
maintaining the property that commonly-accessed elements are
at the top of splay trees.

We prove a variant of the Access Lemma by showing that
the amortized cost of an access operation of node x at a tree
with root t is bounded by γk(r(t)−r(x)), for the new potential
function Φ = 1

p

∑
r(x) across all nodes x in the tree, where

γk < k+ 1
e (2k−1) is the constant associated with k-rotations.

If we let ri be the real cost of operation i, and p∆Φ be
the expected change in potential of the tree, we note that the
amortized cost of the operation is bounded by:

ci + p∆Φ ≤ γk(r(t)− r(x)) + 1

Note that the change in potential function means that the
amortized cost bound changes inversely with the probability
of splaying, with no O(log n) bound holding for p = 0, as
expected. For a more thorough analysis, we refer the readers
to [3].

B. Scheme II

We now analyze the scheme where we perform a k-rotation
splay with probability p and splay its parent with probability
1 − p. This scheme was first detailed in [4], however, only a
surface-level analysis was provided. The intuition behind this
is that we can further organize and balance the data structure
by sometimes splaying a node’s parent, while at the same time
also raising the height of the accessed element by at least half
of its depth, similar to even splaying. The paper claimed that
this modification kept the same amortized bound as splay trees,
but in practice performed better. We present a more thorough
analysis in this section, using the same potential function as
in the original analysis Φ =

∑
r(x) across all the nodes of

the tree. Note that using this potential function, we apply the
Access Lemma to show that the expected cost of splaying a
node x with parent px in a tree with root t is bounded by:

p · (γk(r(t)− r(x)) + 1) + (1− p) · (γk(r(t)− r(px)) + 1)

≤ γk(r(t)− r(x)) + 1

as we note that r(px) ≥ r(x). This is exactly the same as the
access lemma for the original splay tree, which means that
the expected amortized cost of these operations is O(log n),
as desired.

C. Scheme III

We now analyze a scheme where we first set the current
node to be x. Then, at each step, randomly choose to perform
a k-rotation with probability p or not to splay. If the current
node is not splayed, splay the kth ancestor instead. The idea

behind this scheme is that we can save on a number of rotation
operations by skipping some nodes on the way to the root.
This still maintains the effect of decreasing the distance from
an element to the root by a constant factor, while reducing the
number of operations overall.

For the analysis of this scheme, we change the potential
function to that of Scheme I, where we have Φ = 1

p

∑
r(x),

and complete a similar analysis. Again, we let ci denote the
real cost of the Access operation and splays, let E[∆Φ] denote
the expected change in the potential function, and let γk <
k+ 1

e (2k− 1) be the constant associated with k-rotations. We
note that for a particular k-rotation, the sum of p times the
change in potential and the real cost of a splay operation is
bounded by γk(r(z) − r(x)). Thus, because each particular
k-rotation in the sequence has an independent probability of
p of rotating, we note that the expected change in potential
is bounded by γk(r(t) − r(x)) − ci, through computing the
resultant telescoping series. The amortized bound still remains
γk(r(t)− r(x)) = O(log n) expected.

V. EXPERIMENTAL RESULTS

A. Methodology

We designed 5 different test suites in C++ for each of our
splay tree variants above, which can be found on GitHub1.
These test suites include 3 randomized test suites:

1) Inserts/accesses following a discrete uniform distribution
over the integers from 0 to n−1. Here, we first insert all
the elements in a random order, access all elements in a
random order, and then delete all elements in a random
order.

2) Inserts/accesses following the same procedure as above,
with a distribution governed by Zipf’s law. Zipf’s law
had originated in quantitative linguistics, stating that the
frequency of a word in a linguistic corpus is inversely
proportional to its rank in its frequency table. However,
it has been shown that the law also applies to many other
things in the real world, like city population [5], income
rankings, music [6] and so on. We use Zipf’s law by
assigning the ith item we insert a probability of

f(i) =
1

isHN,s

of being be accessed where HN,s is the N th generalized
harmonic number of order s, and where s is an exponent
that has to be tuned for each distribution depending on
the context. We choose s = 1.07, which has been shown
to model city population well in [5].

3) Tree starts off as a randomly generated tree with n nodes
and an initial depth of n. We access the maximum depth
node on each access. We decided to include this test as
a more general worst case than those included in our
deterministic test suites, with the set of trees to choose
from equivalent to those with the maximum potential.

1https://github.com/zhiweigan/randomized-splay-trees

5

BST Splay Even 1-Rot 3-Rot 4-Rot
0

2

4

6

8

10

2.6

8.5 8.4 8.2
8.9 9.1

1.1

4.5 4.6 4.3
4.7 4.9

0.33 0.38 0.33 0.33 0.33

1.5 1.3 1.2 1.1

2.1 2 1.9 1.8

R
un

tim
e/

10
7

Uniform Zipf Stack Line Random Line

Fig. 4: Runtime of Deterministic Schemes. Note that the performance of the BST and 1-rotation splay trees on some adversarial inputs were
omitted, as they exceeded the time limit.

and 2 deterministic test suites:

1) Stack: We insert key values in order from 0 to n − 1
and access key values from n − 1 to 0. We call this
Stack because the normal splay tree will treat this like
a Stack, with the last elements inserted being the first
elements accessed, and the sequence of actions this data
structure performs can be easily proven to have an O(1)
average cost. This sort of acts as an ”upper bound” to
the performance of the splay tree.

2) Line: The tree starts off like a line with only right
children, and we access the node with key n− i on the
ith access. We chose this test because this serves as a
worst-case scenario for 1-rotations, while also allowing
us to compare how varying the value of k in terms of
k-rotations deal with this worst-case scenario.

For each test, we tabulated the number of single rotations
performed as well as the number of followed pointers. For
our implementation, the cost for performing single rotations
was experimentally found to be 2.3× the cost of following
pointers, and so multiplying the number of single rotations by
2.3 and adding to the number of followed pointers resulted in
a combined cost that we used to report our results.2

B. Deterministic Schemes

Here is a tabulation of our results for N = 106 accesses for
all of the deterministic schemes. We include the results for
a basic binary search tree (with no balancing) and a regular
splay tree with no modifications as baseline comparisons.

We excluded results of BST and 1-rotation splay trees from
the Line, Random Line, and Stack (for the former) cases
because they exceeded 231 instructions.

2The exact numbers and data are available at:
https://github.com/zhiweigan/randomized-splay-trees

Tree Type BST Splay Even 1-Rot 3-Rot 4-Rot

Uniform 2.58e7 8.54e7 8.40e7 8.19e7 8.86e7 9.10e7
Zipf 1.14e7 4.51e7 4.62e7 4.31e7 4.70e7 4.86e7

Stack TLE 3.30e6 3.80e6 3.30e6 3.30e6 3.30e6
Line TLE 1.46e7 1.35e7 TLE 1.21e7 1.11e7

Rand. Line TLE 2.07e7 2.03e7 TLE 1.86e7 1.83e7

Note: TLE stands for Time Limit Exceeded

We note that for the deterministic trees with random input
distributions, the basic binary search tree actually outperforms
all splay trees. The reason for this is that the overhead cost for
splaying on an already random input outweighs the benefits
we get from splaying, as a random input on a binary search
tree is already somewhat balanced. For the adversarial input
distributions, increasing the number of rotations we do each
splay step improves performance. This makes sense, as we
need bigger restructuring changes to bring the adversarial

0 2 4 6 8 10
101

102

103

104

105

106

Number of Accesses

M
ax

D
ep

th

2-Rot
3-Rot
4-Rot

Fig. 5: Comparison of Maximum Tree Depth Every 2 Accesses for
2-Rot, 3-Rot, 4-Rot on the Line Test

6

Splay I-Rand-2 II-Rand-2 III-Rand-2
0

2

4

6

8

8.5

5.6

8.4

6.6

4.5

3

4.6

3.3

0.33 0.43 0.38 0.5

1.5 1.5 1.3 1.4
2.1 2.2 1.9 2

R
un

tim
e/

1
07

Uniform Zipf Stack Line Random Line

Fig. 6: Runtime of Deterministic 2-Rotation and X-Rand-2 Schemes on Deterministic Inputs

tree structure to a balanced one. In Figure 5, we present a
comparison of the maximum tree depth on the Line test for
our k-Rotation schemes. We limit our graph to the first few
accesses since the depth of the tree rapidly grows afterwards
on the Line test, since we make another branch with Ω(k)
height after k accesses. The chart shows that the slope becomes
more negative as we increase k, confirming our hypothesis.

In addition, we get a marginal speedup from Even Splaying
on the Uniform and (Random) Line tests, but worse results on
the Zipf and Stack tests. While we initially investigated this
scheme hoping that we would get a speedup from removing the
single zig rotation at the end, it seems that the actual speedup
comes from another cause. This is apparent when comparing
our results here to those of the randomized II-Rand-2 scheme,
which was shown to get nearly identical results while splaying
either itself or the parent randomly.

We hypothesize that this change in even splaying is simply
due to a different element being moved to the root. It is
unlikely that the same element would be accessed again in
the uniform test, and impossible in the deterministic tests. On
the contrary, elements have different access probabilities in
the Zipf test, thus splaying the parent of a highly-accessed
element would be detrimental. For the Stack test, we perform
50% more pointer traversals but have the same number of
rotations as the regular splay tree. This makes sense as well,
since the normal splay tree would perform single rotations and
always be able to access the next element in 1 traversal, while
even rotations would require 1 rotation and 1 more pointer
traversal 50% of the time.

C. Randomized Schemes

Here is a tabulation of our results for N = 106 accesses,
and p = 2−1 with the same seed for all randomized schemes.
The X-Rand-k columns show Scheme X applied to the various
k-rotation deterministic splay trees.

Results from Scheme I

Tree Type I-Rand-1 I-Rand-2 I-Rand-3 I-Rand-4

Uniform 5.34e7 5.57e7 5.77e7 5.92e7
Zipf 2.85e7 2.98e7 3.10e7 3.21e7

Stack 4.30e6 4.30e6 4.30e6 4.30e6
Line TLE 1.50e7 1.21e7 1.10e7

Random Line TLE 2.17e7 1.94e7 1.89e7

Results from Scheme II

Tree Type II-Rand-1 II-Rand-2 II-Rand-3 II-Rand-4

Uniform 8.05e7 8.39e7 8.71e7 8.93e7
Zipf 4.41e7 4.61e7 4.81e7 4.97e7

Stack 3.80e6 3.80e6 3.80e6 3.80e6
Line TLE 1.33e7 1.15e7 1.09e7

Random Line TLE 1.93e7 1.80e7 1.80e7

Results from Scheme III

Tree Type III-Rand-1 III-Rand-2 III-Rand-3 III-Rand-4

Uniform 6.59e7 6.16e7 6.26e7 6.41e7
Zipf 3.59e7 3.33e7 3.40e7 3.51e7

Stack 5.30e6 4.97e6 4.75e6 4.62e6
Line TLE 1.40e7 1.29e7 1.25e7

Random Line TLE 2.02e7 1.94e7 1.95e7

We can see that Scheme II has the best results for the
adversarial test cases, and Scheme I has the best results for
the randomized test cases when p = 2−1. Comparing to the
deterministic splay tree results, the randomized inputs run
approximately 35% faster with Scheme I, marginally faster
with Scheme II, and about 25% faster with Scheme III. On the
adversarial inputs, we see smaller gains, with Scheme I and
III’s runtime being similar to the standard splay tree, while
Scheme II is faster by approximately 10%. We were unable
to replicate the 25% speedup of Scheme II claimed in [4].

In addition, the comparisons across schemes align well with
our intuition. For adversarial inputs, significant restructuring
is necessary, and this explains our results for Schemes I and

7

III, which both choose not to splay/rotate with a nontrivial
chance. This effectively forces the splay tree to complete more
expensive accesses in these inputs, and thus causes the runtime
to be worse than that of Scheme II. Curiously, the performance
matches that of deterministic splay trees - but this could be
due to the fact that rotations are useful in the very beginning
but not so necessary or wasteful after some small number of
accesses. Scheme II exceeds the performance of the former by
significant margins, because after the initial few accesses, the
significant restructuring that is guaranteed by Scheme II is not
completely necessary. However, for the randomized inputs, we
see that in many cases it becomes optimal to not splay certain
nodes, or in general forego splaying, as this is expensive and
can potentially ruin a good tree structure. Especially in the
uniformly random data, moving nodes to the top becomes less
important as each node is equally likely to be chosen to be
accessed; while for Zipf’s Law, this effect is less prominent,
but the randomness implies that on expectation, commonly
accessed nodes will still move to the top.

All randomized schemes do better for the adversarial inputs
as we increase k, but do poorer on the randomized inputs. This
is the same result as we see in the deterministic schemes - the
greater number of rotations allows for faster tree balancing,
reducing overall runtime.

While we already saw significant improvements with the
randomization schemes for p = 1

2 , we wanted to see if we
could do better by varying p in our randomized schemes.
Since we achieved the best results on randomized inputs when
k = 2, we use it as a model for how these randomized
schemes behave when different probabilities are used. We
exclude the k = 1 scheme as the scheme was unable to
properly handle adversarial inputs, though it was marginally
faster on randomized inputs.

For Scheme I, the access times for the randomized distri-
butions decrease by approximately 70% as the probability of
splaying decreases. We expect these results because we simply
reduce the number of splays, cutting down on the overhead
for balancing an already-balanced tree. On the contrary, the
adversarial inputs’ access times grow quite quickly. This is in
line with our previous observations, as we do not induce the
restructuring required for good runtimes with low p.

Interestingly, the runtime increases for Zipf’s distribution
after p decreases from 2−6. Zipf’s distribution increases the
probability of accessing certain elements, and splaying helps
keep access runtime of commonly accessed elements low.
Thus, when p decreases so much that we do not do many
splays at all, Scheme I can be expected to perform slightly
worse since it no longer maintains common elements directly
at the root of the tree.

Another point to note is that for the Stack test, the number
of rotations required for each probability are all in the range of
[106− 50, 106]. This means we end up having to do the same
number of rotations regardless of the number of splays we
end up doing. This is an intuitive result, because performing
fewer splays would lead to a deeper tree which means we
have to do more rotations per splay. This would also explain

Scheme I (I-Rand-2)

p Uniform Zipf Stack Line Random Line

1− 2−7 8.50e7 4.48e7 3.31e6 1.46e7 2.07e7
1− 2−6 8.45e7 4.46e7 3.32e6 1.46e7 2.07e7
1− 2−5 8.36e7 4.41e7 3.33e6 1.46e7 2.06e7
1− 2−4 8.17e7 4.31e7 3.37e6 1.45e7 2.08e7
1− 2−3 7.80e7 4.12e7 3.44e6 1.45e7 2.05e7
1− 2−2 7.06e7 3.74e7 3.63e6 1.59e7 2.01e7
2−1 5.57e7 2.98e7 4.30e6 1.50e7 2.17e7
2−2 4.08e7 2.22e7 6.28e6 1.59e7 2.41e7
2−3 3.34e7 1.85e7 1.03e7 2.55e7 3.34e7
2−4 2.97e7 1.69e7 1.82e7 2.66e7 4.41e7
2−5 2.78e7 1.63e7 3.40e7 7.31e7 1.40e8
2−6 2.69e7 1.62e7 6.58e7 8.68e7 3.19e8
2−7 2.64e7 1.64e7 1.29e8 2.07e8 4.67e8

1− 2−7 1− 2−4 2−1 2−4 2−7

0

5

10

15

p

R
un

tim
e/

10
7

Uniform
Zipf
Stack
Line

Random Line

Fig. 7: Runtime of I-Rand-2 Scheme with Varying Probability.

the rapid increase in cost as we decrease the probability of
splaying, because we have to account for a deeper tree with
more pointer traversals.

When the probability of splaying increases from 1
2 , we con-

verge to the runtime of a standard splay tree, as expected. The
runtime on the Uniform and Zipf tests increasing significantly,
while the runtime on other tests have few fluctuations. This
implies that, as seen before, we are still splaying too much for
randomized inputs, while we only get marginal benefit from
splaying more often in the adversarial inputs.

When decreasing the probability for Scheme II, we saw a
decrease in the runtime for the Uniform, Random Line, and
Line tests, and an increase in the runtime for the Zipf and
Stack tests. This is the only scheme for which decreasing the
probability of doing a normal splay increases performance for
the Line test. In fact, it decreases the runtime at low probability
so much that it is able to match the best deterministic algorithm
4-Rot’s runtime for this test case. Unfortunately, the other
performance changes are marginal, with a max deviation of
approximately 20% across the entire probability range.

Similar to Scheme I, as p increases, we converge to the

8

Scheme II (II-Rand-2)

p Uniform Zipf Stack Line Random Line

1− 2−7 8.54e7 4.51e7 3.31e6 1.46e7 2.07e7
1− 2−6 8.54e7 4.51e7 3.32e6 1.45e7 2.07e7
1− 2−5 8.53e7 4.51e7 3.33e6 1.45e7 2.06e7
1− 2−4 8.52e7 4.51e7 3.36e6 1.45e7 2.06e7
1− 2−3 8.51e7 4.52e7 3.43e6 1.44e7 2.04e7
1− 2−2 8.47e7 4.54e7 3.55e6 1.41e7 2.00e7
2−1 8.39e7 4.61e7 3.80e6 1.33e7 1.93e7
2−2 8.31e7 4.77e7 4.05e6 1.23e7 1.85e7
2−3 8.27e7 4.92e7 4.17e6 1.17e7 1.81e7
2−4 8.25e7 5.04e7 4.24e6 1.14e7 1.79e7
2−5 8.24e7 5.12e7 4.27e6 1.12e7 1.78e7
2−6 8.24e7 5.17e7 4.28e6 1.12e7 1.77e7
2−7 8.24e7 5.21e7 4.29e6 1.11e7 1.77e7

1− 2−7 1− 2−4 2−1 2−4 2−7

0

5

10

15

p

R
un

tim
e/

10
7

Uniform
Zipf

Stack
Line

Random Line

Fig. 8: Runtime of II-Rand-2 Scheme with Varying Probability.

runtimes of the classic splay tree, while as p decreases, we
expect, similar to Even Splaying, a tree that performs better on
distributions that are more uniform and worse on distributions
that have a few, commonly accessed elements (such as the test
based on Zipf’s Law). We actually end up outperforming Even
Splaying on the Line, Uniformly Random, Stack, and Random
Line tests by a small factor, which could be attributed to the
increased flexibility of this strategy with being able to choose
both options (splaying itself and splaying its parent).

We conclude that Scheme II works best against adversarial
inputs (because, unlike the other schemes, we are splaying on
every step) and passably against randomized inputs (due to the
overhead cost). This is apparent in the graphs, where we see
no divergence as p decreases unlike in Schemes I and III.

Scheme III produces similar outputs to Scheme I for both
the deterministic and randomized test suites. The sharp in-
crease in cost for the Stack, Line, and Random Line tests as we
increase the probability is expected, as in Scheme I, because
we are not performing as many rotations as we should be for
adversarial test cases. Similarly, the convergence to a standard
splay tree as p→ 1 is also apparent.

Scheme III (III-Rand-2)

p Random Zipf Stack Line Random Line

1− 2−7 8.51e7 4.49e7 3.32e6 1.43e7 2.03e7
1− 2−6 8.47e7 4.47e7 3.33e6 1.40e7 2.00e7
1− 2−5 8.39e7 4.43e7 3.36e6 1.39e7 1.97e7
1− 2−4 8.24e7 4.36e7 3.43e6 1.37e7 1.94e7
1− 2−3 7.94e7 4.21e7 3.57e6 1.35e7 1.91e7
1− 2−2 7.34e7 3.91e7 3.90e6 1.34e7 1.91e7
2−1 6.16e7 3.33e7 4.97e6 1.40e7 2.02e7
2−2 4.99e7 2.77e7 8.00e6 1.77e7 2.54e7
2−3 4.42e7 2.52e7 1.40e7 2.50e7 3.66e7
2−4 4.13e7 2.43e7 2.60e7 3.88e7 5.87e7
2−5 3.99e7 2.43e7 5.00e7 6.47e7 1.02e8
2−6 3.93e7 2.48e7 9.80e8 1.15e8 1.87e8
2−7 3.89e7 2.55e7 1.94e8 2.13e8 3.57e8

1− 2−7 1− 2−4 2−1 2−4 2−7

0

5

10

15

p

R
un

tim
e/

10
7

Uniform
Zipf
Stack
Line

Random Line

Fig. 9: Runtime of III-Rand-2 Scheme with Varying Probability.

Comparing with our results from Scheme I, the table above
shows that performing random rotations along the splay path
is worse at balancing the tree for all cases aside from Random
Line. Interestingly, Random Line achieves a better result for
Scheme III than Scheme I for small p, even though Line
performs worse for Scheme III than Scheme I. This can
intuitively be explained by the idea that performing random
rotations can sometimes be more effective at balancing a
randomly shaped tree.

VI. CONCLUSIONS

In this paper, we explored a variety of proposed determin-
istic and random schemes that on average performed around
the same as that of the original Splay Tree that was proposed
by Sleator and Tarjan, but performed better relative to each
other on different types of inputs. On randomized inputs, we
interestingly see that the data structures that have the worst
bounds theoretically (the static Binary Search Tree and the 1-
rotation splay tree) actually performed better; we can attribute
the former performing better due to the lack of expensive
rotations which still keeps the expected runtime on these inputs

9

as O(log n); and for the latter, due to the lack of pointer
traversals needed to check which case the node satisfies in
order to splay it. However, as expected, when we tested both
of these structures against the general ”worst-case” scenario,
which is a starting configuration of all the inputs being in a
line, we see that these structures fail to complete the accesses
in a reasonable number of pointer traversals.

In this same test, we found that 3-rotation and 4-rotation
trees performed better in these worst case scenarios, compared
to normal 2-rotation splay trees. In order to explore this further,
we looked at the maximum depth of the trees as elements were
accessed. We found that the maximum depths shrank much
quicker for higher values of k; however, near the end, while
the depths for k = 3 and k = 4 flatlined, the maximum depth
for k = 2 continued to shrink below that of these higher k
values. This intuitively made sense, especially with the higher
constant factor bounds that we got with higher k; highlighting
the tradeoff that different values of k would have - in place
of average performance, these higher k values had a higher
resilience in terms of reaching more optimal configurations
quicker than the vanilla splay trees. Thus, we see this work
can be useful for applications where almost-sorted inputs need
to be accessed quickly, or other instances where the initial tree
constructed is largely unbalanced.

In terms of adding randomization, we found that Scheme II,
a randomization scheme that chooses to splay with probability
p or splay its parent with probability 1 − p, was able to
significantly improve upon the runtime of standard splay
trees in adversarial cases. Then, we found that Scheme I, a
randomization scheme that splays with probability p or not
splay with probability 1−p, did better than the standard splay
tree on randomized inputs, but failed to do better than the
binary search tree.

For future work, it would be worthwhile to explore the
properties of normal splay trees that generalize to k-rotation
splay trees. One could note that the Access Lemma variants
that were proved in the various sections can show that all such
variants satisfy Static Optimality. Another direction would
be to formulate more randomized schemes, or taking other
existing schemes that were proposed in papers and performing
the same sort of testing and analysis presented in this paper. A
third direction would be to combine the randomized strategies
of splaying such that they would all be more resilient to an
adversarial input. Finally, while we proved that all schemes
for k-rotations run in (expected) O(log n), future work could
go into better bounding the constant factors γk. These grew
exponentially in k, but in practice, k-rotation splay trees for
k = 3, 4 were quite competitive with their k = 2 counterpart,
and sometimes even outperformed them.

VII. ACKNOWLEDGEMENTS

We would like to thank Richard Wang, Catherine Wu,
and Thanadol Chomphoochan for their constructive comments
on drafts of this paper. We would also like to thank Ben
Eysenbach and Robi Bhattacharjee for providing us access to
their 18.416 Project entitled ‘Randomized Splay Trees,’ which

we had referred to and built off of. Finally, we would like to
thank David Karger and all the TAs - Josh Brunner, Thiago
Bergamaschi, and Christian Altamirano - for their excellent
and thorough teaching in 18.415.

REFERENCES

[1] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,”
J. ACM, vol. 32, no. 3, p. 652–686, Jul. 1985. [Online]. Available:
https://doi.org/10.1145/3828.3835

[2] S. Albers and M. Karpinski, “Randomized splay trees: Theoretical and
experimental results,” Information Processing Letters, vol. 81, no. 4,
pp. 213 – 221, 2002. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0020019001002307

[3] R. Bhattacharjee and B. Eysenbach, “Randomized splay trees 6.856 final
project,” 2016.

[4] M. Furer, “Randomized splay trees,” Jan. 1999, pp. S903–S904, pro-
ceedings of the 1999 10th Annual ACM-SIAM Symposium on Discrete
Algorithms ; Conference date: 17-01-1999 Through 19-01-1999.

[5] N. K. Vitanov and M. Ausloos, “Test of two hypotheses explaining
the size of populations in a system of cities,” Journal of Applied
Statistics, vol. 42, no. 12, pp. 2686–2693, 2015. [Online]. Available:
https://doi.org/10.1080/02664763.2015.1047744

[6] D. H. Zanette, “Zipf’s law and the creation of musical context,”
Musicae Scientiae, vol. 10, no. 1, pp. 3–18, 2006. [Online]. Available:
https://doi.org/10.1177/102986490601000101

10

