
LIDS REPORT 2876 1

Weighted Bellman Equations and their Applications

in Approximate Dynamic Programming∗

Huizhen Yu† Dimitri P. Bertsekas‡

Abstract

We consider approximation methods for Markov decision processes in the learning and sim-
ulation context. For policy evaluation based on solving approximate versions of a Bellman
equation, we propose the use of weighted Bellman mappings. Such mappings comprise weighted
sums of one-step and multistep Bellman mappings, where the weights depend on both the step
and the state. For projected versions of the associated Bellman equations, we show that their
solutions have the same nature and essential approximation properties as the commonly used
approximate solutions from TD(λ).

The most important feature of our framework is that each state can be associated with a
different type of mapping. Compared with the standard TD(λ) framework, this gives a more
flexible way to combine multistage costs and state transition probabilities in approximate policy
evaluation, and provides alternative means for bias-variance control. With weighted Bellman
mappings, there is also greater flexibility to design learning and simulation-based algorithms.
We demonstrate this with examples, including new TD-type algorithms with state-dependent
λ parameters, as well as block versions of the algorithms. Weighted Bellman mappings can also
be applied in approximate policy iteration: we provide several examples, including some new
optimistic policy iteration schemes.

Another major feature of our framework is that the projection need not be based on a norm,
but rather can use a semi-norm. This allows us to establish a close connection between projected
equation and aggregation methods, and to develop for the first time multistep aggregation
methods, including some of the TD(λ)-type.
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1 Overview

Approximate policy evaluation (APE) and approximate policy iteration (API) are two important
classes of approximation methods for solving large-scale Markov decision processes (MDP). In this
paper we consider APE and API algorithms that are based on reinforcement learning or simula-
tion and require no knowledge of the MDP model [BT96, SB98, Gos03, CFHM07, Pow07, Mey08,
BBSE10, Sze10, Ber12]. We will first develop our ideas for the case of APE and then apply and
extend them to API.

One approach to APE is to solve low-dimensional approximate versions of Bellman equations.
Examples include the widely used state aggregation methods and temporal difference (TD) methods
(see e.g., [Gor95, TV96] and [Sut88, BT96, BB96, TV97, Boy99]). Intrinsic to this approach are
approximation biases, namely deviations from the best possible approximate solution. They may
be reduced by taking into account multistage costs of a policy. In algorithms of TD(λ)-type, this is
elegantly done by considering multistep Bellman mappings with weights that decrease geometrically
with the number of steps, at a rate λ. Of concern in APE is also estimation variance: it usually
increases when using multistage costs, especially in policy evaluation (PE) with exploration [SB98,
PSD01]. In TD methods, the bias-variance tradeoff can be controlled by the value of λ (see e.g.,
[KS00]).

In this paper we propose the use of generally weighted Bellman mappings – with state and step-
dependent weights – for cost approximation in MDP. The advantages of such mappings are multifold.
Theoretically, as will be discussed later, we already have some understanding of their associated
approximate Bellman equations formed by projection: their solutions have the same nature and
essential properties as those produced by TD methods. Computationally, we gain considerable
flexibility in designing new APE algorithms for bias-variance control: we can choose different types
of mappings according to the properties of each state (instead of tuning a single parameter λ as in
TD methods). These algorithms also need not be determined by a prescribed Bellman mapping as in
TD(λ). Instead, they can be designed according to certain algorithmic guidelines, and the weighted
mapping will then be determined by the interplay between these guidelines and the problem at
hand. We may not know exactly the weights in the mapping. Nevertheless, the approximate solution
produced can still be understood in view of the general properties of the class of all such mappings.
An example of such a situation arises in simulation-based computation: the weights are determined
by the simulation process, which may in turn be modified adaptively based on the results that it
produces.

We describe our approach for finite-space discounted MDP for mathematical simplicity. The
ideas are applicable in general-space MDP with discounted or undiscounted cost criteria, and with
nonlinear function approximation [MSB+09]. They can also be applied in the context of API with
changing policies: for instance, the standard framework with a policy update after policy evaluation,
optimistic API (e.g., [TS10, Ber11]), and actor-critic schemes (e.g., [KT03]). We will address some
of these applications in the paper.

Regarding the connection with earlier works, general forms of Bellman mappings have appeared
in generalized TD algorithms for the lookup table case [Sut95, BT96, SB98] and played an im-
portant role in their analyses. These mappings, however, have not been sufficiently studied and
systematically applied in the context of approximation methods, to our knowledge. There are only
a few related recent works. The paper [MS10] considered the generalized TD algorithm with vari-
able λ [Sut95, SB98] and provided a two-time-scale gradient-based implementation of the algorithm
with function approximation. Another recent work, which has influenced our research, is Ueno et
al. [UMKI11]. They called attention to a broad class of equations of which the desired cost function
is a solution, and by viewing the cost function as a model parameter, they based their work on the
statistical framework of estimating equations. In their framework, the associated mappings need not
even be Bellman mappings. However, their framework does not address the case of a misspecified
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model and how it affects approximation error. Their research emphasis thus differs entirely from
ours: they focused on deriving algorithms with minimal asymptotic variance, assuming that the
cost function lies in the approximation space, whereas we will focus on projected versions of Bell-
man equations, address approximation error properties, and explore the diversity of approximation
algorithms that can be obtained in the light of general Bellman mappings.

We note, however, that the weighted Bellman mappings we consider in this paper are only a
subclass of generalized Bellman mappings, which allow for even a greater variety of approximation
algorithms to be designed. It is beyond our scope to investigate the most general class of such
mappings; this is deferred to a following paper. However, the approximation error analysis we will
give applies to such mappings as well.

Regarding the main contributions of this paper, they include, besides the proposal of the general
weighting of Bellman mappings, several other novel results:

• A new feature of our projected Bellman equation framework is that it allows the use of semi-
norm projection (Section 2.1). Among others, this characteristic is critical for establishing a
close connection between the projected equation and the aggregation approaches for APE. As
a result we have obtained, for the first time, multistep versions of aggregation methods, which
parallel the TD(λ) methods and have similarly improved approximation error bias character-
istics (Section 4).

• We introduce new TD-type algorithms with state-dependent λ parameters, as well as block ver-
sions of the algorithms, based on projected weighted Bellman equations (Sections 3.3 and 3.4).
They can be implemented efficiently, and they are useful for bias-variance control especially in
exploration enhanced PE, and associated optimistic API schemes.

• We propose a modified policy iteration-based API algorithm, which is closer to policy iteration
than similar optimistic API algorithms [TS10, Ber11], thereby extending these recent works
(Section 5.1.2).

We organize the paper as follows. In Section 2, we describe our main ideas of weighted Bellman
equations with semi-norm projection, and discuss their approximation properties and computational
aspects. In Section 3, we give several example algorithms for the learning and simulation contexts,
including new TD-type algorithms. In Section 4, we relate a class of multistep aggregation methods
to projected Bellman equations with semi-norm projection. In Section 5, we present some applica-
tions in API.

2 Main Ideas

We consider an MDP on the state space {1, 2, . . . , n} and with discount factor β ∈ [0, 1). Let
µ be a given stationary policy, deterministic or randomized. The cost vector of µ, denoted by
x∗ = (x∗1, . . . , x

∗
n), is the unique solution of the Bellman equation x = Tx, with T being the Bellman

mapping
Tx = g + βPx, x ∈ <n.

Here g is the vector of expected one-stage costs and P is the transition probability matrix of the
Markov chain induced by µ. The mapping T is a contraction with modulus β and with respect to
the sup-norm (see e.g., [Put94, BT96]).

2.1 Weighted Bellman Equations with Semi-Norm Projection

The focus of this paper will be on a class of weighted Bellman equations. For each state i, let
{
cik | k = 1, 2, . . . ,+∞

}
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be a scalar sequence such that
cik ≥ 0,

∑
k≥1 cik = 1. (2.1)

Denoting by c the collection of the n sequences, {cik}, i = 1, . . . , n, we define a mapping T (c) : <n 7→
<n by

T
(c)
i =

∑
k≥1 cik · T ki , i = 1, . . . , n, (2.2)

where T
(c)
i and T ki denote the ith component of T (c) and T k respectively, with T∞ given by

T∞x ≡ x∗, ∀x.

For all c satisfying (2.1), T (c) is well-defined due to the contraction property of T ; T (c) is also a
sup-norm contraction with modulus no greater than β, and x∗ is the unique solution of

x = T (c)x. (2.3)

Familiar examples of T (c) include the multistep Bellman mappings Tm, m ≥ 1, and the λ-
weighted mappings associated with the TD(λ)-type methods:

for λ ∈ [0, 1), T (λ) = (1− λ)
∑
k≥1 λ

k−1T k; for λ = 1, T (1)x ≡ x∗, ∀x.

These mappings correspond to using state-independent coefficients.

This paper will focus mostly on mappings T (c) with state-dependent coefficients {cik}. One such
example is the λ-weighted Bellman mappings with state-dependent λ values: with λi ∈ [0, 1],

T
(c)
i = T

(λi)
i , i = 1, . . . , n.

In other words, for states i with λi < 1,

T
(c)
i = (1− λi)

∑
k≥1 λ

k−1
i T ki , (2.4)

and for states i with λi = 1,

T
(c)
i x ≡ x∗i , ∀x. (2.5)

This and other examples will be discussed in later sections, where the coefficients c can be determined
indirectly by the APE algorithms.

Intuitively speaking, our motivation is to use in APE “different kinds” of Bellman mappings for
different states. In exact solution methods, as far as the solution is concerned, it does not matter
which equation we solve: the equation x = Tx or x = Tmx or x = T (c)x. This is different in
approximation methods. When we approximate x∗ by a vector from some given set, for example,
we may get quite different solutions if we solve the problem x ≈ Tx, i.e.,

xi ≈ Tix, i = 1, . . . , n, (2.6)

or solve the problem

xi ≈ x∗i , i ∈ E, and xi ≈ Tix, i 6∈ E, where E ⊂ {1, . . . , n}. (2.7)

While this difference is subject to many factors, let us compare the two approximation problems
themselves. In the first approximation problem based on (2.6), we use only the relation between
states described by the one-step mappings Ti. In the second approximation problem based on (2.7),
we combine the information of the true costs x∗i at some states with the relation conveyed by Ti
for some other states. Computationally, it is in general much more expensive to get estimates of
x∗i than estimates of Ti, when the MDP model is unknown and the approximation problems have
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to be formed from observations of the Markov chain. However, since we are ultimately interested
in finding x with xi ≈ x∗i for all i, we can argue that we may potentially obtain better results by
spending computational efforts unevenly across states, as in problem (2.7). The mapping T (c) used
in (2.7) is still extreme: cik = 1 for either k = ∞ or k = 1. With more general weights cik, we can
form more flexible approximation problems,

xi ≈
∑
k≥1 cikT

k
i x, i = 1, . . . , n.

They allow the approximate costs to be influenced by different types of information for different
states: for instance, for some states, their relation with “nearby” states, and for other states, pri-
marily the estimates of their long-term costs.

Let us introduce now the approximation framework. We consider in this paper APE methods
that solve projected versions of weighted Bellman equations (2.3). They are of the form

x = ΠT (c)x,

where Π is a projection onto a given approximation subspace S ⊂ <n. In the literature the projection
Π is commonly defined for a Euclidean norm. We extend the formulation to define Π with respect
to a semi-norm. This enhances the range of applications of our model, as we will explain shortly.

For a nonnegative vector ξ = (ξ1, . . . , ξn), let ‖ · ‖ξ denote the weighted Euclidean semi-norm
on <n given by ‖x‖2ξ =

∑n
i=1 ξi x

2
i . When ξ is such that for all x, the solution to the problem

miny∈S ‖x− y‖ξ is unique, we can define a (linear) projection mapping Πξ onto the subspace S by

Πξx = arg miny∈S ‖x− y‖ξ, ∀x.
The preceding condition on ξ is equivalent to1

6 ∃ y ∈ S with y 6= 0, ‖y‖ξ = 0, (2.8)

or in other words, if x, y ∈ S and xi = yi for all i with ξi 6= 0, then x = y. (Whether this condition
holds depends only on which components of ξ are zero.) With Πξ thus defined, a projected version
of Eq. (2.3) is

x = Πξ T
(c)x. (2.9)

If the projected equation has a unique solution x̄, we can use x̄ as an approximation of x∗.

We introduce a regularity condition in accordance with the preceding discussion. In this paper,
we will focus on projected Bellman equations of the form (2.9) that satisfy this condition.

Definition 2.1 (Regularity Condition for (ξ, c, S)). A nonnegative vector ξ ∈ <n with
∑n
i=1 ξi = 1,

a collection c of coefficients of the form (2.1), and a subspace S are said to satisfy the Regularity
Condition, if condition (2.8) holds and the projected equation (2.9) has a unique solution.

One case where the Regularity Condition is always satisfied is approximation by state aggrega-
tion. As will be shown in Section 4, a wide class of such APE methods can be viewed as projected
equation-based methods with semi-norm projection, and the associated projected equations have a
unique solution due to their model approximation nature.

Our main motivation for introducing semi-norm projection in the preceding formulation is as
follows. In the context of learning or simulation, the projected equation is formed by the statistics
of state transitions and multistage costs from various initial states, and ξi is often related to the
frequency of including the associated estimates for state i during this procedure. It is natural that
algorithms do not gather such information for all states, and consequently, ξi is zero for some states.
Two common reasons are:

1 It can be verified that this condition is also equivalent to the following: the matrix Φ′ΞΦ is invertible, where Φ
is a (any) n× d matrix whose columns form a basis of S and Ξ = diag(ξ), the diagonal matrix with ξi as the diagonal
elements. Furthermore, a matrix representation of Πξ is given by Φ(Φ′ΞΦ)−1Φ′Ξ for any such Φ.
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(i) Some states are never encountered; for example, they may be transient.

(ii) Interpolation/extrapolation schemes are used in approximation (such as in state aggregation).
Only the approximate costs at a certain subset of states need to be determined; they in turn
determine those at the rest of the states.

By allowing ξ to have zero components, one can deal with the case where in spite of certain states
being “neglected” (deliberately or unintentionally), the approximations produced are still meaningful
for all states. By contrast, if ξ has to be positive, such cases will be excluded from consideration.
For example, it would have been impossible to make the connection between aggregation methods
and projected equations, without semi-norm projection.

2.2 Approximation Properties

We already know several approximation properties of projected Bellman equations, based on earlier
studies on TD methods and generic projected equation methods (see e.g., [TV97, YB10, Sch10]).
They provide the theoretical grounds for APE algorithms that solve projected equations (2.9) involv-
ing weighted Bellman mappings. Therefore, before proceeding to show that such APE algorithms are
both natural and practical (Sections 2.3 and 3), we first summarize the key approximation properties
of the projected equations (2.9).

First, we note that since the mapping T (c) is affine, it can be expressed as

T (c)x = Ax+ b

for some (substochastic) matrix A and vector b, and the Regularity Condition implies that the matrix
(I −ΠξA) is invertible. This representation will appear frequently in the subsequent analysis.

Under the Regularity Condition, the equation x = ΠξT
(c)x is well-defined and has a unique

solution x̄ ∈ S. If x∗ ∈ S, then x∗ = Πξx
∗ = x̄. In general, x̄ is a biased approximation of x∗ in the

sense that x̄ may differ from Πx∗ (the Euclidean projection of x∗ onto S) and may also differ from
Πξx

∗ (the weighted Euclidean projection of x∗ on S).

Geometric Interpretation

Scherrer [Sch10] showed a geometric interpretation of x̄ as an oblique projection of x∗, which holds
also when ‖ · ‖ξ is a semi-norm:2

2We describe briefly the derivation. First, for any two d-dimensional subspaces S,M of <n such that no vector in
M is orthogonal to S, there is an associate oblique projection operator Π̃ defined by

Π̃x ∈ S, x− Π̃x ⊥M, ∀x.

A matrix representation of Π̃ is given by
Π̃ = Φ(W ′Φ)−1W ′,

where Φ and W are matrices whose columns form a basis of S and M , respectively (see Saad [Saa03, Chap. 1.12]). The
oblique projection interpretation of x̄ under the Regularity Condition can then be seen as follows. Since x̄ = Πξ(Ax̄+b)
and b = x∗ −Ax∗,

x̄ = (I −ΠξA)−1Πξ(I −A)x∗.

Expressed in terms of Φ, (I −ΠξA)−1Πξ = Φ(Φ′Ξ(I −A)Φ)−1Φ′Ξ, where Ξ = diag(ξ), so

x̄ = Φ(Φ′Ξ(I −A)Φ)−1Φ′Ξ(I −A)x∗.

For a derivation of the preceding statement, see e.g., [YB10, Lemma 2.1]. One can also verify the statement by
working with the projected Bellman equation with the change of variable x = Φr: Φr = Πξ(AΦr + b), and using the
matrix representation of Πξ as discussed in Footnote 1. In the above, the matrix Φ′Ξ(I −A)Φ is invertible since the
matrix I − ΠξA is invertible. (In fact, the two are equivalent: one matrix is invertible if and only if the other is.)

Then, from the matrix representation of an oblique projection operator Π̃, we recognize that in the above expression
of x̄, the linear mapping appearing before x∗ is the oblique projection operator with respect to S and M , with M
being the column space of (I −A)′ΞΦ, equivalently, the image of S under the linear transformation (I −A)′Ξ.
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x x∗

x̄ x
Πξx

∗

S

Subspace

S M =
(
(I −A)′Ξ

)
(S)

x x∗

Πξx
∗

x̄ x

S

B(A, ξ, S) · d B

d = ‖x∗ −Πξx
∗‖

Figure 1: Left: A geometric relation between x̄ and x∗. The point x̄ is an oblique projection of x∗

onto S with respect to a subspace M that is the image of a linear transformation of S. Right: An
illustration of the bound (2.11) on approximation bias. The distance ‖x̄−Πξx

∗‖ is no greater than
B(A, ξ, S) · ‖x∗ −Πξx

∗‖, where like the subspace M , the factor B(A, ξ, S) depends on S, ξ and the
matrix A in T (c).

Proposition 2.1 (An oblique projection interpretation of x̄ [Sch10]). Under the Regularity Condi-
tion, x̄ is the projection of x∗ onto S and orthogonal to a subspace M of the same dimensionality as
S:

x̄ ∈ S, x∗ − x̄ ⊥M.

This subspace M is the image of S under the linear transformation (I−A)′Ξ, where Ξ is the diagonal
matrix with ξ on its main diagonal.

Note that the subspace M depends critically on A, the matrix in the equation x = T (c)x we
want to solve. Conceptually, the oblique projection view provides us with the understanding of the
source of the bias in x̄; see Fig. 1 (left).

Approximation Error Bounds

When ‖ · ‖ξ is a norm, several approximation error bounds are available, which relate the bias
x̄− Πξx

∗ to the distance from x∗ to the subspace S. These bounds extend to the case where ‖ · ‖ξ
is a semi-norm, as described below. Some derivation details are given in Appendix A.

Under the Regularity Condition, as pointed out in [YB10], we have3

x̄−Πξx
∗ = −(I −ΠξA)−1ΠξA(I −Πξ)(x

∗ −Πξx
∗) (2.10)

and hence the following bound.

Proposition 2.2 ([YB10]). Under the Regularity Condition, for any norm ‖ · ‖ on <n and its
associated matrix norm, we have

‖x̄−Πξx
∗‖ ≤ B(A, ξ, S) · ‖x∗ −Πξx

∗‖, (2.11)

3Equation (2.10) can be derived as follows. Since x̄ = Πξ(Ax̄+ b) and Πξx
∗ = Πξ(Ax

∗ + b), we have

x̄−Πξx
∗ = ΠξA(x̄− x∗) = ΠξA(x̄−Πξx

∗) + ΠξA(Πξx
∗ − x∗),

and hence
x̄−Πξx

∗ = (I −ΠξA)−1ΠξA(Πξx
∗ − x∗).

Since Πξ(Πξx
∗ − x∗) = 0, Eq. (2.10) follows.
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where
B(A, ξ, S) = ‖(I −ΠξA)−1ΠξA(I −Πξ)‖.

Consistently with the oblique projection view, the bound shows that the approximation bias
depends on the relation between S, ξ and the matrix A in T (c).4 See Fig. 1 (right) for an illustration
of the bound.

The next few bounds all measure the approximation bias using the semi-norm ‖ · ‖ξ. They are
useful when we care only about the approximation at those states i with ξi > 0. For an n×n matrix
L, let us define

‖L‖ξ = sup
y:‖y‖ξ≤1

‖Ly‖ξ.

It is possible that ‖L‖ξ = +∞ since ‖ · ‖ξ is a semi-norm. The first bound is analogous to (2.11)
and follows from Eq. (2.10). The proof can be found in Appendix A.

Proposition 2.3. Under the Regularity Condition,

‖x̄−Πξx
∗‖ξ ≤ B̃(A, ξ, S) · ‖x∗ −Πξx

∗‖ξ, (2.12)

where
B̃(A, ξ, S) = ‖(I −ΠξA)−1ΠξA(I −Πξ)‖ξ.

The bound (2.12) is non-vacuous when B̃(A, ξ, S) < ∞, and this is true if ‖ΠξA‖ξ < ∞, and in
particular, if ξ is an invariant distribution of P .

The bound (2.12) implies a case where x∗ is partially obtained by solving the projected equation:

Corollary 2.1. Let the Regularity Condition hold. If ‖x∗ − Πξx
∗‖ξ = 0 and ‖ΠξA‖ξ < ∞, then

x̄ = Πξx
∗, so

‖x̄− x∗‖ξ = 0.

In other words, x̄ coincides with x∗ at states i with ξi > 0, if S contains a vector which coincides
with x∗ at these states and ‖ΠξA‖ξ <∞. This can also be shown directly; see Appendix A.

The conclusions of Prop. 2.3 and Cor. 2.1 can, in fact, be made more general. The semi-norm
‖ · ‖ξ in their statements can be replaced by any weighted Euclidean semi-norm ‖ · ‖ξ̂ such that ξ̂

has the same zero components as ξ. (These semi-norms are equivalent in some sense.)

We mention three more bounds, which rely on a contraction-type argument of Tsitsiklis and Van
Roy [TV97], and apply under certain conditions.

Proposition 2.4 ([TV97]). Let the Regularity Condition hold. Suppose that ‖ΠξA‖ξ < 1. Then

‖x̄−Πξx
∗‖ξ ≤

α√
1− α2

‖x∗ −Πξx
∗‖ξ, where α = ‖ΠξA‖ξ. (2.13)

A main application of the bound (2.13) is in the following two cases. There the condition
‖ΠξA‖ξ < 1 holds and furthermore, α = ‖ΠξA‖ξ in the bound can be replaced by a simpler
expression.

4For large-scale problems with unknown model parameters, it is not easy to compute the factor B(A, ξ, S) in (2.11),
however.
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Corollary 2.2. Let the Regularity Condition hold. Suppose that ξ is an invariant distribution of P
and the coefficients c in T (c) satisfy

∑
k≥1 c̄kβ

2k < 1, where c̄k = max1≤i≤n cik.

Then

‖ΠξA‖ξ ≤ ᾱ =
√∑

k≥1 c̄kβ
2k, (2.14)

so the bound (2.13) holds with ᾱ in place of α.

Without conditions on cik, it is not always true that ‖ΠξA‖ξ < 1 when ξ is an invariant distri-
bution of P . But for weighted Bellman mappings with state-independent coefficients, this is always
the case and the bound (2.14) can be strengthened as follows.

Corollary 2.3. Let the Regularity Condition hold. Suppose that ξ is an invariant distribution of P
and the coefficients c in T (c) are state-independent: cik = ck for all i. Then

‖ΠξA‖ξ ≤ α̂ =
∑
k≥1 ck β

k ≤ β, (2.15)

so the bound (2.13) holds with α̂ in place of α.

Some familiar examples of this bound are: for T (c) = Tm, α̂ = βm, and for T (c) = T (λ),
α̂ = (1− λ)β/(1− λβ).

We make a few remarks. In general, the contraction-based bounds are less sharp than the
bound (2.11).5 It is also true that all the bounds involve relaxations and hence do not necessarily
characterize well the approximation error (see Example 2.1 for a comparison of these bounds with
the bias-to-distance ratios in a given problem). Despite its being easy to compute, the bound (2.14)
is unsatisfactory because it neglects the dependency of the coefficients cik on the states. Example 2.1
below illustrates that using T (c) with state-dependent weights can be beneficial. The example also
shows that the case ‖ΠξA‖ξ > 1 need not result in an inferior cost approximation.

Example 2.1. The MDP problem is from [Ber95] (see also [BT96, Example 6.5]), for which the
TD(0) solution is known to have a large approximation bias. The Markov chain has 51 states
{0, 1, . . . 50} and deterministic transitions from state i to state i − 1, with state 0 being absorbing.
The one stage costs are 1 except at states 0 and 50, which are 0 and −49 respectively. The discount
factor is 0.999, the subspace S is one-dimensional: S = {x | xi = c i, i = 0, . . . , 50, for some c ∈ <},
and the projection is with respect to the unweighted Euclidean norm. We use the Bellman mappings
given by Eq. (2.4) with state-dependent λi parameters (their associated projected equations can be
efficiently computed; see Section 3.4.1). We let λi be nonzero for only a few selected states i: in
one case (Approximation I), λi = 0.9 for only states 40-50, and in another case (Approximation II),
λi = 0.9 for only states 45-50. As shown in Fig. 2, despite having λi = 0 for most of the states,
compared to the TD(0) solution, the approximation bias is significantly reduced.

We calculate the approximation error bounds for TD(0), TD(0.9) and the two approximations
mentioned above. In this case, ξ = (1, . . . , 1)/51 is not an invariant distribution of P . For both
TD(0) and TD(0.9), ‖ΠξA‖ξ < 1. For both approximations with state-dependent λ parameters,
‖ΠξA‖ξ > 1, so the contraction-based bound (2.13) is inapplicable. We measure the bias with
respect to ‖ · ‖ξ, and we list below the true relative bias and the factors in the error bounds (2.13),
(2.11):

5In the case where ξ > 0 and ‖ · ‖ξ is the norm for measuring approximation error, it is shown in [YB10] that the

bound (2.11) is attained by a worst-case choice of the vector b in the Bellman equation x = T (c)x = Ax+ b, and when
‖ΠξA‖ξ < 1, (2.11) is tighter than the contraction-based bound (2.13).
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9) TD(0) Approximation I Approximation II

Figure 2: Example of approximation bias reduction using weighted Bellman mappings with state-
dependent weights. The X-axis represents the states 0-50 in the problem. Plotted for comparison
are: the cost function x∗, the TD(0) and TD(0.9)-approximation, and approximations I and II,
which are obtained by using the Bellman mapping (2.4) with state-dependent λi parameters, where
λi = 0 at all but a few selected states. In I, λi = 0.9 for states 40-50; in II, λi = 0.9 for states 45-50.

TD(0) TD(0.9) Approximation I Approximation II

‖x̄−Πξx
∗‖ξ/‖x∗ −Πξx

∗‖ξ 7.865 0.6608 1.633 2.519

α/
√

1− α2 22.34 3.434 n/a n/a

B(A, ξ, S) 7.879 2.261 4.145 5.572

In the above the bounds are calculated using the knowledge of A and ξ. We note that in practice,
computing α = ‖ΠξA‖ξ and B(A, ξ, S) is equally hard when the model of the problem is not
available.

Discussion on Choices of Weights

To apply weighted Bellman mappings in APE, the central issues besides computation are how to
choose S and ξ, and which mapping T (c) to use so that we can balance the approximation bias
against the estimation variance, making algorithms overall efficient. These issues also arise in TD
methods, and they are difficult. At present, we lack reliable criteria and tractable ways to optimize
the choice of S, ξ and c.

Some intuition may serve as our guide, however, regarding the choice of T (c). Let us view the
coefficients {cik | k = 1, 2, . . .} as a probability distribution on the numbers of stages starting from
state i. From the system of equations x = ΠξT

(c)x, we see intuitively that by putting a larger
probability on later stages for a state j and states near it (in the transition graph), we rely more on
direct estimates of long-term costs from j and less on the relation between j and other states, for cost
approximation at state j. Suppose there are a few “sensitive” states j where the cost approximation
accuracy influences the overall approximation quality greatly. Then we can choose {cjk} in the
aforementioned manner, assigning a large probability on later stages for these and their nearby
states. For the rest of the states i, their policy costs may now be more reliably inferred from the
relation between i and the nearby states, so we can choose {cik} to put the majority of probability
mass on earlier stages. (See Example 2.1 for a demonstration of this point.) This also means that by
choosing the state-dependent weights {cik} properly, approximation bias can be potentially reduced
with limited increase in estimation variance.
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2.3 Computational Aspects: A Generic APE Algorithm

We now consider computational aspects of using weighted Bellman equations in learning and sim-
ulation based APE. We show that a natural, computationally straightforward way of doing APE
leads to such equations. This APE algorithm will be described in a generic form, to highlight the
connection with weighted Bellman mappings and projection, and to leave out details, such as data
collection mechanisms and probabilistic assumptions, which are not of interest at this point. This
generic APE algorithm will serve as a “template” for the example algorithms in the next section.

We begin with several equivalent forms of the projected Bellman equation x = ΠξT
(c)x. They are

more convenient from the computational perspective, especially for learning and simulation-based
computation where ξ and c can be implicitly determined by the APE algorithms. For x, y ∈ <n, we
denote by 〈x, y〉 the usual inner product of x and y, and for a nonnegative vector ξ ∈ <n, we denote
〈x, y〉ξ =

∑n
i=1 ξixiyi. We can write the projected Bellman equation x = ΠξT

(c)x equivalently as

x ∈ S, Πξ(x− T (c)x) = 0,

or
x ∈ S,

〈
v , x− T (c)x

〉
ξ

= 0, ∀ v ∈ VS , (2.16)

where VS is a finite set of vectors that span the subspace S (see property (b) in Appendix A).
Equivalently, with Ξ = diag(ξ),

x ∈ S,
〈
v , Ξ(x− T (c)x)

〉
= 0, ∀ v ∈ VS , (2.17)

i.e., x ∈ S and Ξ(x− T (c)x) ⊥ S.

Consider now a generic APE algorithm, which constructs a sequence of equations analogous to
Eq. (2.17). At each iteration t, it

• collects sequences of state transitions and transition costs,

• defines an <n-valued affine function Gt(x) based on the data, and

• builds a system of linear equations6 analogous to Eq. (2.17):

x ∈ S,
〈
v , Gt(x)

〉
= 0, ∀ v ∈ VS . (2.18)

Here the function Gt = (Gt,1, . . . , Gt,n) takes a particular form: for each i, Gt,i is a weighted sum
of Ni(t) functions (none if Ni(t) = 0):

Gt,i(x) =
∑Ni(t)
m=1 wim(t)

(
xi − T̃im,t x

)
(2.19)

with Ni(t) ≥ 0 and with wim(t) ≥ 0 being the weights. For each (i,m), T̃im,t : <n → < is an affine
function specified by the data. It will be defined to resemble a multistep Bellman mapping in the
example algorithms to follow; the precise definition is not needed for now. The data-determined
function terms xi − T̃im,t x may be viewed as the “building-blocks” of the algorithm.

We relate the generic APE algorithm to projected equations with weighted Bellman mappings
by relating the functions Gt,i to scaled, approximate versions of some affine functions

xi − T (c)
i x, i = 1, . . . , n,

6Storing Eq. (2.18) is memory-efficient. By making the change of variable x = Φr, where Φ is a matrix whose
columns span S and r is a column vector, Eq. (2.17) is equivalently 〈v , Gt(Φr)〉 = 0, v ∈ VS . So we only need to store
|VS | affine functions on the low-dimensional space of r, gv,t(r) = 〈v , Gt(Φr)〉.

12



roughly speaking. More precisely, this is done by averaging and normalization. Let Ht : <n → <n
be an affine mapping with its ith component given by

Ht,i x =
∑Ni(t)
m=1 w̄im(t) · T̃im,t x, ∀x,

where w̄im(t) = wim(t)
wi(t)

and wi(t) =
∑Ni(t)
m=1 wim(t). Also let w(t) =

∑n
i=1 wi(t) and

ξi(t) = wi(t)
w(t) , ξ(t) =

(
ξ1(t), . . . , ξn(t)

)
.

In the above, we treat 0/0 as 0. Then we have

Gt,i(x) = w(t) · ξi(t) · (xi −Ht,ix), i = 1, . . . , n,

〈v , Gt(x)〉 = w(t) · 〈v , x−Htx〉ξ(t), ∀ v ∈ VS ,
so Eq. (2.18) is equivalent to

x ∈ S,
〈
v , x−Htx

〉
ξ(t)

= 0, ∀ v ∈ VS . (2.20)

Comparing Eq. (2.20) with (2.16), the following conclusion is then immediate.

Suppose there exist some vector ξ = (ξ1, . . . , ξn) ≥ 0 and some set c of sequences satisfying
condition (2.1), such that for each i = 1, . . . , n,

ξi(t)→ ξi, ‖ξi(t)Ht,i − ξiT (c)
i ‖ → 0, as t→∞. (2.21)

Then, asymptotically, Eq. (2.20) tends to the equation

x ∈ S,
〈
v , x− T (c)x

〉
ξ

= 0, ∀ v ∈ VS .

When ξ satisfies condition (2.8), this equation is the same as x = Πξ T
(c)x [cf. Eq. (2.16)]. Suppose

in addition that it has a unique solution x̄; in other words, suppose (ξ, c, S) satisfies the Regularity
Condition. Then the solutions of the equations (2.18) from the generic APE algorithm approach x̄
asymptotically.

The above discussion links the generic APE algorithm to the projected equation method. There
are other reasons to describe a projected equation-based algorithm in the form of (2.18)-(2.19)
(instead of least-squares optimization problems, for instance). Let us discuss them in preparation
for the example algorithms to be introduced shortly. In this formulation:

(i) We have all data-related terms appearing as the arguments of the usual inner products 〈v, ·〉, v ∈
VS , which are data-independent [cf. Eq. (2.18)]. This emphasizes the simple relation between
the data, the subspace S, and the entire system of equations in the approximation scheme. It
is also computationally expedient for algorithms to work with Gt, because there is no need to
actually normalize Gt, and also because ξ and c are often jointly determined in the algorithms.

(ii) The focus is on the components of Bellman mappings for each individual state. This helps
design and compare algorithms at a high level. In most cases, efficient implementation of the
algorithms can then be obtained via certain well-known technique or routine procedure (such
as the one given in Footnote 6). By comparison, if one were to work directly with sophisticated
computation formulas (such as those for TD(λ)-type algorithms), the relation of the algorithm
with the Bellman mapping and projection could be much less obvious, which could make it
difficult to see how to modify the formulas in order to modify the associated Bellman mapping
and projection in a desired way. (As an example, from Eqs. (2.18) and (2.19) it is clear that we
can set ξi to zero by excluding all the terms (xi − T̃im,t) associated with state i. By contrast,
from the recursive formulas of a TD(λ) algorithm, one cannot tell immediately how to achieve
the same effect if one is unfamiliar with the “high-level equation” that gives rise to the formulas
in the first place.)

13



3 Some Example Algorithms with Learning and Simulation

In this section we give several algorithms as examples of the generic APE algorithm outlined in
Section 2.3. The convergence condition (2.21) holds for them due to the way data – trajectories of
states – are generated and used. In all the examples, we accumulate data over time and based on
the most recent information, we add terms to Gt−1(x) of the previous equation to form Gt(x) of the
current equation [cf. Eq. (2.18)]. We discuss the simplest example first and then its more general
variants in Section 3.2. In Sections 3.3 and 3.4, we introduce algorithms of TD(λ)-type.

As before, our focus will be on the equations constructed by the algorithms and their connection
with projected weighted Bellman equations. We will not discuss how the equations are to be solved
(they can be solved exactly or inexactly, and a variety of solvers may be used). We start by specifying
the simulation model and some definitions.

3.1 Notation and Specifications

State Trajectories and Associated Mappings

We use a simple data generation scheme in all the examples. At iteration t, a state trajectory
It = (i0, i1, . . . , i`) is generated, and its length is random but bounded: ` ≤ N for some given
positive integer N . This trajectory is generated in the following manner:

• First, the starting state i0 and the number of transitions, ` ≥ 1, are chosen according to some
given conditional probability distribution Γ

(
(i0, `) | It−1

)
, conditional on the trajectory It−1

of the previous iteration.7

• Next, the state transitions (ik, ik+1), k < `, are generated, by a simulator or the learning
environment, according to some transition probabilities {p̄ij}.

The (online) learning context differs from the simulation context in that it is not as easy to obtain
trajectories from desirable initial states as when a simulator is available, and instead, i0 has to be
a state of the environment that one encounters. Nevertheless, the situation can be described by a
suitably chosen Γ.

For the generation of state transitions, we consider two cases:

• Ordinary PE, where transitions (ik, ik+1) are generated according to the transition probabilities
{pij} under the policy µ that we aim to evaluate (i.e., p̄ij = pij for all states i, j).

• Exploration-enhanced PE, where the transition probabilities p̄ij differ from those under µ.

The state trajectories, It, t ≥ 1, thus generated form a finite-state Markov chain. See Fig. 3 for an
illustration.

For a state sequence I = (i0, . . . , i`), we define a sampled version of a multistep Bellman mapping,
T̃I : <n → <, depending on how I is generated. In the case of ordinary PE, we define

T̃I x =
∑`−1
k=0 β

kgµ(ik, ik+1) + β` xi` , ∀x, (3.1)

where gµ(i, j) denote the cost of transition from state i to j under the policy µ. In the case

of exploration-enhanced PE,8 T̃I is defined to compensate for the difference between p̄ij and the
transition probabilities under µ:

T̃I x =
∑`−1
k=0 β

k ρk+1 · gµ(ik, ik+1) + β` ρ` · xi` , ∀x, (3.2)

7The conditional distribution Γ can be specified indirectly and here is an example. We first choose the initial state
for It: with a certain probability that depends on It−1, we let i0 be the last state of the trajectory It−1, thereby
continuing that trajectory, whereas with a certain probability, we generate i0 according to a given distribution, thereby
starting a new trajectory. We then choose the number ` according to some given distribution that depends on i0.

8More precisely, in exploration-enhanced PE, states i here need to be associated with state-action pairs in the
MDP. For notational simplicity, we do not introduce this association in the paper.
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Figure 3: The procedure of generating the state trajectory It for iteration t in the APE Algorithms.
Direct edges indicate some of the dependence relations between the variables.

where
ρk+1 =

∏k
j=0

pijij+1

p̄ijij+1
, k ≥ 0,

and it is assumed that {p̄ij} satisfy that for all states i, j, p̄ij > 0 if pij > 0.

The examples will be meant for either ordinary PE or exploration-enhanced PE. To avoid treating
the two cases separately, we adopt the convention that the mapping T̃I appearing in the examples
is defined according to the corresponding Eq. (3.1) or (3.2).

Notation

We introduce some notation to be used throughout the paper. For a state sequence I = (i0, . . . , i`),
we denote by |I| the number of state transitions and by (I)j the jth state: |I| = ` and (I)j = ij .
We also denote (I)mj = (ij , ij+1, . . . , im), the segment of I between ij and im. With this notation,

for example, T̃(I)mj
is the mapping given by Eq. (3.1) or (3.2) with the segment (I)mj in place of I.

We will be dealing with random affine functions defined by data. It is convenient to view these
functions as random variables. More precisely, for a positive integer m, let Am[x] denote the space
of <m-valued affine functions of x:

Am[x] =
{
Cx+ b | C is an m× n matrix, b ∈ <m

}
.

We define Am[x]-valued random variables, their expectation and sample mean in an obvious way.
An Am[x]-valued random variable ψ is a random function Cx+ b, where the matrix C and vector b
are random. The expectation of ψ, which will be denoted E[ψ] or E[ψ(x)], is the function

E[ψ](x) = E[C]x+ E[b].

If either C or b does not have a finite expectation, then E[ψ] is undefined, a case that we will not
encounter. For a sequence of Am[x]-valued random variables, ψt(x) = Ctx + bt, t = 1, 2, . . ., the
sample average at time t is the function C̄x + b̄ ∈ Am[x] with C̄ = 1

t

∑t
τ=1 Cτ and b̄ = 1

t

∑t
τ=1 bτ ,

where Cτ , bτ , τ ≤ t, take their realized values. We say that {ψt} converges to ψ(x) = Cx + b
with probability one, if {Ct} and {bt} converge to C, b, respectively, with probability one. We will
henceforth omit the term “with probability one,” for simplicity.

We use δ for the indicator function. To simplify notation, we write ak ∝ a′k for two nonnegative
scalar sequences, {ak}, {a′k}, such that

∑
k a
′
k > 0 and ak = a′k/

∑
k a
′
k. We use this notation also

when a′k = 0 for all k; then, “ak ∝ a′k” is regarded to be true for any {ak} with
∑
k ak = 1.

3.2 A Simple Algorithm and its Variants

We start with a simple algorithm, Algorithm I. It adds one suitably weighted term to Gt−1(x) to form
Gt(x) as per Eq. (2.19). Also it uses certain nonnegative scalars αik, k = 1, . . . , N, for all states i.
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These scalars, together with the trajectory generation scheme, determine how terms associated with
sequences of different lengths are weighted relative to each other.

Algorithm I: (iteration t)

(1) Choose a starting state i0 and a number ` ≥ 1 according to probability Γ
(
(i0, `) | It−1

)
.

Generate a state trajectory It = (i0, . . . , i`).

(2) Define the components of Gt(x) by

Gt,i(x) = Gt−1,i(x) + δ{i = i0} · αi`
(
xi − T̃Itx

)
, i = 1, . . . , n.

(3) Form a system of equations

x ∈ S, fv,t(x) = 0, ∀ v ∈ VS , (Equation(t))

where fv,t(x) =
〈
v , Gt(x)

t

〉
.

More complex variants can be created by including more function terms in Gt at each iteration
and thus extracting more information from the trajectories. For example, at step 2, we may add to
Gt−1(x) the function terms associated with every segment of the trajectory It.
Variant A of Algorithm I: We replace step 2 with

(2′) Define Gt(x) by

Gt,i(x) = Gt−1,i(x) +

`−1∑
j=0

δ{i = ij} ·
`−j∑
k=1

αik
(
xi − T̃(It)j+kj

x
)
, i = 1, . . . , n.

(Recall that (It)j+kj denotes the segment between ij and ij+k.) Alternatively, we can be more
selective and add terms for only some segments. We can also vary the weights αik with the trajectory.
The TD-type algorithms given in Sections 3.3 and 3.4 have some of the features just mentioned.
Here let us discuss some less complicated examples.

If we are given in advance a Bellman mapping T (c) whose coefficients cik are zero for k > N , we
can implement an APE that builds a corresponding projected equation x = ΠξT

(c)x, in two simple
ways. One way is to generate N transitions at every iteration and add at step 2 the function

δ{i = i0} ·
∑N
k=1 cik

(
xi − T̃(It)k0x

)

to Gt−1,i(x) when forming Equation(t) at iteration t. Another way is to view {cik} as probabili-
ties and use Algorithm I with ` chosen with probability ci0` and with αik = 1 for all i, k. Both
implementations can be carried out in either the simulation or the learning context.

Consider another example. Suppose that at step 2, we include only the function terms associated
with those trajectory segments that are sufficiently long and start from certain states. In particular,
let N0 < N be a positive integer, and let

Listi ⊂ {1, . . . , n}, i = 1, . . . , n,

be subsets of states associated with each state. (Excluding a state j from all these subsets has the
effect of setting ξj = 0 in the semi-norm ‖ · ‖ξ for the projection operation.)
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Variant B of Algorithm I: We replace step 2 with

(2′′) Define Gt(x) by

Gt,i(x) = Gt−1,i(x) +

`−N0∑
j=0

δ
{
i = ij , i ∈ Listi0

}
· αi(`−j)

(
xi − T̃(It)`j

x
)
, i = 1, . . . , n.

For actual computation, the equations in the above algorithms are stored in terms of low-
dimensional matrices and vectors, which are updated from one iteration to another. For specific
formulas, see the discussions in Footnote 6, Section 3.3.1 and Appendix B.

Projected Weighted Bellman Equations in the Limit

Like the generic APE algorithm, in the limit as t → ∞, the equations from the above algorithms
can be associated with projected weighted Bellman equations. Moreover, these limiting equations
can be expressed in terms of the probability distribution of the trajectories and other algorithmic
parameters. The derivation is similar for all the algorithms. Below let us derive the associated
projected equations for Algorithm I and its variant B.

Consider first Algorithm I. The derivation is based on the following fact. The way the state
sequence It is generated and used ensures that when we average those random mappings T̃Iτ , τ ≤ t,
whose associated trajectories Iτ have the same length and the same initial state, we obtain the
corresponding multistep Bellman mapping component for that state, as t → ∞. There are several
ways to make this statement more precise and use it in the analysis. It is convenient to use the
Markov chain property of {It} for this purpose.

The state trajectories {It} form a time-homogeneous finite-state Markov chain. Therefore, the
empirical distribution of {It} converges to some invariant distribution of this chain. To simplify ex-
position, let us assume, without loss of generality, that the chain has a unique invariant distribution.
We denote this distribution by Pe and denote expectation under Pe by Ee.

For every state i,
Gt,i(x)

t is the sample mean of the random affine functions

δ
{
i = (Iτ )0

}
· αi|Iτ | ·

(
xi − T̃Iτx

)
, τ = 1, 2, . . . , t.

(In matrix representation they are given by f1(Iτ ) + f2(Iτ )x for some real-valued function f1 and

<n-valued function f2 on the space of trajectories.) So as t goes to infinity,
Gt,i(x)

t converges to the
“mean” affine function

Ee
[
δ{i = (I)0} · αi|I| ·

(
xi − T̃Ix

)]
,

where the expectation is over I, a random state sequence with distribution Pe. By calculating
this “mean” function, we obtain an expression of the projected Bellman equation associated with
Algorithm I as follows.

Define a function w̄(I) for scaling purposes: for I = (i0, . . . , i`), w̄(I) = αi0`. This is the weight
of the new function term that would be included in Gt at step 2 if It = I.

Proposition 3.1. Let I be a random sequence distributed as Pe and suppose that w̄ = Ee[w̄(I)] > 0.
Then the sequences of functions, {fv,t}, v ∈ VS, in Algorithm I converge to:

fv,t(x)→ w̄ ·
〈
v , x− T (c)x

〉
ξ
, ∀ v ∈ VS ,

where the vector ξ is given by

ξi ∝ Pe
(
(I)0 = i

)
· Ee

[
αi|I| | (I)0 = i

]
, i = 1, . . . , n,
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and the collection c of coefficients are given by: for each i, cik = 0 for k > N , and

cik ∝ Pe
(
|I| = k

∣∣ (I)0 = i
)
· αik, 1 ≤ k ≤ N.

If (ξ, c, S) satisfies the Regularity Condition, then the sequence of solutions of Equation(t), t ≥ 1,
in Algorithm I converges to the solution of the projected Bellman equation x = Πξ T

(c)x.

Proof. Based on the way the state trajectories are generated, Pe has the following product form: for
any state sequence (i0, . . . , i`), ` ≤ N ,

Pe
(
I = (i0, . . . , i`)

)
= Pe

(
(I)0 = i0

)
· Pe
(
|I| = `

∣∣ (I)0 = i0
)
·∏`−1

j=0 p̄ijij+1
. (3.3)

This implies that for every state i and k ≤ N ,

Ee
[
T̃I x

∣∣ (I)0 = i, |I| = k
]

= T ki x.

Therefore, for i = 1, . . . , n,

lim
t→∞

Gt,i(x)
t = Ee

[
δ{i = (I)0} · αi|I| ·

(
xi − T̃Ix

)]

= Pe
(
(I)0 = i

)
·∑N

k=1 Pe
(
|I| = k

∣∣ (I)0 = i
)
· αik ·

(
xi − T ki x

)
(3.4)

= w̄ · ξi ·
(
xi − T (c)

i x
)
,

where the last expression is obtained from Eq. (3.4) by normalization of the weights. In particular,
ξi is proportional to the total weight of the terms (xi − T ki x), 1 ≤ k ≤ N , and for each i, cik is
proportional to the weight of the term −T ki x. Their values can be read off from Eq. (3.4) and are
as stated in the proposition. This completes the proof.

A similar analysis gives the projected weighted Bellman equation associated with Variant B,
stated below. Here, for scaling purposes, we define the function w̄(I) by: for I = (i0, . . . , i`),

w̄(I) =
∑`−N0

j=0 δ
{
ij ∈ Listi0

}
· αij(`−j).

This is the total weight of the new function terms that would be added at step 2′′ if It = I.

Proposition 3.2. Let I be a random sequence distributed as Pe and suppose that w̄ = Ee[w̄(I)] > 0.
Then the conclusions of Prop. 3.1 hold for Variant B of Algorithm I, with the vector ξ and coefficients
c given by:

ξi ∝
∑N
k=N0

Pe
(
(I)|I|−k = i, i ∈ List(I)0

)
· αik, i = 1, . . . , n,

and for each i, cik = 0 for k > N or k < N0, and

cik ∝ Pe
(
(I)|I|−k = i, i ∈ List(I)0

)
· αik, N0 ≤ k ≤ N.

Proof. By Eq. (3.3), for every state i and every pair of positive integers ` and j with j < ` ≤ N ,
and every sequence (i0, . . . , ij−1), we have

Ee
[
T̃(I)`j

x
∣∣∣ (I)j0 = (i0, . . . , ij−1, i), |I| = `

]
= T `−ji x.

Direct calculation then shows that for every state i,

lim
t→∞

Gt,i(x)
t = Ee

[∑|I|−N0

j=0 δ
{
i = (I)j , i ∈ List(I)0

}
· αi(|I|−j) ·

(
xi − T̃(I)

|I|
j
x
) ]

=
∑N
k=N0

Pe
(

(I)|I|−k = i, i ∈ List(I)0

)
· αik ·

(
xi − T ki x

)
,

where we define (I)j = ∅ if j < 0. Similar to the proof of Prop. 3.1, from the above expression, we
can then read off the weights ξ and coefficients c, which make up the projected equation x = Πξ T

(c)x
obtained with the algorithm in the limit.
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3.3 A Block TD(λ)-Type Algorithm

We now introduce algorithms of the TD-type and show their connection to weighted Bellman map-
pings with state-dependent weights. We present a simpler algorithm first in this subsection, referred
to as Algorithm II. It uses a single λ parameter for all states; it is similar to the TD(λ) method but
uses only trajectories of finite length. We characterize its associated projected Bellman equation
(Section 3.3.2) and compare the algorithm with the usual TD methods (Section 3.3.3). We will later
give two variant algorithms that use state-dependent λ parameters (Section 3.4).

Like the algorithms discussed earlier, Algorithm II generates a state trajectory at each iteration
t, forms multiple function terms based on the trajectory, and includes them in the function Gt(x)
to define the tth equation. The computation is efficient: each iteration is broken down into sub-
iterations corresponding to each state transition along the trajectory. The algorithm maintains an
equation at each sub-iteration based on the trajectory generated so far, and when a new transition
is generated, it can update the equation with little work. A precise description of an iteration is
given below. Its computation efficiency will be better seen from the recursive formulas given in the
sequel. Let λ ∈ [0, 1]. (The case of interest is λ ∈ (0, 1).)

Algorithm II: (iteration t)

(1) Choose a starting state i0 and an integer ` with 1 ≤ ` ≤ N as in Algorithm I.

(2) Do ` sub-iterations, starting from k = 1, 2, . . ., as follows. At sub-iteration k:

(a) Generate a transition (ik−1, ik) and let I = (i0, . . . , ik) be the sequence obtained so far.

(b) Define Yk ∈ An[x] by: for i = 1, . . . , n,

Yk,i(x) =

k−1∑
j=0

δ
{
i = ij

}
·

(
(1− λ)

k−1∑
m=j+1

λm−1−j
(
xi − T̃(I)mj

x
)

+ λk−1−j
(
xi − T̃(I)kj

x
))

.

(c) Form a system of equations:

x ∈ S, 1
t

〈
v,Gt−1(x) + Yk(x)

〉
= 0, ∀ v ∈ VS . (Equation(t; k))

(3) Let It = I and Gt(x) = Gt−1(x) + Y`(x).

(4) Form a system of equations:

x ∈ S, fv,t(x) = 0, ∀ v ∈ VS , (Equation(t))

where fv,t(x) =
〈
v, Gt(x)

t

〉
.

The function in step 2b can be alternatively written as

Yk,i(x) =

k−1∑

j=0

δ
{
i = ij

}
·

k∑

m=j+1

λm−1−j ·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)
,

where we define T̃(I)jj
to be the mapping T̃(I)jj

x = xij for all x. The terms (T̃(I)m−1
j

x − T̃(I)mj
x)

correspond to the so-called “temporal differences,” which will appear in the recursive computation
formulas of the algorithm.

3.3.1 Recursive Computation

Algorithm II can be implemented efficiently with recursive computation, like in standard TD meth-
ods. There is no need to store the trajectory during an iteration. We give the recursive formulas
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below (their derivation is given in Appendix B.1). Suppose VS = {v1, . . . , vd}. Let Φ be the n × d
matrix (v1 . . . vd) and let φ(i)′ be its ith row, where ′ denotes transpose, i.e.,

φ(i) =
(
v1,i, . . . , vd,i

)′
.

Equation(t) is stored after the change of variable x = Φr, where r ∈ <d, as

fvj ,t(Φr) = 0, j = 1, . . . , d,

or in matrix representation,
Equation(t): Ctr − bt = 0,

where Ct is a d×d matrix and bt is a d-dimensional vector. Similarly, Equation(t; k) at sub-iteration
k is stored after the change of variable x = Φr as

Equation(t; k): Ct,kr − bt,k = 0,

where Ct,k is a d × d matrix and bt,k is a d-dimensional vector. These matrices and vectors are
computed recursively, by using d-dimensional auxiliary vectors Zk as follows.

Recursive Formulas of Algorithm II

• At the beginning of iteration t, let

Z0 = 0, Ct,0 =
(
1− 1

t

)
Ct−1, bt,0 =

(
1− 1

t

)
bt−1.

• For k = 0, . . . , `− 1, let

Zk+1 = λβρk−1,k · Zk + φ(ik),

Ct,k+1 = Ct,k + 1
t Zk+1 ·

(
φ(ik)− βρk,k+1 φ(ik+1)

)′
,

bt,k+1 = bt,k + 1
t Zk+1 · ρk,k+1 gµ(ik, ik+1),

where ρj,j+1 = 1 for the case of ordinary PE [where T̃I is defined by Eq. (3.1)], and ρj,j+1 =
pijij+1

p̄ijij+1
for the case of exploration-enhanced PE [where T̃I is defined by Eq. (3.2)].

• At the end of iteration t, let
Ct = Ct,`, bt = bt,`.

From the above formulas, it can be seen that Algorithm II is similar to the LSTD(λ) algorithm,
a least squares-based TD(λ)-type algorithm [Boy99, NB03, BY09, Yu10a], except that when one
iteration ends and another starts, the vector Zk is reset and subsequent updates start with Z0 = 0.
This helps control estimation variance (see Section 3.3.3).

3.3.2 Projected Weighted Bellman Equation in the Limit

We characterize the projected weighted Bellman equation obtained with Algorithm II in the limit.
The analysis is similar to that for Algorithm I. We consider the affine function Y`(x), which is
added to Gt−1 at step 3 of iteration t, and we calculate its expectation (over a random sequence I)
under the invariant distribution Pe of the Markov chain {It}. From this “mean” affine function, we
then read off the weights ξ and the weighted Bellman mapping T (c), which, under the Regularity
Condition, form a well-defined projected equation.

In what follows, for a state sequence I, let (I)j = ∅ for j < 0. Also, let the segment (I)j0 be ∅ if
j < 0.
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Proposition 3.3. Let I be a random sequence distributed as Pe and let w̄ = Ee
[
|I|
]
. Then the

sequences of functions, {fv,t}, v ∈ Vs, in Algorithm II converge to:

fv,t(x)→ w̄ ·
〈
v , x− T (c)x

〉
ξ
, ∀ v ∈ VS ,

where the vector ξ is given by

ξi ∝ Ee
[
Ci(I)

]
, i = 1, . . . , n,

with Ci(I) being the number of times that state i appears in the segment (I)
|I|−1
0 ; and the collection

c of coefficients are given by: for each i, cik = 0 for k > N , and

cik ∝ (1− λ)λk−1 · Ee
[
Cik(I)

]
+ λk−1 · Pe

(
(I)|I|−k = i

)
, 1 ≤ k ≤ N,

where Cik(I) is the number of times that state i appears in the segment (I)
|I|−1−k
0 . Moreover, if

(ξ, c, S) satisfies the Regularity Condition, then the sequence of solutions of Equation(t), t ≥ 1, in
Algorithm II converges to the solution of the projected Bellman equation x = Πξ T

(c)x.

Proof. The ith component of Y`(x) is given by

Y`,i(x) =

`−1∑

j=0

δ
{
i = ij

}
·


(1− λ)

`−1∑

m=j+1

λm−1−j
(
xi − T̃(It)mj x

)
+ λ`−1−j

(
xi − T̃(It)`j x

)



=

`−1∑

j=0

δ
{
i = ij

}
·
(

(1− λ)

`−1−j∑

k=1

λk−1
(
xi − T̃(It)j+kj

x
)

+ λ`−1−j
(
xi − T̃(It)`j x

))
. (3.5)

For any i, ī0 ∈ {1, . . . , n} and positive integer ` ≤ N , denote

q(x; i, ī0, `) = Ee
[
Y`,i(x)

∣∣∣ (I)0 = ī0, |I| = `
]
,

and using Eq. (3.3) and the expression of Y`,i(x) given in Eq. (3.5), we obtain

q(x; i, ī0, `) =

`−1∑

j=0

Ee
[
δ
{
i = (I)j

} ∣∣∣ (I)0 = ī0, |I| = `
]

·
(

(1− λ)

`−1−j∑

k=1

λk−1
(
xi − T ki x

)
+ λ`−1−j

(
xi − T `−ji x

))
. (3.6)

The above expression is equal to

N∑

k=1

Ee



`−1∑

j=0

δ
{
i = (I)j , j ≤ `− 1− k

} ∣∣∣ (I)0 = ī0, |I| = `


 · (1− λ)λk−1 ·

(
xi − T ki x

)

+

N∑

k=1

Ee
[
δ
{
i = (I)`−k

} ∣∣∣ (I)0 = ī0, |I| = `
]
· λk−1 ·

(
xi − T ki x

)
.

By taking the expectation over the initial state and length of I, we obtain

Ee
[
Y|I|,i(x)

]
=

N∑

k=1

(
(1− λ)λk−1 · Ee

[
Cik(I)

]
+ λk−1 · Pe

(
(I)|I|−k = i

))
·
(
xi − T ki x

)
, (3.7)
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and this is the function limt→∞
Gt,i(x)

t . We can then write

lim
t→∞

Gt,i(x)
t = w̄ · ξi ·

(
xi − T (c)

i x
)
,

where the coefficients c can be read off from Eq. (3.7) and are as stated in the proposition. The
weights ξi are proportional to the total weight of the terms (xi−T ki x), 1 ≤ k ≤ N , so from Eq. (3.6)
we see that they are given by

ξi ∝ Ee
[ ∑|I|−1

j=0 δ
{
i = (I)j

} ]
= Ee

[
Ci(I)

]
.

Thus {fv,t(x)} converges to w̄ ·
〈
v , x− T (c)x

〉
ξ

for all v ∈ VS . The proposition then follows.

As a special case of the preceding proposition, suppose the trajectories are consecutive blocks
of N transitions from a single trajectory of a Markov chain {iτ} with transition probabilities {p̄ij}.
Suppose also that this chain has no periodic states. Then ξ is some invariant distribution of this
Markov chain, and for each state i, cik = 0 for k > N , and

cik ∝ (1− λ)λk−1 (N − k) + λk−1, 1 ≤ k ≤ N. (3.8)

(So in this case the sequence {cik} is the same for all states i.) Figure 4 (left) plots the above
{cik} for N = 100, λ = 0.99, and compares them with the coefficients cik = (1− λ)λk−1 in the T (λ)

mappings for λ = 0.99, 0.97, which are associated with the standard TD(λ) method.

3.3.3 Comparison with Usual TD(λ) Methods

Algorithm II can be especially useful in exploration-enhanced PE. It is well-known that using mul-
tistep Bellman mappings can decrease the approximation bias in the projected equation approach,
but it tends to increase the estimation variance, partly due to the high variances of long-term cost
estimates. The variance issue becomes acute especially in exploration-enhanced PE, where the com-
putation involves products of importance-sampling weights (ratios between transition probabilities)
along state trajectories. In that case, for example, for a usual, non-block TD(λ)-type algorithm,
LSTD(λ) with λ > 0, even infinite asymptotic estimation variance can occur, despite the almost sure
convergence of the algorithm [Yu10a, Yu10b]. By contrast, this cannot happen with the block-type
Algorithm II, because it uses trajectories of no more than N transitions at each iteration.

Figure 4 (right) demonstrates this difference using a two-state example from [Yu10b, Appendix],
for which analysis and empirical evidence suggest that the estimates of the (least squares) TD(0.99)
converge at a rate slower than 1/

√
t. We run Algorithm II as described in the special case given

just before this subsection, with N = 100 and λ = 0.99. (The discount factor is 0.99 and S is
one-dimensional.) The two algorithms obtain different projected equations in the limit. Plotted in
Fig. 4 (right) are their estimates of the constant term of the associated equation (in low-dimensional
representations). The dotted horizontal lines show the limits of the corresponding estimates. We
plotted the estimates down-sampled at uneven time intervals with the X-axis indicating

√
t, to show

that the two algorithms are converging at speeds of different orders.

3.4 TD Variants with State-Dependent λ Parameters

We introduce two variants of Algorithm II with state-dependent parameters λi ∈ [0, 1], i = 1, . . . , n.
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Figure 4: Differences between the TD(λ) method and the block TD(λ) method, illustrated with an
example. Details are given in Sections 3.3.2 and 3.3.3.

3.4.1 Variant A

We replace λ by λi in the function Yk,i(x) at step 2b of Algorithm II:

(2b′) Define Yk ∈ An[x] by: for i = 1, . . . , n,

Yk,i(x) =

k−1∑
j=0

δ
{
i = ij

}
·

(
(1− λi)

k−1∑
m=j+1

λm−1−j
i

(
xi − T̃(I)mj

x
)

+ λk−1−j
i

(
xi − T̃(I)kj

x
))

.

For the resulting algorithm, referred to as Variant A, we can characterize its associated projected
Bellman equation x = ΠξT

(c)x as follows. The derivation is similar to that for Algorithm II.

Proposition 3.4. Assume the conditions of Prop. 3.3. Then the conclusions of Prop. 3.3 hold for
Variant A, with λi in place of λ in the expressions of the coefficients cik for each state i.

Variant A can be implemented efficiently, when {λi} take a relatively small number of distinct
values {λ̄1, . . . , λ̄s}. The recursive formulas, given below, are the same as those of Algorithm II
(cf. Section 3.3.1), except that we define the auxiliary vectors Zk differently and we introduce s

more d-dimensional auxiliary vectors Z
(1)
k , . . . , Z

(s)
k . (See Appendix B.2 for the derivation.)

Recursive Formulas of Variant A

• At the beginning of iteration t, let Z
(m)
0 = 0, m = 1, . . . , s, and let

Z0 = 0, Ct,0 =
(
1− 1

t

)
Ct−1, bt,0 =

(
1− 1

t

)
bt−1.

• For k = 0, . . . , `− 1, let

Z
(m)
k+1 = λ̄m · βρk−1,k · Z(m)

k + δ{λik = λ̄m} · φ(ik), (3.9)

Zk+1 =
∑s
m=1 Z

(m)
k+1, (3.10)

and let

Ct,k+1 = Ct,k + 1
t Zk+1 ·

(
φ(ik)− βρk,k+1 φ(ik+1)

)′
,

bt,k+1 = bt,k + 1
t Zk+1 · ρk,k+1 gµ(ik, ik+1).
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• At the end of iteration t, let Ct = Ct,`, bt = bt,`.

A Non-Block Version

With these formulas, we also obtain a non-block TD-type algorithm which employs the weighted
Bellman mapping given by Eqs. (2.4)-(2.5):

T
(c)
i = (1− λi)

∑
k≥1 λ

k−1
i T ki , if λi ∈ [0, 1); T

(c)
i x ≡ x∗i , ∀x, if λi = 1,

thus generalizing the standard LSTD algorithm. In particular, consider the sub-iterations only and
let k increase continuously. The recursive formulas (3.9)-(3.10) for Zk, together with

Ck+1 =
(
1− 1

k

)
Ck + 1

k Zk+1 ·
(
φ(ik)− βρk,k+1 φ(ik+1)

)′
,

bk+1 =
(
1− 1

k

)
bk + 1

k Zk+1 · ρk,k+1 gµ(ik, ik+1),

produce a sequence of equations,

Ckr − bk = 0, k = 1, 2, . . . ,

which converges to a low-dimensional representation of the projected weighted Bellman equation

x = ΠξT
(c)x,

where T (c) is given by Eqs. (2.4)-(2.5) and ξ is an invariant distribution of the Markov chain with
transition probabilities {p̄ij}. This convergence, for both ordinary and exploration-enhanced PE,
follows from the results of [Yu10a, Yu10b]. Because the algorithm is not block-type, the convergence
arguments are quite different from what we used in this paper, so we do not include the proof here.
(A proof can be found in Section 4.3 of the recent, revised version of [Yu10b].)

3.4.2 Variant B

At step 2b of Algorithm II, we replace λ by λi and replace δ{i = ij} by δ{i = ij , λi = λi0} in the
function Yk,i(x):

(2b′′) Define Yk ∈ An[x] by: for i = 1, . . . , n,

Yk,i(x) =

k−1∑
j=0

δ
{
i = ij , λi = λi0

}
·

(
(1− λi)

k−1∑
m=j+1

λm−1−j
i

(
xi − T̃(I)mj

x
)

+ λk−1−j
i

(
xi − T̃(I)kj

x
))

.

In other words, we include only the function terms corresponding to those trajectory segments that
start from states whose λ parameters equal λi0 . This variant does not use every segment of a
trajectory, but requires less memory than Variant A. Its recursive formulas are the same as those of
Algorithm II, except that we redefine Zk+1 for k < ` to be

Zk+1 = λi0 · βρk−1,k · Zk + δ{λik = λi0} · φ(ik).

(See Appendix B.2 for the derivation.) The projected weighted Bellman equation associated with
Variant B can also be characterized similarly; we omit the derivation.
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4 Approximation by State Aggregation

If the approximation subspace is given by

S =
{
x
∣∣xi =

∑

j∈E
νijxj , i = 1, . . . , n

}

for some subset E of states and scalars νij , and we let ξ be such that {i | ξi > 0} ⊃ E, then the
projection Πξ onto S with respect to the semi-norm ‖ · ‖ξ is well-defined [see the discussion after the
condition (2.8)]. Among special cases of this are a class of state aggregation methods. In addition
to using a semi-norm projection, however, the approximation architectures of these methods also
ensure that the projected equation x = ΠξT

(c)x has a unique solution, and hence the Regularity
Condition is always satisfied. We explain this in detail below.

The state space is partitioned into subsets E0, E1, . . . , Ed. On each of the sets E1, . . . , Ed, we
approximate the costs by a constant. On E0, we determine the approximation by using convex
combinations of the approximate costs at states outside E0. Correspondingly, the approximation
subspace is

S =
{
x
∣∣xi = xj , ∀ i, j,∈ Em, 1 ≤ m ≤ d; xi =

∑

j:j 6∈E0

νijxj , ∀ i ∈ E0

}
(4.1)

for some nonnegative scalars νij , i ∈ E0, j 6∈ E0, with
∑
j:j 6∈E0

νij = 1. The special case E0 = ∅ is
called hard aggregation. We see that Πξ is well-defined for all ξ such that

{i | ξi > 0} ∩ Em 6= ∅, m = 1, . . . , d. (4.2)

We now let ξ satisfy, besides (4.2),
ξi = 0, ∀ i ∈ E0. (4.3)

Consider a projected Bellman equation x = ΠξT
(c)x. If Φ is a matrix with columns v1, . . . , vd

forming a basis of S, then since Πξ has the matrix representation

Πξ = ΦD, where D = (Φ′ΞΦ)−1Φ′Ξ, Ξ = diag(ξ),

by making the change of variable x = Φr, we see that the projected equation x = ΠξT
(c)x has a

unique solution if and only if the following equation has a unique solution:

r = DT (c)(Φr), r ∈ <d. (4.4)

We now show that for a particular choice of Φ, Eq. (4.4) can be viewed as a Bellman equation for an
artificial Markovian problem whose states are the sets E1, . . . , Ed. As a result, Eq. (4.4) and hence
also the projected equation x = ΠξT

(c)x has a unique solution.

In particular, choose a basis of S, v1, . . . , vd ∈ <n, as follows: for m = 1, . . . , d,

vm =



vm,1

...
vm,n


 with vm,i =





1 if i ∈ Em,∑
j∈Em νij if i ∈ E0,

0 otherwise,

In terms of its rows, Φ = (v1 . . . vd) is now the n× d matrix whose ith row is

( 0 . . . 0︸ ︷︷ ︸
m−1

1 0 . . . ) if i ∈ Em,m 6= 0,
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and (∑
j∈E1

νij . . .
∑
j∈Ed νij

)
if i ∈ E0.

Each row can be viewed as probabilities of transition from state i to artificial, aggregated states
E1, . . . , Ed.

The d × n matrix D = (Φ′ΞΦ)−1Φ′Ξ has a similar interpretation. Using the definition of Φ
and ξ [cf. Eqs. (4.2), (4.3)], a direct calculation shows that the mth row of D consists of zeros and
ξi, i ∈ Em, scaled as follows:

Dmi =

{
ξi∑

j∈Em ξj
if i ∈ Em,

0 otherwise,
i = 1, . . . , n.

Each row of D can be viewed as probabilities of transition from the aggregated state Em to states
1, . . . , n.

With these probabilistic interpretations of D and Φ, Eq. (4.4) can be viewed as a Bellman
equation for a discounted semi-Markov process on the aggregated states E1, . . . , Ed. Starting from
each of these states, the process evolves as it first “disaggregates” to some state in {1, . . . , n},
then lingers among the states {1, . . . , n} for a while, and finally returns to an aggregated state (or
gets absorbed at a terminal cost-free state). The dynamics of this process are described by the
“disaggregation” probability matrix D, the mapping T (c), and the “aggregation” probability matrix
Φ. Since the Bellman equation of a discounted semi-Markov process has a unique solution, it follows
that Eq. (4.4) has a unique solution and hence so does the projected equation x = ΠξT

(c)x.

In the context of aggregation, often one specifies first the aggregation and disaggregation schemes,
Φ andD, which in turn determine S and ξ. Usually one considers approximating the original MDP by
the MDP on the aggregated states defined by D, T and Φ, involving the one-step Bellman mappings
T for each policy. Hard aggregation is often applied, i.e., E0 = ∅ (see e.g., [Gor95, TV96]). The
special case where each of the sets E1, . . . , Ed consists of a single state is known as aggregation with
representative states [BT96, Ber12] and is associated with calculating approximate costs at a grid of
states and interpolating between these costs to obtain approximate costs for the remaining states.
The case with E0 6= ∅ and with multiple states aggregated into one state has been referred to as
aggregation with representative features [Ber12].

As to learning or simulation-based APE algorithms for forming and solving the equation x =
ΠξT

(c)x, there are a number of ways to design them. One may work directly with the associated
Markovian problem r = DT (c)(Φr) on the aggregated states, generating trajectories according to
the dynamics of the process described earlier (see [Ber12, Chap. 6.5]). Alternatively, one may apply
the algorithms discussed in the earlier sections for forming projected equations x = ΠξT

(c)x. We
discuss one example below.

Consider the variant A of Algorithm II given in Section 3.4.1, which is a TD-type algorithm with
parameters λi ∈ [0, 1] for each state i. It can be applied in the state aggregation context with the
following modification. At step 2b′, we define Yk as:

For i = 1, . . . , n,

Yk,i(x) =

k−1∑
j=0

δ
{
i = ij , i 6∈ E0

}
·

(
(1− λi)

k−1∑
m=j+1

λm−1−j
i

(
xi − T̃(I)mj

x
)

+ λk−1−j
i

(
xi − T̃(I)kj

x
))

.

Correspondingly, the recursive formulas of Variant A are modified with a new definition of auxiliary
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vectors Zk and Z
(1)
k , . . . , Z

(s)
k , assuming that {λ̄1, . . . , λ̄s} are the distinctive values of {λi}:

Z
(m)
k+1 = λ̄m · βρk−1,k · Z(m)

k + δ{λik = λ̄m, ik 6∈ E0} · φ(ik), m = 1, . . . , s, (4.5)

Zk+1 =
∑s
m=1 Z

(m)
k+1, (4.6)

[cf. Eqs. (3.9) and (3.10)]. Here the vector ξ and equivalently the matrix D are determined by the
algorithm. Similarly, one can also have a non-block version of the algorithm, like the one given in
Section 3.4.1.

5 Applications in Approximate Policy Iteration

The exact policy iteration method generates a sequence of policies µk, k = 1, 2, . . . , by iterating
between two steps: policy evaluation, which computes the cost vector Jµk of the policy µk, and
policy improvement, which computes a policy µk+1 with improved performance. One API approach
imitates this procedure and evaluates the policies approximately; then the APE algorithms based on
solving projected weighted Bellman equations can be directly applied. There are also API approaches
that replace the “pure” policy evaluation step with something in between policy evaluation and value
iteration. We focus on two such approaches in this section, of which one is based on modified policy
iteration (see e.g., [Put94, Rot79, CR12]) and the idea of solving projected equations, and the other
resembles asynchronous modified policy iteration (see e.g., [BT96, Ber12]). We demonstrate how
weighted Bellman mappings and the algorithms discussed earlier can be applied within these API
schemes.

5.1 Projected Equation-Based Methods

We describe first a general form of approximate modified policy iteration, which has a favorable
performance bound as shown by Thiery and Scherrer [TS10]. Let {νm} be a nonnegative scalar
sequence with

∑
m≥1 νm = 1. At the beginning of iteration k, we have from the previous iteration

some cost vector Jk−1 and a policy µk that is greedy with respect to Jk−1, which we obtained from
the usual policy improvement step (i.e., µk is optimal for a two-stage problem with Jk−1 as the
terminal costs). To simplify notation, denote µ̄ = µk, J̄ = Jk−1, and ν = {νm}. Let

T
(ν)
µ̄ =

∑
m≥1 νmT

m
µ̄ ,

where Tµ̄ is the Bellman mapping for µ̄. At iteration k, we let Jk be

Jk ≈ T (ν)
µ̄ J̄ . (5.1)

Suppose that for every k, the approximation error at this step satisfies ‖Jk − T (ν)
µ̄ J̄‖∞ ≤ ε. Then,

as established in [TS10], the performance of µk can be bounded asymptotically as

lim sup
k→∞

‖Jµk − J∗‖∞ ≤
2β

(1− β)2
ε, (5.2)

where J∗ denotes the optimal cost vector.

Regarding approximation of the vector T
(ν)
µ̄ J̄ in (5.1), one idea in [TS10] is to find an equation

satisfied by T
(ν)
µ̄ J̄ and then solve a projected version of the equation. Weighted Bellman mappings

can be applied in this context and we give two examples below.
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5.1.1 Application in λ-Policy Iteration

“λ-policy iteration” is introduced by Bertsekas and Ioffe [BI96] (see also [Ber11]). It corresponds to

the case νm = (1− λ)λm−1. The desired vector T
(ν)
µ̄ J̄ in (5.1) is then

x∗ = T
(λ)
µ̄ J̄ ,

and an equation which has x∗ as its unique solution is

x = Mx
def
= (1− λ)Tµ̄J̄ + λTµ̄x.

To approximate x∗, we can solve a projected equation

x = ΠξM
(c)x (5.3)

for certain ξ and c. (This extends the proposal in [TS10], which is to solve x = ΠξMx.) The
algorithms given earlier for APE are applicable here. In particular, using trajectories of states, we
can construct equations that asymptotically approach an equation of the form (5.3), and use their
solutions as approximations of x∗.

The computation details are also similar to those in the APE case. Let gµ̄ denote the expected
one-stage cost vector of µ̄ and let gµ̄(i, i′) denote the cost of transition from state i to i′. The equation
x = Mx is equivalent to the Bellman equation for the policy µ̄ in an MDP that has discount factor
λβ and has λgµ̄+(1−λ)Tµ̄J̄ as the expected one-stage cost under µ̄. Therefore, the APE algorithms
given in the earlier sections can be applied here with the discount factor being λβ and with the cost
of transition being gµ(ik, ik+1) = gµ̄(ik, ik+1) + (1−λ)βJ̄(ik+1) for a state transition (ik, ik+1) along
a trajectory.

5.1.2 Application in Approximate Modified Policy Iteration

Consider the general approximate modified policy iteration scheme described at the beginning of

Section 5.1, where we compute approximately T
(ν)
ū J̄ at the “policy evaluation” step (5.1). A modi-

fication of this scheme is to approximate the cost vector

x∗ = (1− γ)T
(ν)
µ̄ J̄ + γJ µ̄, (5.4)

where γ ∈ (0, 1), instead of approximating T
(ν)
µ̄ J̄ . Using a large value of γ has the effect of taking

a large step toward J µ̄ when updating Jk and results in an API scheme that is close to policy
iteration. We may let νm be positive for only a few small integers m, since for large m, Tmµ̄ J̄ ≈ J µ̄.
The performance bound (5.2) [TS10] can be shown to hold for the API scheme we just proposed;
moreover, this bound holds even if γ and ν are iteration-dependent.

To approximate x∗, we can apply the projected equation approach: first, we find a linear equation

satisfied by x∗, and we then solve a projected version of that equation. For any T
(c)
µ̄ , since

J µ̄ = T
(c)
µ̄ J µ̄

and J µ̄ =
(
x∗−(1−γ)T

(ν)
µ̄ J̄

)
/γ, by substitution we see that x∗ is the unique solution of the equation9

ζ(x) = T
(c)
µ̄ ζ(x), (5.5)

9Expressed as a fixed point equation in x, Eq. (5.5) is

x = (1− γ)
(
T

(ν)
µ̄ J̄ −

(
T

(c)
µ̄ ◦ T (ν)

µ̄

)
J̄
)

+ T
(c)
µ̄ x.
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where
ζ(x) =

(
x− (1− γ)T

(ν)
µ̄ J̄

)
/γ.

So to approximate x∗, we can solve a projected version of Eq. (5.5):

x ∈ S, Πξ

(
ζ(x)− T (c)

µ̄ ζ(x)
)

= 0. (5.6)

As in the APE case, we need not fix ξ and c in advance; their values can be determined by the
algorithms instead.

The APE algorithms we discussed in the earlier sections can be applied here. More specifically,
in these algorithms, we now define the equation at iteration t to be

x ∈ S,
〈
v , Gt(ζ(x))

t

〉
= 0, ∀ v ∈ VS , (5.7)

where we have ζ(x) in place of the variable x in the function Gt(x). Regarding recursive computation,
the formulas can be similarly derived as in the APE case, by making the change of variable x = Φr,

and by using sample-based estimates for each component of the vector (1− γ)T
(ν)
µ̄ J̄ in the function

ζ(x), wherever these components are needed in the algorithms. The computation overhead for
obtaining the estimates is not too high if only a few coefficients νm with small integers m are
positive.

5.2 Asynchronous Modified Policy Iteration-Like Methods

Consider first a policy iteration algorithm without function approximation. At iteration k, given the
cost vector J̄ = Jk−1 and a policy µ̄ = µk that is greedy with respect to J̄ , we let

Jk = T
(c)
µ̄ J̄ (5.8)

for some weighted Bellman mapping T
(c)
µ̄ corresponding to µ̄. The coefficients c can be iteration-

dependent.

This algorithm is a special case of asynchronous modified policy iteration. Monotonic convergence
of {Jk} to the optimal cost J∗ is guaranteed if we start with a cost vector and policy pair (µ0, J0)

such that Tµ0J0 ≤ J0 (this convergence follows from the monotonicity of T
(c)
µ for any µ). In general,

without the initial condition, the algorithm differs significantly from “pure” or modified policy
iteration methods in that the “policy improvement” steps do not yield improved policies. We expect
its behavior to be similar to the general asynchronous modified policy iteration algorithm, which,
despite its wide use in practice, is quite complex and not well-understood theoretically.

An approximate version of the above algorithm is obtained when we add projection in (5.8):

Jk = ΠξT
(c)
µ̄ J̄ . (5.9)

Computing the right-hand side of (5.9) is similar to solving a projected equation. The APE algo-
rithms given earlier are applicable: we only need to replace all the terms T̃Ix in the equations with
the terms T̃I J̄ . As before, we can let the algorithms determine the values of ξ and c. Recursive
formulas can also be similarly derived; we omit the details.

We note that the preceding API algorithm inherits the complex behavior of asynchronous mod-

ified policy iteration. While (5.9) may look similar to Jk = ΠξT
(λ)
µ̄ J̄ in λ-policy iteration or to

Jk ≈ T
(ν)
µ̄ J̄ in approximate modified policy iteration, the performance bound (5.2) does not apply

here in general.

Finally, we mention that there is another use of the approximate costs Jk computed by (5.9).
They can be used as the stopping costs for the new, policy iteration-like Q-learning algorithms
of [BY12, YB12], which solve sequences of optimal stopping problems where the stopping costs
represent the current estimates of upper bounds of the optimal costs.
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6 Discussion

In this paper we studied the use of weighted Bellman mappings for APE and API. This gave rise to
a great variety of algorithms, which have the same approximation character as the widely applied,
standard TD algorithms, and can be as easily implemented in practice. The important feature of our
approximation framework is that one can choose different types of Bellman mappings for different
states. One may use this as a means to balance approximation bias against estimation variance.
By varying the mappings, one may also detect potential bias issues from the approximate solutions
themselves, if they appear to be inconsistent with each other. There are still many open questions,
however, when applying these mappings or Bellman mappings of even more general forms. For
example, it is not clear how to choose the mapping in an “optimal” way, or how to even define the
notion of optimality. Nevertheless, we believe that such mappings provide powerful and versatile
means for approximations in MDP, and deserve further study and numerical experimentation.
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Appendices

A Proofs for Section 2.2

In this appendix we verify some statements made in Section 2.2 about the approximation properties
of the solution x̄ of a projected Bellman equation x = ΠξT

(c)x. Recall that T (c) is a weighted
Bellman mapping given by

T
(c)
i =

∑
k≥1 cik · T ki i = 1, . . . , n,

and it is denoted in matrix notation by T (c)x = Ax+b. Recall also that (ξ, c, S) is assumed to satisfy
the Regularity Condition (Section 2.1), and Πξ is the projection onto the approximation subspace
S with respect to the semi-norm ‖ · ‖ξ, given by

Πξx = arg miny∈S ‖x− y‖ξ, ∀x,

where the minimum is uniquely attained.

Let 〈x, y〉ξ =
∑n
i=1 ξixiyi. Some basic properties of Πξ and ‖ · ‖ξ are similar to those in the case

where ‖ · ‖ξ is a norm:

(a) ‖x‖ξ = 0 implies Πξx = 0;

(b) 〈y, x−Πξx〉ξ = 0 for any y ∈ S (optimality condition);

(c) for any y ∈ S, ‖x− y‖2ξ = ‖x−Πξx‖2ξ + ‖Πξx− y‖2ξ (Pythagorean theorem);

(d) ‖Πξx‖ξ ≤ ‖x‖ξ (nonexpansiveness);

(e) ‖x+ y‖ξ ≤ ‖x‖ξ + ‖y‖ξ (triangle inequality).
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From the definition of ‖L‖ξ for an n× n matrix L, another property of the semi-norm ‖ · ‖ξ follows:

(f) ‖L‖ξ <∞ if and only if ‖Ly‖ξ = 0 for all y ∈ <n with ‖y‖ξ = 0.

First, we show Prop. 2.3.

Proof of Prop. 2.3. We only need to verify the last statement of this proposition, which is about
when the bound (2.12) is non-vacuous: if ‖ΠξA‖ξ <∞, then

B̃(A, ξ, S) = ‖(I −ΠξA)−1ΠξA(I −Πξ)‖ξ <∞. (A.1)

The special case where ξ is an invariant distribution of P is addressed by Lemma A.1 below.

Suppose ‖ΠξA‖ξ < ∞. Consider any y ∈ <n with ‖y‖ξ = 0. By property (a), Πξy = 0, so
(I − Πξ)y = y. By property (f), ‖ΠξAy‖ξ = 0, and since ΠξAy ∈ S, this implies ΠξAy = 0 by
Eq. (2.8). Hence

(I −ΠξA)−1ΠξA(I −Πξ)y = 0,

which implies, by property (f), Eq. (A.1).

Next, we verify Cor. 2.1, which states that

x̄ = Πξx
∗ if ‖ΠξA‖ξ <∞ and ‖x∗ −Πξx

∗‖ξ = 0.

Proof of Cor. 2.1. The assumption implies ‖ΠξA(x∗ − Πξx
∗)‖ξ = 0 by property (f). Since the

vector ΠξA(x∗ −Πξx
∗) ∈ S, we have ΠξA(x∗ −Πξx

∗) = 0 by Eq. (2.8), so

ΠξA(Πξx
∗) = ΠξAx

∗.

Adding Πξb to both sides and using the fact x∗ = T (c)x∗, we obtain

ΠξT
(c)(Πξx

∗) = ΠξT
(c)x∗ = Πξx

∗,

i.e., Πξx
∗ is the solution of the projected equation x = ΠξT

(c)x. Therefore, x̄ = Πξx
∗.

The contraction-based bounds (2.13)-(2.15) require the condition

‖ΠξA‖ξ < 1. (A.2)

The bound (2.13) in Prop. 2.4 follows exactly from the arguments of Tsitsiklis and Van Roy [TV97],
which use the Pythagorean theorem (property (c) above) in addition to (A.2).

In what follows, we consider the case where ξ is an invariant distribution of P : ξ′P = ξ, and we
verify the bounds (2.14) and (2.15) in Cors. 2.2 and 2.3. (Of interest is the case where the Markov
chain has transient states, so some components of ξ are zero.) First, we note that while with such ξ,
Eq. (A.2) holds for standard TD(λ), this is not the case for weighted Bellman mappings involving
state-dependent weights. However, it is true that ‖ΠξA‖ξ <∞.

Lemma A.1. Suppose ξ is an invariant distribution of P . Then,

‖ΠξA‖ξ ≤ ‖A‖ξ <∞.
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Proof. The matrix A has entries

Aij =
∑
k≥1 cikβ

kP kij , i, j = 1, . . . , n, (A.3)

where P kij denotes the (i, j)th entry of P k. Since ξ is an invariant distribution of P , the states i
with ξi > 0 form a closed set of the Markov chain. Consequently, for all y ∈ <n with ‖y‖ξ = 0,∑n
j=1 Pijyj = 0 for all i with ξi > 0, which implies ‖Ay‖ξ = 0. So by property (f), ‖A‖ξ < ∞, and

by property (d), ‖ΠξA‖ξ ≤ ‖A‖ξ <∞.

It is true that ‖ΠξA‖ξ < 1 if the coefficients c in T (c) are state-independent: cik = ck for all
states i. This and the more exact bound given in Eq. (2.15),

‖ΠξA‖ξ ≤
∑
k≥1 ck β

k ≤ β, (A.4)

follow from the same arguments as in [TV97]. We include a proof.

Proof of Cor. 2.3. In this case, we have A =
∑
k≥1 ck β

kP k. Since ξ is an invariant distribution
of P , it follows that

‖P k‖ξ = sup
y:‖y‖ξ=1

‖P ky‖ξ = 1, ∀ k ≥ 1. (A.5)

(The supremum is attained at y with yi = 1 for i with ξi > 0 and yi = 0 for i with ξi = 0.) Then
by the triangle inequality (property (e)),

‖A‖ξ = sup
y:‖y‖ξ=1

∥∥∥
∑

k≥1

ck β
kP ky

∥∥∥
ξ
≤
∑

k≥1

ck β
k
(

sup
y:‖y‖ξ=1

‖P ky‖ξ
)

=
∑

k≥1

ck β
k.

By the nonexpansiveness of Πξ (property (d)), Eq. (A.4) follows.

Finally, we verify the bound (2.14) in Cor. 2.2 for T (c) with state-dependent weights. Here it is
assumed ∑

k≥1 c̄kβ
2k < 1, where c̄k = max1≤i≤n cik,

and we need to show

‖ΠξA‖ξ ≤
√∑

k≥1 c̄kβ
2k. (A.6)

Proof of Cor. 2.2. By Eq. (A.3), for any y ∈ <n,

‖Ay‖2ξ =
∑n
i=1 ξi

(∑
k≥1 cikβ

k
∑n
j=1 P

k
ijyj

)2

.

For each term in the summation, using the convexity of the function x2, the fact
∑
k≥1 cik = 1 and

the definition of c̄k, we have

(∑
k≥1 cikβ

k
∑n
j=1 P

k
ijyj

)2

≤∑k≥1 cikβ
2k
(∑n

j=1 P
k
ijyj

)2

≤∑k≥1 c̄kβ
2k
(∑n

j=1 P
k
ijyj

)2

.

Combining the preceding two relations with Eq. (A.5), we have

‖Ay‖2ξ ≤
∑
k≥1 c̄kβ

2k
∑n
i=1 ξi

(∑n
j=1 P

k
ijyj

)2

=
∑
k≥1 c̄kβ

2k‖P ky‖2ξ ≤
∑
k≥1 c̄kβ

2k‖y‖2ξ ,

and therefore,

‖A‖ξ ≤
√∑

k≥1 c̄kβ
2k.

The bound (A.6) then follows by applying property (d).
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B Derivations of Recursive Formulas of TD-Type Algorithms

We verify in this appendix the recursive computation formulas of Algorithm II and its two variants.
They were given in Section 3.3.1 and Section 3.4, respectively.

As in Section 3.3.1, suppose VS = {v1, . . . , vd}, let Φ be the n × d matrix (v1 . . . vd), and let
φ(i)′ be its ith row, i.e.,

φ(i) =
(
v1,i, . . . , vd,i

)′
.

In what follows, we consider iteration t of the algorithms. Let the state trajectory be It = (i0, . . . , i`).
Define affine functions ft, ψk ∈ Ad[x], k = 1, . . . , `, by

ft(x) =



fv1,t(x)

...
fvd,t(x)


 =




〈
v1 ,

Gt(x)
t

〉
...〈

vd ,
Gt(x)
t

〉


 , ψk(x) =




〈
v1 , Yk(x)

〉
...〈

vd , Yk(x)
〉


 . (B.1)

As discussed in Section 3.3.1, Equation(t) of iteration t and Equation(t; k) of sub-iteration k are
stored after making the change of variable x = Φr where r ∈ <d. In particular, these equations are
equivalent to:

Equation(t): ft(Φr) = 0, Equation(t; k):
(
1− 1

t

)
ft−1(Φr) + 1

tψk(Φr) = 0,

and the matrix representation of the functions in the left-hand sides of the equations are stored. Let
the matrix representation of the function ft(Φr) be

ft(Φr) = Ctr − bt. (B.2)

We derive the recursive formulas for computing the matrix Ct and vector bt.

B.1 Derivations for Section 3.3.1

Based on steps 3 and 4 of Algorithm II, we have the relation

ft(x) = (1− 1
t )ft−1(x) + 1

tψ`(x)

= (1− 1
t )ft−1(x) + 1

t

`−1∑

k=0

(
ψk+1(x)− ψk(x)

)
,

where we define ψ0 ∈ Ad[x] and ψ0(·) ≡ 0. Hence, if we have the following matrix representations
of the functions,

ψk+1(Φr)− ψ`(Φr) = Uk r − uk, k = 0, . . . , `− 1, (B.3)

then Ct, bt in the matrix representation (B.2) for ft(Φr) are given by

Ct =
(
1− 1

t

)
Ct−1 + 1

t

`−1∑

k=0

Uk, bt =
(
1− 1

t

)
bt−1 + 1

t

`−1∑

k=0

uk. (B.4)

We now calculate the matrices Uk and vectors uk in Eq. (B.3). To this end, we calculate
ψk+1(x) − ψk(x). (We will make the change of variable x = Φr at the end to obtain the desired
expressions.)

For k ≤ `, we can express the function Yk(x) in familiar terms of temporal difference as: for
every i,

Yk,i(x) =

k−1∑

j=0

δ
{
i = ij

}
·

k∑

m=j+1

λm−1−j ·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)
, (B.5)
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where the mapping T̃(I)jj
is defined as T̃(I)jj

x = xij for all x. By the definition of ψk [cf. Eq. (B.1)],

we then have

ψk(x) =

n∑

i=0

φ(i) · Yk,i(x) =

n∑

i=0

φ(i) ·
k−1∑

j=0

δ
{
i = ij

}
·

k∑

m=j+1

λm−1−j ·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)

=

k−1∑

j=0

φ(ij) ·
k∑

m=j+1

λm−1−j ·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)
.

Hence, for k ≤ `− 1,

ψk+1(x)− ψk(x) =

k∑

j=0

λk−j · φ(ij) ·
(
T̃(I)kj

x− T̃(I)k+1
j

x
)

=




k∑

j=0

λk−j · φ(ij) · βk−j ρj,k


 ·

(
xik − ρk,k+1 gµ(ik, ik+1)− βρk,k+1 xik+1

)
,

(B.6)

where, for ordinary PE [in which case T̃I is defined by Eq. (3.1)],

ρj,m = 1, ∀ j ≤ m ≤ `,

whereas for exploration-enhanced PE [in which case T̃I is defined by Eq. (3.2)],

ρj,j = 1 and ρj,m =
∏m−1
s=j

pisis+1

p̄isis+1
, ∀ j < m ≤ `.

Let Zk+1 be the first term in the right-hand side of Eq. (B.6), i.e., let

Zk =

k−1∑

j=0

λk−1−jβk−1−jρj,k−1 · φ(ij), k = 1, . . . , `.

By this definition and Eq. (B.6), Zk can be computed recursively and ψk+1 − ψk can be expressed
in terms of Zk+1 as follows. With Z0 = 0 and ψ0 ≡ 0, for k = 0, 1, . . . , `− 1,

Zk+1 = λβρk−1,k · Zk + φ(ik), (B.7)

ψk+1(x)− ψk(x) = Zk+1 ·
(
xik − ρk,k+1 gµ(ik, ik+1)− βρk,k+1 xik+1

)
. (B.8)

Finally, we make the change of variable x = Φr in Eq. (B.8) to obtain

ψk+1(Φr)− ψk(Φr) = Ukr − uk, k = 0, . . . , `− 1,

where

Uk = Zk+1 ·
(
φ(ik)− βρk,k+1 φ(ik+1)

)′
, uk = Zk+1 · ρk,k+1 gµ(ik, ik+1). (B.9)

Equations (B.7), (B.9) together with (B.4) form recursive computation formulas for Algorithm II
(as given in Section 3.3.1).

36



B.2 Derivations for Section 3.4

Variant A

To derive the recursive computation formulas of Variant A (Section 3.4), we reason as in Ap-
pendix B.1. Instead of Eq. (B.5), we now have

Yk,i(x) =

k−1∑

j=0

δ
{
i = ij

}
·

k∑

m=j+1

λm−1−j
i ·

(
T̃(I)m−1

j
x− T̃(I)mj

x
)
,

and

ψk(x) =

k−1∑

j=0

φ(ij) ·
k∑

m=j+1

λm−1−j
ij

·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)
.

So instead of Eq. (B.6), we now have

ψk+1(x)−ψk(x) =




k∑

j=0

λk−jij
· φ(ij) · βk−j ρj,k


·
(
xik−ρk,k+1 gµ(ik, ik+1)−βρk,k+1 xik+1

)
. (B.10)

As before, let Zk+1 be the first term in the right-hand side above; i.e., let

Zk =

k−1∑

j=0

λk−1−j
ij

βk−1−jρj,k−1 · φ(ij), k = 1, . . . , `.

Then Eq. (B.8) holds and the recursive formulas of Algorithm II hold for Variant A, except for the
formula for Zk, which we derive next.

Using the assumption that λi takes values in the set {λ̄1, . . . , λ̄s}, we see that

Zk =

s∑

m=1

k−1∑

j=0

λ̄k−1−j
m · δ{λij = λ̄m} · βk−1−jρj,k−1 · φ(ij)

=

s∑

m=1

Z
(m)
k , (B.11)

where for m = 1, . . . , s, we define Z
(m)
k by

Z
(m)
k =

k−1∑

j=0

λ̄k−1−j
m · βk−1−jρj,k−1 · δ{λij = λ̄m}φ(ij).

For each m, Z
(m)
k , k ≤ `, can be calculated recursively: with Z

(m)
0 = 0,

Z
(m)
k+1 = λ̄m · βρk−1,k · Z(m)

k + δ{λik = λ̄m}φ(ik), k = 0, 1, . . . , `− 1. (B.12)

Equation (B.12) and (B.11), together with (B.9) and (B.4), form the recursive computation formulas
for Variant A as given in Section 3.4.1.

Variant B

The formulas for Variant B can be similarly derived. Instead of Eq. (B.5), we now have

Yk,i(x) =

k−1∑

j=0

δ
{
i = ij , λi = λi0

}
·

k∑

m=j+1

λm−1−j
i ·

(
T̃(I)m−1

j
x− T̃(I)mj

x
)
,

37



and

ψk(x) =

k−1∑

j=0

φ(ij) δ
{
λij = λi0

}
·

k∑

m=j+1

λm−1−j
i0

·
(
T̃(I)m−1

j
x− T̃(I)mj

x
)
.

So instead of Eq. (B.6), we have

ψk+1(x)−ψk(x) =




k∑

j=0

λk−ji0
· φ(ij) · δ

{
λij = λi0

}
βk−j ρj,k


·
(
xik−ρk,k+1 gµ(ik, ik+1)−βρk,k+1 xik+1

)
.

(B.13)
As before, we define Zk+1 to be the first term in the right-hand side above:

Zk =

k−1∑

j=0

λk−1−j
i0

βk−1−jρj,k−1 · δ
{
λij = λi0

}
φ(ij), k = 1, . . . , `.

They can be calculated recursively: with Z0 = 0,

Zk+1 = λi0 · βρk−1,k · Zk + δ{λik = λi0}φ(ik), k = 1, . . . , `− 1. (B.14)

Equation (B.14), together with (B.9), (B.4), forms the recursive computation formulas for Variant B
as given in Section 3.4.2.
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