
A NEW VALUE ITERATION METHOD FOR THE AVERAGE COST
DYNAMIC PROGRAMMING PROBLEM∗

DIMITRI P. BERTSEKAS†

SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 742–759, March 1998 013

Abstract. We propose a new value iteration method for the classical average cost Markovian
decision problem, under the assumption that all stationary policies are unichain and that, further-
more, there exists a state that is recurrent under all stationary policies. This method is motivated
by a relation between the average cost problem and an associated stochastic shortest path problem.
Contrary to the standard relative value iteration, our method involves a weighted sup-norm con-
traction, and for this reason it admits a Gauss–Seidel implementation. Computational tests indicate
that the Gauss–Seidel version of the new method substantially outperforms the standard method for
difficult problems.

Key words. dynamic programming, average cost, value iteration

AMS subject classifications. 90C35, 49L20

PII. S0363012995291609

1. Introduction. We consider a controlled discrete-time dynamic system with
n states, denoted 1, . . . , n. At each time, if the state is i, a control u is chosen
from a given finite constraint set U(i), and the next state is j with given probability
pij(u). An admissible policy is a sequence of functions from states to controls, π =
{µ0, µ1, . . .}, where µk(i) ∈ U(i) for all i and k. The average cost corresponding to π
and initial state i is

Jπ(i) = lim sup
N⇀∞

1
N
E

{
N−1∑
k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}
,

where xk is the state at time k and g is a given cost function. A stationary policy is
an admissible policy of the form π = {µ, µ, . . .}, and its corresponding cost function
is denoted by Jµ(i). For brevity, we refer to {µ, µ, . . .} as the stationary policy µ. We
want to solve the classical problem of finding an optimal policy, that is, an admissible
policy π such that Jπ∗(i) = minπ Jπ(i) for all i.

A stationary policy is called unichain if it gives rise to a Markov chain with a
single recurrent class. Throughout the paper, we assume the following.

Assumption 1: All stationary policies are unichain. Furthermore, state n is re-
current in the Markov chain corresponding to each stationary policy.

It is well known that under Assumption 1, the optimal cost J∗(i) has a common
value for all initial states, which is denoted by λ∗,

J∗(i) = λ∗, i = 1, . . . , n.

Furthermore, λ∗ together with a differential cost vector h =
(
h(1), . . . , h(n)

)
satisfies

Bellman’s equation

(1) λ∗ + h(i) = min
u∈U(i)

g(i, u) +
n∑
j=1

pij(u)h(j)

 , i = 1, . . . , n.

∗Received by the editors September 11, 1995; accepted for publication (in revised form) February
4, 1997. This research was supported by NSF grant 9300494-DMI.

http://www.siam.org/journals/sicon/36-2/29160.html
†Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139 (bertseka@lids.mit.edu).

742

VALUE ITERATION METHOD 743

i j

pij(u)

pii(u) pjj(u)pji(u)

n

pin(u) pjn(u)

pnn(u)

pnj(u)pni(u)

i j

pij(u)

pii(u) pjj(u)pji(u)

n

t

Artificial Termination State

Special
State n

pni(u)

pin(u)

pnn(u)

pnj(u)

pjn(u)

FIG. 1. Transition probabilities for an average cost problem and its associated stochastic shortest
path problem. The latter problem is obtained by introducing, in addition to 1, . . . , n, an artificial ter-
mination state t to which we move from each state i with probability pin(u), by setting all transition
probabilities pin(u) to 0, and by leaving unchanged all other transition probabilities.

In addition, a stationary policy µ is optimal if and only if µ(i) attains the minimum
in the above equation for all i. These results can be shown under the assumption
that all stationary policies are unichain, without requiring the additional condition
that there is a common recurrent state to all stationary policies. However, for the
methods of this paper, the existence of a common recurrent state is essential, at least
for the purposes of analysis. From the computational point of view, the existence
of a common recurrent state is less significant, as long as all stationary policies are
unichain. One may modify the problem so that Assumption 1 holds by adding a very
small positive ε to all transition probabilities of the form pin(u). The effect on the
average cost per stage of each stationary policy will be O(ε).

Under Assumption 1 we can make an important connection of the average cost
problem with an associated stochastic shortest path problem, which has been the basis
for a recent textbook treatment of the average cost problem [Ber95, Vol. I, section
7.4]. This problem is obtained by leaving unchanged all transition probabilities pij(u)
for j 6= n, by setting all transition probabilities pin(u) to 0, and by introducing an
artificial cost-free and absorbing termination state t to which we move from each
state i with probability pin(u); see Fig. 1. The expected stage cost at state i of the
stochastic shortest path problem is g(i, u) − λ, where λ is a scalar parameter. Let
hµ, λ(i) be the cost of stationary policy µ for this stochastic shortest path problem,
starting from state i; that is, hµ, λ(i) is the total expected cost incurred starting from
state i up to reaching the termination state t. We refer to this problem as λ-SSP.
Let hλ(i) = minµ hµ, λ(i) be the corresponding optimal cost of the λ-SSP. Then the
following can be shown (see Fig. 2).

(a) For all µ and λ, we have

(2) hµ, λ(i) = hµ, λµ(i) + (λµ − λ)Nµ(i), i = 1, . . . , n,

where Nµ(i) is the average number of steps required to reach n under µ starting from
state i, and λµ is the average cost corresponding to µ.

(b) The functions

(3) hλ(i) = min
µ
hµ, λ(i), i = 1, . . . , n,

744 DIMITRI P. BERTSEKAS

λµλ∗ λ

hµ,λ (n) = (λµ - λ)Nµ

hλ (n)

FIG. 2. Relation of the costs of stationary policies in the average cost problem and the associated
stochastic shortest path problem.

are concave, monotonically decreasing, and piecewise linear as functions of λ, and

(4) hλ(n) = 0 if and only if λ = λ∗.

Furthermore, the vector hλ∗ satisfies Bellman’s equation (1) together with λ∗.
From Fig. 2, it can be seen that λ∗ can be obtained by a one-dimensional search

procedure that brackets λ∗ within a sequence of nested and diminishing intervals; see
[Ber95, Vol. II, Fig. 4.5.2]. This method is probably inefficient because it requires the
(exact) solution of several λ-SSPs, corresponding to several different values of λ. An
alternative method, which is also inefficient because it requires the exact solution of
several λ-SSPs, is to update λ by an iteration of the form

(5) λk+1 = λk + γkhλk(n),

where γk is a positive stepsize parameter. This iteration is motivated by Fig. 2, where
it is seen that λ < λ∗ (or λ > λ∗) if and only if hλ(n) > 0 (or hλ(n) < 0, respectively).
Indeed, it can be seen from Fig. 2 that the sequence {λk} generated by (5) converges
to λ∗ provided the stepsize γk is the same for all iterations and does not exceed the
threshold value 1/maxµNµ(n). Such a stepsize is sufficiently small to guarantee that
the difference λ − λ∗ does not change sign during the algorithm (5). Note that each
λ-SSP can be solved by value iteration, which has the form

(6) hk+1(i) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)hk(j)

− λ, i = 1, . . . , n,

with λ kept fixed throughout the value iteration method.

VALUE ITERATION METHOD 745

In this paper we propose algorithms based on the λ-SSP, which are more efficient
than the algorithms mentioned above. In particular, we change λ during the value
iteration process (6) by using an iteration of the form (5), but with hλk(n) replaced
by an approximation, the current value iterate hk+1(n). Such an algorithm may be
viewed as a value iteration algorithm for a slowly varying stochastic shortest path
problem. It has the form

(7) hk+1(i) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)hk(j)

− λk, i = 1, . . . , n,

(8) λk+1 = λk + γkhk+1(n),

where γk is a positive stepsize. We prove convergence of this method for the case
where γk is a sufficiently small constant. Convergence can also be similarly proved
for a variety of other stepsize rules.

Our method should be contrasted with the standard relative value iteration
method for average cost problems due to [Whi63], which takes the form (see, e.g.,
[Ber95], [Put94])

(9) λk+1 = min
u∈U(n)

g(n, u) +
n∑
j=1

pnj(u)hk(j)

 ,

(10) hk+1(i) = min
u∈U(i)

g(i, u) +
n∑
j=1

pij(u)hk(j)

− λk+1, i = 1, . . . , n.

If we use (7) to write iteration (8) in the equivalent form

λk+1 = (1− γk)λk + γk min
u∈U(n)

g(n, u) +
n−1∑
j=1

pnj(u)hk(j)

 ,
we see that if γk = 1 for all k, the new value iteration (7)–(8) becomes similar to the
standard value iteration (9)–(10): the updating formulas are the same in both methods
(because we have hk(n) = 0 for all k ≥ 1 in the iteration (9)–(10)), but the order of
updating λ is just reversed relative to the order of updating h. Despite the similarity
of the two methods, the proof of convergence of the standard method (9)–(10) (as
given, for example, in [Ber95, Vol. II] or [Put94]) does not seem to be applicable to
the new method. The line of proof given in the next section is substantially different,
and makes essential use of Assumption 1 and the connection with the stochastic
shortest path problem. Furthermore, one can construct examples where Assumption
1 is violated because state n is transient under some stationary policy, and where the
new method (7)–(8) does not converge while the known method (9)–(10) converges.
Conversely, it can be seen that the standard aperiodicity assumption required for
convergence of the standard method (9)–(10) (see, e.g., [Ber95], [Put94]) is not needed
for the new method. We note also that there is a variant of the standard method (9)–
(10) that does not require an aperiodicity assumption and involves interpolations

746 DIMITRI P. BERTSEKAS

between hk and hk+1 according to a stepsize parameter (see [Sch71, [Pla77], [Var78],
[PBW79], [Put94], [Ber95]). However, the new method does not seem as closely
related to this variant.

A significant improvement in the algorithm, which guarantees that bounded it-
erates will be generated for any choice of stepsize, is to calculate upper and lower
bounds on λ∗ from iteration (7) and then modify iteration (8) to project the iterate
λk+γkhk(n) on the interval of the bounds. In particular, based on the Odoni bounds
[Odo69] for the relative value iteration method (see, e.g., [Ber95, Vol. II, p. 209], it
can be seen that

βk ≤ λ∗ ≤ βk,

where

(11) βk = λk + min
[
min
i6=n

[
hk+1(i)− hk(i)

]
, hk+1(n)

]
,

(12) β
k

= λk + max
[
max
i6=n

[
hk+1(i)− hk(i)

]
, hk+1(n)

]
.

Thus we may replace the iteration λk+1 = λk + γkhk+1(n) (cf. (8)) by

(13) λk+1 = Πk

[
λk + γkhk+1(n)

]
,

where Πk[c] denotes the projection of a scalar c on the interval

(14)
[

max
m=0,...,k

βm, min
m=0,...,k

β
m
]
.

We note that the issue of stepsize selection is crucial for the success of our algo-
rithm. In particular, if γk is a chosen constant but very small, or diminishing at the
rate of 1/k (as is common in stochastic approximation algorithms), then λ changes
slowly relative to h, and the iteration (8) essentially becomes identical to iteration
(5) but with a very small stepsize, which leads to slow convergence. On the other
hand, if γk is too large, λk will oscillate and diverge. One may keep the stepsize γk

constant at a value found by trial and error, but there are some better alternatives.
One possibility that has worked quite reliably and efficiently in our tests is to start
with a fairly large γk and gradually diminish it if hk(n) changes sign frequently; for
example, we may use

(15) γk = m(k̂)γ,

where
(a) γ is the initial stepsize (a positive constant),
(b) m(k̂) is a decreasing function of k̂, which is defined as the number of indexes

t ≤ k such that ht−1(n)ht(n) < 0 and |ht(n)| is greater than some fixed threshold θ.
Examples of functions m(·) that we tried are

(16a) m(k̂) =
1

k̂ + 1

and

(16b) m(k̂) = ξk̂,

VALUE ITERATION METHOD 747

where ξ is a fixed scalar from the range (0, 1), so that γk is decreased by a factor ξ each
time k̂ is incremented. Our experience indicates that it is best to choose the initial
stepsize γ in the range [1, 5]. Typically, the stepsize is reduced quickly according to
(15) to an appropriate level (which depends on the problem) and then stays constant
for the remaining iterations. In our experiments, we have used the preceding choices
of γk with γ = 1, ξ = 0.95, and θ = 1.

The motivation for our method is that value iteration for stochastic shortest path
problems involves a contraction. In particular, consider the mapping F : <n → <n
with components given by

Fi(h) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)h(j)

 , i = 1, . . . , n.

It is known (see, e.g., [BeT89, p. 325] or [Tse90]) that, under Assumption 1, F is
a contraction mapping with respect to some weighted sup-norm; that is, for some
positive scalars v1, . . . , vn, and some scalar α ∈ (0, 1), we have

(17) max
i=1,...,n

|Fi(h)− Fi(h)|
vi

≤ α max
i=1,...,n

|h(i)− h(i)|
vi

∀ h, h ∈ <n.

Note here that while there is coupling between the iteration of h as per (7) and the
iteration for λ as per (8), the latter iteration can be made much slower than the former
through the use of the stepsize γ, so that the weighted sup-norm contraction character
of the iteration (7) is preserved. Furthermore, even when the stepsize γ is not small,
the contraction property of F is analytically convenient, as will be seen, for example,
in the analysis of section 3. By contrast, the standard relative value iteration method
(9)–(10) does not involve a weighted sup-norm contraction, and in fact it may not
involve a contraction of any kind, unless an additional aperiodicity assumption on the
Markov chains corresponding to the stationary policies is imposed. We speculate that
the sup-norm contraction structure may be helpful in other contexts, beyond those
discussed in this paper; for example, in Q-learning (stochastic approximation) variants
of the method and when parallel asynchronous variations are considered. In fact, an
analysis of Q-learning variants of our method that admit a parallel asynchronous
implementation is the subject of a forthcoming report [ABB97].

The new method (7)–(8) can be viewed as a Jacobi type of method, since all the
components of h are simultaneously updated. A particularly interesting fact is that
the weighted sup-norm contraction property of the mapping F can also be exploited
to construct valid Gauss–Seidel variants, where the components of h are updated
sequentially in some order. In particular, the method of proof of the next section can
be used to show convergence for the Gauss–Seidel version of the method, given by

hk+1(i) = Gi(hk, λk), i = 1, . . . , n,

λk+1 = λk + γkhk+1(n),

where G : <n+1 → <n is the Gauss–Seidel mapping based on F , having components
given by

G1(h, λ) = min
u∈U(1)

g(1, u) +
n−1∑
j=1

p1j(u)h(j)

− λ,

748 DIMITRI P. BERTSEKAS

Gi(h, λ) = min
u∈U(i)

g(i, u) +
i−1∑
j=1

pij(u)Gj(h, λ) +
n−1∑
j=i

pij(u)h(j)

−λ, i = 2, . . . , n.

By contrast, we do not know of any convergent Gauss–Seidel version of the standard
value iteration (9)–(10). In fact, simple counterexamples show that the straightfor-
ward Gauss–Seidel variant of the standard method may diverge.

Note that the Odoni bounds (11)–(12) are not available when the Gauss–Seidel
variant is used. However, it is still possible to use the projection (13)–(14) by perform-
ing once in a while (say, every 10 iterations) the regular (Jacobi) version (7)–(8) of the
method, and obtain corresponding Odoni bounds that can be used for projection at
all subsequent iterations. This device proved to be very effective in our experiments.

Regarding a theoretical comparison of the performance of the new methods and
the standard method, it can be seen with simple examples that neither type of method
dominates the other. Suppose, for instance, that there is only one policy and that the
corresponding transition probability matrix is(

ε 1− ε
1− ε ε

)
,

where ε is a scalar from [0, 1]. Then both methods (7)–(8) and (9)–(10) become linear
iterations, and their rate of convergence is governed by the eigenvalues of the cor-
responding iteration matrix. The eigenvalues corresponding to the standard relative
value iteration (9)–(10) can be shown to be 0 and 1 − 2ε, so that the method con-
verges very fast for ε ∼ 1/2 and slowly for ε ∼ 0 or ε ∼ 1. It can also be verified that,
for a constant but well-chosen value of γ, the eigenvalue structure of the new value
iteration method (7)–(8) is worse than the one for the standard method for ε ∼ 1/2,
more favorable for ε ∼ 0, and comparably unfavorable for ε ∼ 1.

Our limited computational experiments also indicate that the Jacobi version (7)–
(8) of the new method, when properly implemented with the adaptive stepsize rule
(15) and the projection scheme of (11)–(14), is competitive with the relative value
iteration method of (9)–(10). There are problems where one method outperforms the
other and vice versa. When the initial stepsize γ in (15) is equal to 1, the performance
of the two methods appears to be quite similar for many problems (see, e.g., Tables
2 and 3 in section 4). On the other hand, our computational results indicate that
the Gauss–Seidel variant of the new method substantially outperforms the standard
method for relatively difficult problems. This is not surprising, since Gauss–Seidel
methods are known to have better performance than their Jacobi counterparts when
a weighted sup-norm contraction is involved. Both the standard method and the new
methods can be very slow on unfavorably structured problems. This is to be expected,
since these methods exhibit convergence rate behavior similar to linear iterations and
are subject to ill-conditioning.

The paper is organized as follows. In the next section we prove a convergence
result for the Jacobi version of the new method. In section 3 we extend this result
to apply to the Gauss–Seidel variant. The method of proof can also be used to prove
convergence of a variety of other variants involving different orders of updating the
components of the vector h, as well as asynchronous versions. All this flexibility is
possible thanks to the weighted sup-norm contraction property of the mapping F .
Finally, in section 4 we describe some of our computational experience. In particular,
we compare the standard method (9)–(10) with implementations of the Jacobi and
Gauss–Seidel versions of our method, which involve an adaptive stepsize rule like the

VALUE ITERATION METHOD 749

one of (15) and the projection scheme of (11)–(14). We find that the Gauss–Seidel
method outperforms the other methods on the more difficult problems.

2. Convergence analysis. We now investigate the convergence of the new value
iteration algorithm. For convenience, let us denote by ‖ · ‖ the weighted sup-norm
with respect to which the contraction property of (17) holds; that is,

‖h‖ = max
i=1,...,n

|h(i)|
vi

∀ h ∈ <n.

Let us also normalize the vector v so that its last coordinate is equal to 1; that is,

vn = 1.

Note that since hλ is the optimal cost vector of the λ-SSP, we have that hλ is the
unique fixed point of the contraction mapping F (h)− λe; that is,

(18) hλ = F (hλ)− λe ∀ λ ∈ <.
By writing for all stationary policies µ, states i, and scalars λ and λ′,

hµ, λ(i) = hµ, λ′(i) +Nµ(i)(λ′ − λ),

and by using the definition hλ(i) = minµ hµ,λ(i), we obtain the following relation:

(19) hλ′(i)+N(λ′−λ) ≤ hλ(i) ≤ hλ′(i)+N(λ′−λ) ∀ i = 1, . . . , n, and λ, λ′ ∈ <,
where N and N are the positive scalars

N = min
µ

min
i=1,...,n

Nµ(i), N = max
µ

max
i=1,...,n

Nµ(i).

We can write (19) in the equivalent form

(20) N |λ′ − λ| ≤ |hλ(i)− hλ′(i)| ≤ N |λ′ − λ|, ∀ i and λ, λ′ ∈ R.
We can interpret N and N as uniform lower and upper bounds on the slope of the
piecewise linear function hλ(i), viewed as a function of λ (see Fig. 2).

The following is our main result.
PROPOSITION 1. There exists a positive scalar γ such that if

(21) γ ≤ γk ≤ γ

for some positive scalar γ and all k, the sequence (hk, λk) generated by iteration (7), (8)
converges to (hλ∗ , λ∗) at the rate of a geometric progression.

Proof. We will show that there exists a threshold value γ > 0 and a continuous
function c(γ) with 0 ≤ c(γ) < 1 for all γ ∈ (0, γ] such that for any B > 0, the relations

(22) ‖hk − hλk‖ ≤ B and |λk − λ∗| ≤ B

N

imply that

(23) ‖hk+1 − hλk+1‖ ≤ c(γk)B and |λk+1 − λ∗| ≤ c(γk)B
N

.

This implies that for a stepsize sequence satisfying the assumptions of the proposition,
the sequence |λk − λ∗| converges to zero at the rate of a geometric progression, and
the same is true of the sequence ‖hk − hλk‖. Since, using (20), we have

‖hk − hλ∗‖ ≤ ‖hk − hλk‖+ ‖hλk − hλ∗‖ ≤ ‖hk − hλk‖+O
(
|λk − λ∗|

)
,

we see that ‖hk − hλ∗‖ also converges to zero at the rate of a geometric progression.

750 DIMITRI P. BERTSEKAS

We first show two preliminary relations. We have, using (18),

‖hλk+1 − hλk‖ = ‖F
(
hλk+1

)
− λk+1e− F

(
hλk
)

+ λke‖
≤ ‖F

(
hλk+1

)
− F

(
hλk
)
‖+ ‖(λk+1 − λk)e‖

≤ α‖hλk+1 − hλk‖+ |λk+1 − λk|‖e‖.

Thus

(24) ‖hλk+1 − hλk‖ ≤
‖e‖

1− α |λ
k+1 − λk|.

Also, by subtracting the relations

hk+1(n) = Fn(hk)− λk,

hλk(n) = Fn(hλk)− λk,

we have

(25) |hk+1(n)− hλk(n)| = |Fn(hk)− Fn(hλk)| ≤ α‖hk − hλk‖.

Using this relation and (19), we obtain

(26) |hk+1(n)| ≤ |hk+1(n)− hλk(n)|+ |hλk(n)| ≤ α‖hk − hλk‖+N |λk − λ∗|.

We will now derive functions c1(·) and c2(·) for which the first and the second
relations in (22), respectively, hold. We will then use c(γ) = max

[
c1(γ), c2(γ)

]
in

(22). Regarding the first relation in (23), we note that

(27)

‖hk+1 − hλk+1‖ = ‖F (hk)− λke− F
(
hλk+1

)
+ λk+1e‖

≤ ‖F (hk)− F
(
hλk+1

)
‖+ |λk+1 − λk| ‖e‖

≤ α‖hk − hλk+1‖+ |λk+1 − λk| ‖e‖
≤ α‖hk − hλk‖+ α‖hλk − hλk+1‖+ |λk+1 − λk| ‖e‖.

Using the above inequality and (22), (24), and (26), we obtain

(28)

‖hk+1 − hλk+1‖ ≤ αB +
(

α

1− α + 1
)
|λk+1 − λk| ‖e‖

= αB +
‖e‖γk
1− α |h

k+1(n)|

≤ αB +
‖e‖γk
1− α

(
α‖hk − hλk‖+N |λk − λ∗|

)
≤ αB +

‖e‖γk
1− α

(
αB +

NB

N

)
= c1(γk)B,

where c1(·) is the function

(29) c1(γ) = α+
γ‖e‖(α+N/N)

1− α .

VALUE ITERATION METHOD 751

λ∗

λ

hλ (n)

αB
B

λ~λ
_

FIG. 3. Definition of λ and λ̃ in the proof of Proposition 1.

Note that if

γ <
(1− α)2

‖e‖(α+N/N)
,

we have c1(γ) < 1.
We now turn to the second relation in (23); that is, we show that

|λk+1 − λ∗| ≤ c2(γk)B
N

for an appropriate continuous function c2(γ). Let λ and λ̃ be the unique scalars such
that

(30) hλ(n) = B, hλ̃(n) = αB

(see Fig. 3). Also let λ̂ be the midpoint between λ and λ̃:

(31) λ̂ =
λ+ λ̃

2
.

Note that from (19), we have

(32)
(1− α)B

N
≤ λ̃− λ ≤ (1− α)B

N

752 DIMITRI P. BERTSEKAS

and that

αB

N
≤ λ∗ − λ̃ ≤ αB

N
,

B

N
≤ λ∗ − λ ≤ B

N
.

From the last three relations, we also obtain

(33)
(1 + α)B

2N
≤ λ∗ − λ̂ ≤ (1 + α)B

2N
,

(34)
(1− α)B

2N
≤ λ̃− λ̂ ≤ (1− α)B

2N
.

We assume that λk ≤ λ∗; the complementary case where λk ≥ λ∗ is handled
similarly. We distinguish between two cases:

(a) λk ≤ λ̂,
(b) λ̂ < λk ≤ λ∗.
In the case where λk ≤ λ̂, we have, using (19) and (30)–(32),

(35) hλk(n) ≥ hλ̂(n) ≥ hλ̃(n) +N(λ̃− λ̂) = αB +N(λ̃− λ̂) ≥ αB +
(1− α)BN

2N
.

On the other hand, from (22) and (25), we have |hk+1(n)− hλk(n)| ≤ αB so that

(36) hk+1(n) ≥ hλk(n)− αB.

By combining (35) and (36), we obtain

hk+1(n) ≥ (1− α)B

2N
2 .

We now have, using the above equation,
(37)

λ∗ − λk+1 = λ∗ − λk − γkhk+1(n) ≤ B

N
− γk(1− α)BN

2N
=

B

N2

(
1− γk(1− α)N

2N

)
,

and we also have, using (25), (22), and (19)
(38)
λ∗−λk+1 = λ∗−λk−γkhk+1(n) ≥ λ∗−λk−γk

(
hλk(n)+αB

)
≥ (1−γkN)(λ∗−λk)−γkαB.

It can be seen now from (38) that for γk ∈ (0, 1/N], we have λ∗ − λk+1 ≥ −γkαB,
and it follows using also (37) that

|λ∗ − λk+1| ≤ c2(γk)B
N

,

where c2(·) is the continuous function

c2(γ) = max
[
1− γ(1− α)N2

2N
, γαN

]
.

VALUE ITERATION METHOD 753

Since there exists a threshold value γ > 0 such that the continuous function c2(γ)
satisfies 0 < c(γ) < 1 for all γ ∈ (0, γ], the desired relation (23) is proved in the case
λk ≤ λ̂.

In the case where λ̂ < λk ≤ λ∗, there are two possibilities.
(1) hk+1(n) ≥ 0. Then λk ≤ λk+1, and by also using (33), we have

(39) λ∗ ≤ λ̂+
(1 + α)B

2N
≤ λk +

(1 + α)B
2N

≤ λk+1 +
(1 + α)B

2N
.

Furthermore, from (22) and (26), we have

λk+1 = λk + γkhk+1(n) ≤ λ∗ + γk
(
αB +

NB

N

)
.

Thus, by choosing γk sufficiently small, we can guarantee that

(40) λk+1 ≤ λ∗ +
(1 + α)B

2N
.

From (39) and (40), it follows that for γk less than some positive constant, we have

|λk+1 − λ∗| ≤ (1 + α)B
2N

,

proving the second relation in (23), with c2(γ) = (1 + α)/2.
(2) hk+1(n) < 0. In this case, since from (22) and (25) we have

(41) hλk(n) ≤ hk+1(n) + αB ≤ αB,

and since hλ̃(n) = αB and hλ(n) is monotonically decreasing in λ, it follows that
λ̃ ≤ λk. Since λk ≤ λ∗, we also have 0 ≤ hλk(n) ≤ αB, so that by using (41) and the
fact hλk(n) ≥ 0, we obtain |hk+1(n)| ≤ αB and

|γkhk+1(n)| ≤ γkαB.

By choosing

(42) γk ∈
(

0,
1− α
2αN

]
,

the above inequality, together with (34), yields

|γkhk+1(n)| ≤ (1− α)B
2N

≤ λ̃− λ̂ ≤ λk − λ̂.

Thus, we have

λk+1 = λk + γkhk+1(n) ≥ λ̂,

and from (33), using also the fact λk+1 ≤ λk ≤ λ∗, we obtain for γk satisfying (42),

|λk+1 − λ∗| ≤ (1 + α)B
2N

,

proving the second relation in (23) for the case hk+1(n) < 0 as well.
Thus, (23) holds with c(·) given by

c(γ) = max
[
α+

γ‖e‖(α+N/N)
1− α , 1− γ(1− α)N2

2N
, γαN,

1 + α

2

]
.

754 DIMITRI P. BERTSEKAS

3. Convergence analysis of the Gauss–Seidel version. In this section, we
prove the result of Proposition 1 for the Gauss–Seidel version of the method, given by

(43) hk+1(i) = Gi(hk, λk), i = 1, . . . , n,

(44) λk+1 = λk + γkhk+1(n),

where the components of the mapping G = (G1, . . . , Gn) are given by

(45) G1(h, λ) = min
u∈U(1)

g(1, u) +
n−1∑
j=1

p1j(u)h(j)

− λ,
(46)

Gi(h, λ) = min
u∈U(i)

g(i, u) +
i−1∑
j=1

pij(u)Gj(h, λ) +
n−1∑
j=i

pij(u)h(j)

−λ, i = 2, . . . , n.

The proof of Proposition 1 essentially carries through with the aid of the following
result.

PROPOSITION 2. The mapping G of (45) and (46) satisfies for all h ∈ <n, h ∈ <n,
λ ∈ <, and λ ∈ <:

(47)
|Gi(h, λ)−Gi(h, λ)|

vi
≤ α‖h− h‖+ δi|λ− λ| ∀ i = 1, . . . , n,

where α is the contraction modulus of F , v1, . . . , vn are the weights of the sup-norm
‖ · ‖ with respect to which F is a contraction (cf. (17)), and δ1, . . . , δn are defined
recursively by

(48) δ1 =
1
v1
, δi =

1 + maxj=1,...,i−1 δj
vi

, i = 2, . . . , n.

In particular, by taking the maximum over i in (47), we obtain

(49) ‖G(h, λ)−G(h, λ)‖ ≤ α‖h−h‖+ δ|λ−λ| ∀ h ∈ <n, h ∈ <n, λ ∈ <, λ ∈ <,

where

δ = max
i=1,...,n

δi.

Proof. We prove (47) by induction. For the case where i = 1, we have from the
contraction property of the mapping F (cf. (17)):

|G1(h, λ)−G1(h, λ)|
v1

≤ α max
i=1,...,n

|h(i)− h(i)|
vi

= α‖h− h‖.

Therefore,

G1(h, λ)
v1

≤ G1(h, λ)
v1

+ α‖h− h‖

≤ G1(h, λ)
v1

+ α‖h− h‖+
|λ− λ|
v1

.

VALUE ITERATION METHOD 755

Similarly, we obtain

G1(h, λ)
v1

≤ G1(h, λ)
v1

+ α‖h− h‖+
|λ− λ|
v1

.

By combining the last two relations, we see that

|G1(h, λ)−G1(h, λ)|
v1

≤ α‖h− h‖+ δ1|λ− λ|,

so that (47) is proved for i = 1.
Assume that (47) holds for i = 1, . . . ,m − 1. We will show that it holds for

i = m. We have from the contraction property of the mapping F and the induction
hypothesis

|Gm(h, λ)−Gm(h, λ)|
vm

≤ αmax
{

max
i=1,...,m−1

|Gi(h, λ)−Gi(h, λ)|
vi

, max
i=m,...,n

|h(i)− h(i)|
vi

}
≤ α‖h− h‖.

Using this relation and the induction hypothesis, we obtain

Gm(h, λ)
vm

≤ Gm(h, λ)
vm

+ α‖h− h‖

=
1
vm

min
u∈U(m)

g(m,u) +
m−1∑
j=1

pmj(u)Gj(h, λ) +
n−1∑
j=m

pmj(u)h(j)

− λ

vm
+ α‖h− h‖

≤ 1
vm

min
u∈U(m)

g(m,u) +
m−1∑
j=1

pmj(u)Gj(h, λ) +
n−1∑
j=m

pmj(u)h(j)

− λ

vm

+
|λ− λ|
vm

+ max
j=1,...,m−1

δj
|λ− λ|
vm

+ α‖h− h‖

=
Gm(h, λ)

vm
+ δm|λ− λ|+ α‖h− h‖.

Similarly, we obtain

Gm(h, λ)
vm

≤ Gm(h, λ)
vm

+ δm|λ− λ|+ α‖h− h‖,

thus proving (47) for i = m. This completes the induction.
Note that Proposition 1 implies that for any λ, G(·, λ) is a weighted sup-norm

contraction when viewed as a function of h. It can be easily verified that

hλ = G(hλ, λ) ∀ λ ∈ <,

so it follows that for all λ, the mapping G(·, λ) has hλ as its unique fixed point.
The following result proves convergence of the Gauss–Seidel method and parallels
Proposition 1.

756 DIMITRI P. BERTSEKAS

TABLE 1

n Sparsity STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 0.5 16 39 40
20 0.5 9 39 75
30 0.5 9 48 105
40 0.5 8 46 55
50 0.5 8 56 90
10 0.1 674 727 185
20 0.1 202 203 160
30 0.1 38 66 130
40 0.1 36 77 75
50 0.1 21 63 110
10 0.05 114 294 70
20 0.05 131 145 100
30 0.05 49 53 235
40 0.05 259 226 205
50 0.05 313 313 325

TABLE 2

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 211 211 180
20 2658 2658 2070
30 29638 29647 20615
40 286550 286765 222855
50 13219 13217 9035

PROPOSITION 3. There exists a positive scalar γ such that if

γ ≤ γk ≤ γ

for some positive scalar γ and all k, the sequence (hk, λk) generated by the Gauss–
Seidel iteration (43), (44) converges to (hλ∗ , λ∗) at the rate of a geometric progression.

Proof. The proof is essentially identical to the one of Proposition 1. The only
difference is that the three relations (27), (28), and (29) must be modified to involve
the mapping G and to make use of Proposition 2. In particular, (27) becomes

‖hk+1 − hλk+1‖ ≤ α‖hk − hλk‖+ α‖hλk − hλk+1‖+ δ|λk+1 − λk|,

and (28) becomes

‖hk+1 − hλk+1‖ ≤ c1(γk)B,

where the function c1(·) of (29) is now given by

c1(γ) = α+ γ

(
α‖e‖
1− α + δ

)(
α+

N

N

)
.

The remainder of the proof goes through with no modification.

4. Implementation and experimentation. In this section we describe some
of our computational experience with the standard method (9)–(10) and with the
new Jacobi and Gauss–Seidel methods. The latter methods were implemented with
an adaptive stepsize rule of the form γk = m(k̂)γ (cf. (15)), using an initial stepsize
γ equal to 1. We used the function m(k̂) of (16a) for the test results of Tables 1–
3 and the function m(k̂) of (16b) for the test results of Table 4. The projection

VALUE ITERATION METHOD 757

TABLE 3

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 121 119 80
20 826 825 545
30 18020 18026 13465
40 2186 2186 1360
50 5942 5941 4770
75 7978 7984 5000
100 9035 9028 6880
125 10306 10323 7440
150 9011 9015 6870

TABLE 4

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
250 939 940 420
500 4724 4725 470
750 1257 1257 740
1000 710 711 1040
1250 1693 1693 1425
1500 2870 2870 1890
1750 5605 5609 4230
2000 4691 4693 3180

scheme of (11)–(14) was also used. To obtain error bounds on which to project in the
Gauss–Seidel method, we performed one Jacobi iteration following nine consecutive
Gauss–Seidel iterations. Each Jacobi iteration yielded an upper and a lower bound for
λ∗, and the λ-iterate obtained by each iteration was projected on the interval of the
best upper and lower bounds obtained so far. For each problem, the three methods
were initialized with h = 0 and (for the case of the new methods) λ = n/2. Note that
because of the device of projection on the error bound range, the initial choice of λ is
not critical.

Our computational results with randomly generated problems are summarized in
Tables 1–4 for the three methods labeled STANDARD (which is the known iteration
(9)–(10)), SSP-JACOBI (which is the Jacobi version of the new method (7)–(8)), and
SSP-Gauss–Seidel (which is the Gauss–Seidel version of the new method (43)–(44)).
Let us describe how the test problems were generated. Regarding cost structure, in all
problems and for each pair (i, u), the one-stage cost at state i was randomly selected
from the range (0, n) according to a uniform distribution. Regarding the transition
probabilities, in all the problems, we specified the structure of the transition probabil-
ity graph by specifying for each state-control pair (i, u), according to some (possibly
random) rule, the states j for which the transition probability pij(u) is nonzero. We
then generated each of the nonzero transition probabilities by randomly selecting a
corresponding number from the interval (0, 1) according to uniform probability dis-
tribution, and by normalizing so that

∑n
j=1 pij(u) = 1 for all pairs (i, u). The test

problems were generated as follows.
(1) Problems of Table 1. Here there is only one control available at each state. The

sparsity of the transition probability graph is controlled by a parameter q ∈ (0, 1). In
particular, each possible transition probability is selected to be nonzero with a given
probability q. We used sparsity parameters q = 0.5, q = 0.1, and q = 0.05 in our
tests.

(2) Problems of Table 2. Here also there is only one control available at each
state. At states i with 1 < i < n, the nonzero transition probabilities are the ones to

758 DIMITRI P. BERTSEKAS

the states i − 1, i, and i + 1. At state 1 the nonzero transition probabilities are to
states 1 and 2, and at state n the nonzero transition probabilities are to states n− 1
and n. This type of transition probability graph arises in queueing systems.

(3) Problems of Table 3. Here there are two controls available at each state, call
them u1 and u2. Under u1, the transition probabilities are specified in the same way
as for the problems of Table 2. Under u2, at each state i with 1 < i < n, the nonzero
transition probabilities are the ones to the states i− 1 and i+ 1. At state 1 the only
nonzero transition probabilities are the ones to the states 1 and 2, and at state n the
only nonzero transition probabilities are the ones to the states n− 1 and n.

(4) Problems of Table 4. Here there are three controls available at each state, call
them u1, u2, and u3. Under u1, the transition probabilities are specified in the same
way as for the problems of Table 2. Under u2, at each state i with 1 < i < n − 10,
the nonzero transition probabilities are the ones to the states i − 1 and i + 10. At
state 1 the only nonzero transition probabilities are the ones to the states 1 and 11,
and at states i = n − 10, n − 9, . . . , n the only nonzero transition probabilities are
the ones to the states i − 1 and n. Under u3, at each state i with 10 < i < n, the
nonzero transition probabilities are the ones to the states i− 10 and i+ 1. At states
i = 1, . . . , 10, the only nonzero transition probabilities are the ones to the states 1
and i+ 1, and at state n the only nonzero transition probabilities are the ones to the
states n− 10 and n.

Tables 1–4 give the number of iterations required by each method for the difference
between the upper and lower bounds to become smaller than 10−3. Each entry of the
tables represents the average of two problems. We should note here that the number
of iterations varies a great deal from one problem to another, so the variance of the
number of iterations for a given type of problem is very large. For example, one of
the two problems in the fourth entry of Table 2 is extremely difficult and requires a
much larger number of iterations than the other. However, it is generally true that if
a problem is difficult for one method (requires a lot of iterations), it is also difficult
for all the other methods.

It can be seen that the problems of Table 1 are generally much easier than the
problems of Tables 2–4. Generally, it appears that these problems become more
difficult as the sparsity of the transition probability graph increases. On some of these
problems (generally the easier ones), the standard method performs extremely well
and much better than the new methods. This is probably due to the need for stepsize
selection in the new methods. The adaptive stepsize rule that we used generally works
well, but on occasion may end up with a stepsize that is either too large or too small
for optimal performance. We believe that the subject of appropriate stepsize selection
method is a potential topic for theoretical or empirical research.

On the more difficult problems of Tables 2 and 3, the Gauss–Seidel version of the
new method is uniformly faster than the other methods. In fact, the Gauss–Seidel
method has substantially outperformed the other methods on every single problem
with the queueing structure that we tried. The Jacobi version of the new method
performs comparably to the standard method on the problems of Tables 2 and 3.
What happens here is that for the problems of Tables 2 and 3, the difference between
the iterations (7)–(8) and (9)–(10) are minor, particularly when the number of states
is large (see the discussion following (9)–(10)).

For the larger problems of Table 4, again the Jacobi version of the new method
performs comparably to the standard method. The Gauss–Seidel version of the new
method is generally faster than the other methods, but the factor of superiority is
problem dependent and its variance is substantial.

VALUE ITERATION METHOD 759

5. Conclusions. The methods of this paper were derived by exploiting the con-
nection between average cost and stochastic shortest path problems. We developed
a new value iteration method that involves the same type of weighted sup-norm con-
traction that arises in stochastic shortest path problems. This method is the first,
to our knowledge, that admits a convergent Gauss–Seidel implementation. We also
believe that the weighted sup-norm contraction property inherent in our method is
likely to prove useful in other related contexts.

REFERENCES

[ABB97] J. ABOUNADI, D. P. BERTSEKAS, and V. BORKAR, Q-Learning Algorithms for the Av-
erage Cost Markovian Decision Problem, in preparation, 1997.

[BeT89] D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Nu-
merical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[Ber95] D. P. BERTSEKAS, Dynamic Programming and Optimal Control, Vols. I and II, Athena
Scientific, Belmont, MA, 1995.

[Odo69] A. R. ODONI On finding the maximal gain for Markov decision processes, Oper. Res.,
17 (1969), pp. 857–860.

[PBW79] J. L. POPYACK, R. L. BROWN, AND C. C. WHITE, III, Discrete versions of an algorithm
due to Varaiya, IEEE Trans. Automat. Control, 24 (1969), pp. 503–504.

[Pla77] L. PLATZMAN, Improved conditions for convergence in undiscounted Markov renewal
programming, Oper. Res., 25 (1977), pp. 529–533.

[Put94] M. L. PUTERMAN, Markovian Decision Problems, Wiley, New York, 1994.
[Sch71] P. J. SCHWEITZER, Iterative solution of the functional equations of undiscounted Markov

renewal programming, J. Math. Anal. Appl., 34 (1971), pp. 495–501.
[Tse90] P. TSENG, Solving H-horizon, stationary Markov decision problems in time proportional

to log(H), Oper. Res. Lett., 9, (1990), pp. 287–297.
[Var78] P. P. VARAIYA, Optimal and suboptimal stationary controls of Markov chains, IEEE

Trans. Automat. Control, AC-23 (1978), pp. 388–394.
[Whi63] D. J. WHITE, Dynamic programming, Markov chains, and the method of successive

approximations, J. Math. Anal. Appl., 6 (1963), pp. 373–376.

