
Journal of Heuristics, 5, 89–108 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Rollout Algorithms for Stochastic Scheduling
Problems

DIMITRI P. BERTSEKAS*

Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.

DAVID A. CASTAÑON
Department of Electrical Engineering, Boston University, and ALPHATECH, Inc., Burlington, Mass., 01803.

Abstract. Stochastic scheduling problems are difficult stochastic control problems with combinatorial decision
spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz problem and its variations.
We discuss the use of heuristics for their solution, and we propose rollout algorithms based on these heuristics
which approximate the stochastic dynamic programming algorithm. We show how the rollout algorithms can
be implemented efficiently, with considerable savings in computation over optimal algorithms. We delineate
circumstances under which the rollout algorithms are guaranteed to perform better than the heuristics on which
they are based. We also show computational results which suggest that the performance of the rollout policies is
near-optimal, and is substantially better than the performance of their underlying heuristics.

Keywords: rollout algorithms, scheduling, neuro-dynamic programming

1. Introduction

Consider the following variation of a planning problem: There is a finite set ofK locations
which contain tasks of interest, of differing value. There is a single processor on which the
tasks are to be scheduled. Associated with each task is a task-dependent risk that, while
executing that task, the processor will be damaged and no further tasks will be processed.
The objective is to find the optimal task schedule in order to maximize the expected value
of the completed tasks.

The above is an example of a class of stochastic scheduling problems known in the
literature asquiz problems(see Bertsekas (1995), Ross (1983), or Whittle (1982)). The
simplest form of this problem involves a quiz contest where a person is given a list ofN
questions and can answer these questions in any order he/she chooses. Questioni will be
answered correctly with probabilitypi , and the person will then receive a rewardvi . At
the first incorrect answer, the quiz terminates and the person is allowed to keep his or her
previous rewards. The problem is to choose the ordering of questions so as to maximize
expected rewards.

The problem can be viewed in terms of dynamic programming (DP for short), but can
more simply be viewed as a deterministic combinatorial problem, whereby we are seeking
an optimal sequence in which to answer the questions. It is well-known that for the simple
form of the quiz problem described above, the optimal sequence is deterministic, and can be
obtained using an interchange argument; questions should be answered in decreasing order

* This work was supported in part by the Air Force Office of Scientific Research under grant no. F49620-97-C-
0013 and the Air Force Research Laboratory under grant F33615-96-C-1930.

90 BERTSEKAS AND CASTAÑON

of pi vi /(1− pi). Thus, this quiz problem belongs to the class of scheduling problems that
admit an optimal policy, which is of the index type. This particular policy can also be used
in variants of the quiz problem, where it is not necessarily optimal, and will be referred to as
the index policy. Another interesting policy for quiz problems is thegreedy policy, which
answers questions in decreasing order of their expected rewardpi vi . A greedy policy is
suboptimal for the simple form of the quiz problem described above, essentially because it
does not consider the future opportunity loss resulting from an incorrect answer.

Unfortunately, with only minor changes in the structure of the problem, the optimal
solution becomes much more complicated (although DP and interchange arguments are
still relevant). Examples of interesting and difficult variations of the problem involve one
or more of the following characteristics:

(a) A limit on the maximum number of questions that can be answered, which is smaller
than the number of questionsN. To see that the index policy is not optimal anymore,
consider the case where there are two questions, only one of which may be answered.
Then it is optimal to use the greedy policy rather than the index policy.

(b) A time window for each question, which constrains the set of time slots when each
question may be answered. Time windows may also be combined with the option to
refuse answering a question at a given period, when either no question is available
during the period, or answering any one of the available questions involves excessive
risk.

(c) Precedence constraints, whereby the set of questions that can be answered in a given
time slot depends on the immediately preceding question, and possibly on some earlier
answered questions.

(d) Sequence-dependent rewards, whereby the reward from answering correctly a given
question depends on the immediately preceding question, and possibly on some ques-
tions answered earlier.

It is clear that the quiz problem variants listed above encompass a very large collection
of practical scheduling problems. The version of the problem with time windows and
precedence constraints relates to vehicle routing problems (involving a single vehicle). The
version of the problem with sequence-dependent rewards, and a number of questions that is
equal to the maximum number of answers relates to the traveling salesman problem. Thus,
in general, it is very difficult to solve the variants described above exactly.

An important feature of the quiz problem, which is absent in the classical versions of
vehicle routing and traveling salesman problems is thatthere is a random mechanism for
termination of the quiz. Despite the randomness in the problem, however, in all of the
preceding variants, there is anoptimal open-loop policy, i.e., an optimal order for the
questions that does not depend on the random outcome of the earlier questions. The reason
is that we do not need to plan the answer sequence following the event of an incorrect
answer, because the quiz terminates when this event occurs. Thus, we refer to the above
variations of the quiz problem asdeterministic quiz problems.

ROLLOUT ALGORITHMS 91

There are variants of the quiz problem where the optimal order to answer questions
depends on random events. Examples of these are:

(e) There is a random mechanism by which the quiz taker may miss a turn, i.e., be denied
the opportunity to answer a question at a given period, but may continue answering
questions at future time periods.

(f) New questions can appear and/or old questions can disappear in the course of the quiz
according to some random mechanism. A similar case arises when the start and end of
the time windows can change randomly during the quiz.

(g) There may be multiple quiz takers that answer questions individually, and drop out of
the quiz upon their own first error, while the remaining quiz takers continue to answer
questions.

(h) The quiz taker may be allowed multiple chances, i.e., may continue answering questions
up to a given number of errors.

(i) The reward for answering a given question may be random and may be revealed to the
quiz taker at various points during the course of the quiz.

The variants (e)–(i) of the quiz problem described above require a genuinely stochastic
formulation as Markovian decision problems. We refer to these variations in the paper
asstochastic quiz problems. They can be solved exactly only with DP, but their optimal
solution is prohibitively difficult. This is because the states over which DP must be executed
are subsets of questions, and the number of these subsets increases exponentially with the
number of questions.

In this paper, we develop suboptimal solution approaches for deterministic and stochastic
quiz problems that are computationally tractable. In particular, we focus on rollout algo-
rithms, a class of suboptimal solution methods inspired by the policy iteration methodology
of DP and the approximate policy iteration methodology of neuro-dynamic programming
(NDP for short). One may view a rollout algorithm as a single step of the classical policy
iteration method, starting from some given easily implementable policy. Algorithms of this
type have been sporadically proposed in several DP application contexts. They have also
been proposed by Tesauro and Galperin (1996) in the context of simulation-based computer
backgammon. (The name “rollout” was introduced by Tesauro as a synonym for repeat-
edly playing out a given backgammon position to calculate by Monte Carlo averaging the
expected game score starting from that position.)

Rollout algorithms were first proposed for the approximate solution of discrete optimiza-
tion problems by Bertsekas and Tsitsiklis (1996), and by Bertsekas, Tsitsiklis, and Wu
(1997), and the methodology developed here for the quiz problem strongly relates to the
ideas in these sources. Generally, rollout algorithms are capable of magnifying the effec-
tiveness of any given heuristic algorithm through sequential application. This is due to the
policy improvement mechanism of the underlying policy iteration process.

In the next section, we introduce rollout algorithms for deterministic quiz problems,
where the optimal order for the questions from a given period onward does not depend on
earlier random events. In Section 3, we provide computational results indicating that rollout

92 BERTSEKAS AND CASTAÑON

algorithms can improve impressively on the performance of their underlying heuristics. In
Sections 4 and 5, we extend the rollout methodology to stochastic quiz problems [cf. variants
(e)–(i) above], that require the use of stochastic DP for their optimal solution. Here we
introduce the new idea of usingmultiple scenariosfor the future uncertainty starting from a
given state, and we show how these scenarios can be used to construct an approximation to
the optimal value function of the problem using NDP techniques and a process ofscenario
aggregation. In Section 6, we provide computational results using rollout algorithms for
stochastic quiz problems. Finally, in Section 7, we provide computational results using
rollout algorithms for quiz problems that involve graph-based precedence constraints. Our
results indicate consistent and substantial improvement of rollout algorithms over their
underlying heuristics.

2. Rollout Algorithms for Deterministic Quiz Problems

Consider a variation of a quiz problem of the type described in (a)–(c) above. LetN denote
the number of questions available, and letM denote the maximum number of questions
which may be attempted. Associated with each questioni is a valuevi , and a probability
of successfully answering that questionpi . Assume that there are constraints such as time
windows or precedence constraints which restrict the possible question orders. Denote by
V(i1, . . . , i M) the expected reward of a feasible question order(i1, . . . , i M):

V(i1, . . . , i M) = pi1

(
vi1 + pi2(vi2 + pi3(· · · + pi Mvi M) · · ·)

)
. (2.1)

For an infeasible question order(i1, . . . , i M), we use the convention

V(i1, . . . , i M) = −∞.
The classical quiz problem is the case whereM = N, and all question orders are feasible.

In this case, the optimal solution is simply obtained by using an interchange argument. Let
i and j be thekth and(k+ 1)st questions in an optimally ordered list

L = (i1, . . . , i k−1, i, j, i k+2, . . . , i N).

Consider the list

L ′ = (i1, . . . , i k−1, j, i, i k+2, . . . , i N)

obtained fromL by interchanging the order of questionsi and j . We compare the expected
rewards ofL andL ′. We have

E{reward ofL} = E {reward of{i1, . . . , i k−1}}
+ pi1 · · · pik−1(pi vi + pi pj vj)

+ pi1 · · · pik−1 pi pj E {reward of{i k+2, . . . , i N}}

E{reward ofL ′} = E {reward of{i1, . . . , i k−1}}
+ pi1 · · · pik−1(pj vj + pj pi vi)

+ pi1 · · · pik−1 pj pi E {reward of{i k+2, . . . , i N}} .

ROLLOUT ALGORITHMS 93

SinceL is optimally ordered, we have

E{reward ofL} ≥ E{reward ofL ′},

so it follows from these equations that

pi vi + pi pj vj ≥ pj vj + pj pi vi

or equivalently

pi vi

1− pi
≥ pj vj

1− pj
.

It follows that to maximize expected rewards, questions should be answered in decreasing
order of pi vi /(1− pi), which yields the index policy.

Unfortunately, the above argument breaks down when eitherM < N, or there are con-
straints on the admissibility of sequences due to time windows or precedence constraints.
For these cases, we can still use heuristics such as the index policy or the greedy policy, but
they will not perform optimally.

Consider a heuristic algorithm, which given apartial schedule P= (i1, . . . , i k) of distinct
questions constructs acomplementary schedulēP = (i k+1, . . . , i M) of distinct questions
such thatP∩ P̄ = ∅. The heuristic algorithm is referred to as thebase heuristic. We define
theheuristic rewardof the partial scheduleP as

H(P) = V(i1, . . . , i k, i k+1 . . . , i M). (2.2)

If P = (i1, . . . , i M) is a complete solution, by convention the heuristic reward ofP is the
true expected rewardV(i1, . . . , i M).

Given the base heuristic, the correspondingrollout algorithmconstructs a complete sched-
ule in M iterations, one question per iteration. The rollout algorithm can be described as
follows:

At the 1st iteration it selects questioni1 according to

i1 = arg max
i=1,...,N

H(i), (2.3)

and at thekth iteration(k > 1) it selectsi k according to

i k = arg max
{i |i 6=i1,...,i k−1}

H(i1, . . . , i k−1, i), k = 2, . . . ,M. (2.4)

Thus a rollout policy involvesN + (N − 1) + · · · + (N − M) = O(M N) applications
of the base heuristic and corresponding calculations of expected reward of the form (2.1).
While this is a significant increase over the calculations required to apply the base heuristic
and compute its expected reward, the rollout policy is still computationally tractable. In
particular, if the running time of the base heuristic is polynomial, so is the running time of
the corresponding rollout algorithm. On the other hand, it will be shown shortly that the
expected reward of the rollout policy is at least as large as the one of the base heuristic.

94 BERTSEKAS AND CASTAÑON

As an example of a rollout algorithm, consider the special variant (a) of the quiz problem
in the preceding section, where at mostM out of N questions may be answered and there
are no time windows or other complications. Let us use as base heuristic the index heuristic,
which given a partial schedule(i1, . . . , i k), attempts the remaining questions according to
the index policy, in decreasing order ofpi vi /(1− pi). The calculation ofH(i1, . . . , i k) is
done using Eq. (2.1), once the questions have been sorted in decreasing order of index. The
corresponding rollout algorithm, given(i1, . . . , i k−1) selectsi , calculatesH(i1, . . . , i k−1, i)
for all i 6= i1, . . . , i k−1, using Eq. (2.1), and then optimizes this expression overi to selecti k.

Note that one may use a different heuristic, such as the greedy heuristic, in place of the
index heuristic. There are also other possibilities for base heuristics. For example, one may
first construct a complementary schedule using the index heuristic, and then try to improve
this schedule by using a 2-OPT local search heuristic, that involves exchanges of positions
of pairs of questions. One may also use multiple heuristics, which produce heuristic values
Hj (i1, . . . , i k), j = 1, . . . , J, of a generic partial schedule(i1, . . . , i k), and then combine
them into a “superheuristic” that gives the maximal value

H(i1, . . . , i k) = max
j=1,...,J

Hj (i1, . . . , i k).

An important question is whether the rollout algorithm performs at least as well as its base
heuristic when started from the initial partial schedule. This can be guaranteed if the base
heuristic issequentially consistent. By this we mean that the heuristic has the following
property:

Suppose that starting from a partial schedule

P = (i1, . . . , i k−1),

the heuristic produces the complementary schedule

P̄ = (i k, . . . , i M).

Then starting from the partial schedule

P+ = (i1, . . . , i k−1, i k),

the heuristic produces the complementary schedule

P̄+ = (i k+1, . . . , i M).

As an example, it can be seen that the index and the greedy heuristics, discussed earlier, are
sequentially consistent. This is a manifestation of a more general property: many common
base heuristics of the greedy type are by nature sequentially consistent. It may be verified,
based on Eq. (2.4), that a sequentially consistent rollout algorithm keeps generating the
same scheduleP ∪ P̄, up to the point where by examining the alternatives in Eq. (2.4) and
by calculating their heuristic rewards, it discovers a better schedule. As a result, sequential

ROLLOUT ALGORITHMS 95

consistency guarantees that the reward of the schedulesP ∪ P̄ produced by the rollout
algorithm is monotonically nonincreasing; that is, we have

H(P+) ≤ H(P)

at every iteration. For further elaboration of the sequential consistency property, we refer
to the paper by Bertsekas, Tsitsiklis, and Wu (1997), which also discusses some underlying
connections with the policy iteration method of dynamic programming.

A condition that is more general than sequential consistency is that the algorithm be
sequentially improving, in the sense that at each iteration there holds

H(P+) ≤ H(P).

This property also guarantees that the rewards of the schedules produces by the rollout
algorithm are monotonically nonincreasing. The paper by Bertsekas, Tsitsiklis, and Wu
(1997) discusses situations where this property holds, and shows that with fairly simple
modification, a rollout algorithm can be made sequentially improving.

There are a number of variations of the basic rollout algorithm described above. In
particular, we may incorporatemultistep lookaheador selective depth lookaheadinto the
rollout framework. An example of a rollout algorithm withm-step lookahead operates as
follows: at thekth iteration we augment the current partial scheduleP = (i1, . . . , i k−1)

with all possible sequences ofm questionsi 6= i1, . . . , i k−1. We run the base heuristic from
each of the corresponding augmented partial schedules, we select them-question sequence
with maximum heuristic reward, and then augment the current partial scheduleP with the
first question in this sequence. An example of a rollout algorithm withselectivetwo-step
lookahead operates as follows: at thekth iteration we start with the current partial schedule
P = (i1, . . . , i k−1), and we run the base heuristic starting from each partial schedule
(i1, . . . , i k−1, i) with i 6= I1, . . . , i k−1. We then form the subset̄I consisting of then
questionsi 6= i1, . . . , i k that correspond to then best complete schedules thus obtained.
We run the base heuristic starting from each of the partial schedules(i1, . . . , i k−1, i, j)with
i ∈ Ī and j 6= i1, . . . , i k−1, i , and obtain a corresponding complete schedule. We then
select as next questioni k of the rollout schedule the questioni ∈ Ī that corresponds to
a maximal reward schedule. Note that by choosing the numbern to be smaller than the
maximum possible,N−k+1, we can reduce substantially the computational requirements
of the two-step lookahead.

3. Computational Experiments with Deterministic Quiz Problems

In order to explore the performance of rollout algorithms for deterministic scheduling, we
conducted a series of computational experiments involving the following seven algorithms:

(1) The optimal stochastic dynamic programming algorithm.

(2) The greedy heuristic, where questions are ranked in order of decreasingpi vi , and, for
each stagek, the feasible unanswered question with the highest ranking is selected.

96 BERTSEKAS AND CASTAÑON

(3) The index heuristic, where questions are ranked in order of decreasingpi vi /(1− pi vi),
and for each stagek, the feasible unanswered question with the highest ranking is
selected.

(4) The one-step rollout policy based on the greedy heuristic, where, at each stagek, for
every feasible unanswered questioni k and prior sequencei1, . . . , i k−1, the question
is chosen according to the rollout rule (2.4), where the functionH uses the greedy
heuristic as the base policy.

(5) The one-step rollout policy based on the index heuristic, where the functionH in (2.4)
uses the index heuristic as the base policy,

(6) The selective two-step lookahead rollout policy based on the greedy heuristic. At the
k-th stage, the base heuristic is used in a one-step rollout to select the best four choices
for the current question among the admissible choices. For each of these choices at
stagek, the feasible continuations at stagek+1 are evaluated using the greedy heuristic
to complete the schedule. The choice at stagek is then selected from the sequence with
the highest evaluation.

(7) The selective two-step lookahead rollout policy that is similar to the one in (6) above,
but is based on the index heuristic rather than the greedy heuristic.

The problems selected for evaluation involve 20 possible questions and 20 stages, which
are small enough so that exact solution using dynamic programming is possible. Associated
with each question is a sequence of times, determined randomly for each experiment, when
that question can be attempted. Floating point values were assigned randomly to each
question from 1 to 10 in each problem instance. The probabilities of successfully answering
each question were also chosen randomly, between a specified lower bound and 1.0. In
order to evaluate the performance of the last six algorithms, each suboptimal algorithm was
simulated 10,000 times, using independent event sequences determining which questions
were answered correctly.

Our experiments focused on the effects of two factors on the relative performance of the
different algorithms:

(a) The lower bound on the probability of successfully answering a question, which varied
from 0.2 to 0.8.

(b) The average percent of questions which can be answered at any one stage, which ranged
from 10% to 50%.

The first set of experiments fixed the average percentage of questions which can be an-
swered at a single stage to 10%, and varied the lower bound on the probability of successfully
answering a question across four conditions: 0.2, 0.4, 0.6, and 0.8. For each experimen-
tal condition, we generated 30 independent problems and solved them, and evaluated the
corresponding performance using 10,000 Monte Carlo runs. We computed the average
performance across the 30 problems, and compared this performance with the performance
obtained using the stochastic dynamic programming algorithm.

ROLLOUT ALGORITHMS 97

Table 1.Performance of the different algorithms as
the minimum probability of success of answering
a question varies. The numbers reported are per-
centage of the performance of the optimal, averaged
across 30 independent problems.

Minimum Prob. 0.2 0.4 0.6 0.8
of Success

Greedy Heuristic 41% 50% 61% 76%
One-Step Rollout 75% 82% 88% 90%
Two-Step Rollout 81% 84% 88% 90%

Index Heuristic 43% 53% 66% 80%
One-Step Rollout 77% 83% 89% 90%
Two-Step Rollout 81% 86% 90% 91%

Table 1 shows the results of our experiments. The average performance of the greedy and
index heuristics in each condition are expressed in terms of the percentage of the optimal
performance. The results indicate that rollout algorithms significantly improve the perfor-
mance of both the greedy and the index heuristics in these difficult stochastic combinatorial
problems, and achieve close to optimal performance. In particular, the rollouts recovered in
all cases at least 50% of the loss of optimality due to the use of heuristic. Loss recovery of
this order or better was typical in all of the experiments with rollout algorithms reported in
this paper. The results also illustrate that the performance of the simple heuristics improves
as the average probability of success increases, thereby reducing the potential advantage of
rollout strategies. Even in these unfavorable cases, the rollout strategies improved perfor-
mance levels by at least 10% of the optimal performance.

For the size of problems tested in these experiments, the advantages of using a two-step
selective lookahead rollout were small. In many cases, the performances of the one-step
rollout and the two-step lookahead rollout were identical. Nevertheless, for selected difficult
individual problems, the two-step lookahead rollout improved performance by as much as
40% of the optimal strategy over the level achieved by the one-step rollout with the same
base heuristic.

The second set of experiments fixed the lower bound on the probability of successfully
answering a question to 0.2, and varied the average percent of questions which can be
answered at any one stage across 3 levels: 10%, 30%, and 50%. As before, we generated
30 independent problems and evaluated the performance of each algorithm on each problem
instance. The results of these experiments are summarized in Table 2. The performance
of the greedy and index heuristics improves as the experimental condition approaches the
standard conditions of the quiz problem, where 100% of the questions can be answered
at any time. The results confirm the trend first seen in Table 1: even in cases where the
heuristics achieve good performance, rollout strategies offer significant performance gains.

The results in Tables 1 and 2 suggest that the advantages of rollout strategies over the
greedy and index heuristics increase proportionately with the risk involved in the problem.
By constructing a feasible strategy for the entire horizon for evaluating the current decision,

98 BERTSEKAS AND CASTAÑON

Table 2. Performance of the different al-
gorithms as the average number of ques-
tions per period increases. The numbers
reported are percentage of the performance
of the optimal, averaged across 30 indepen-
dent problems.

Problem Density 0.1 0.3 0.5

Greedy Heuristic 41% 58% 76%
One-Step Rollout 75% 86% 91%
Two-Step Rollout 81% 90% 92%

Index Heuristic 43% 68% 85%
One-Step Rollout 77% 90% 93%
Two-Step Rollout 81% 92% 94%

rollout strategies account for the limited future accessibility of questions, and compute
tradeoffs between future accessibility and the risk of the current choice. In contrast, my-
opic strategies such as the greedy and index heuristics do not account for future access to
questions, and thus are forced to make risky choices when no other alternatives are present.
Thus, as the risk of missing a question increases and the average accessibility of questions
decreases, rollout strategies achieve nearly double the performance of the corresponding
myopic heuristics. However, even in cases where the heuristics perform quite well, the
rollouts resulted in significant recovery (at least 50%) of the loss of optimality due to the
use of the heuristic.

4. Rollout Algorithms for Stochastic Quiz Problems

We now consider variants of the quiz problem where there is no optimal policy that is
open-loop. The situations (e)–(i) given in Section 1 provide examples of quiz problems of
this type. We can view such problems as stochastic DP problems. Their exact solution,
however, is prohibitively expensive.

Let us state a quiz problem in the basic form of a dynamic programming problem, where
we have the stationary discrete-time dynamic system

xk+1 = fk(xk,uk, wk), k = 0,1, . . . , T − 1, (4.1)

that evolves overT time periods. Herexk is the state taking values in some set,uk is the
control to be selected from a finite setUk(xk), wk is a random disturbance, andfk is a
given function. We assume that the disturbancewk, k = 0,1, . . ., has a given probability
distribution that depends explicitly only on the current state and control. The one-stage cost
function is denoted bygk(x,u, w).

To apply the rollout framework, we need to have a base policy for making a decision
at each state-time pair(xk, k). We view this policy as a sequence of feedback functions

ROLLOUT ALGORITHMS 99

π = {µ0, µ1, . . . , µT }, which at timek maps a statexk to a controlµk(xk) ∈ Uk(xk). The
cost-to-go ofπ starting from a state-time pair(xk, k) will be denoted by

Jk(xk) = E

{
T−1∑
i=k

gi (xi , µi (xi), wi)

}
. (4.2)

The cost-to-go functionsJk satisfy the following recursion of dynamic programming (DP
for short)

Jk(x) = E {g(x, µk(x), w)+ Jk+1(f (x, µk(x), w))} , k = 0,1, . . . (4.3)

with the initial condition

JT (x) = 0.

The rollout policy based onπ is denoted byπ̄ = {µ̄0, µ̄1, . . .}, and is defined through
the operation

µ̄k(x) = arg min
u∈U (x)

E{g(x,u, w)+ Jk+1(f (x,u, w))}, ∀x, k = 0,1, (4.4)

Thus the rollout policy is a one step-lookahead policy, with the optimal cost-to-go approx-
imated by the cost-to-go of the base policy. This amounts essentially to a single step of the
method of policy iteration. Indeed using standard policy iteration arguments, one can show
that the rollout policyπ̄ is an improved policy over the base policyπ .

In practice, one typically has a method or algorithm to compute the controlµk(x) of the
base policy, given the statex, but the corresponding cost-to-go functionsJk may not be
known in closed form. Then the exact or approximate computation of the rollout control
µ̄k(x) using Eq. (4.4) becomes an important and nontrivial issue, since we need for all
u ∈ U (x) the value of

Qk(x,u) = E{g(x,u, w)+ Jk+1(f (x,u, w))}, (4.5)

known as theQ-factorat timek. Alternatively, for the computation of̄µk(x) we need the
value of the cost-to-go

Jk+1(f (x,u, w))

at all possible next statesf (x,u, w).
In favorable cases, it is possible to compute the cost-to-goJk(x) of the base policyπ

for any timek and statex. An example is the variant of the quiz problem discussed in
Sections 2 and 3, where the base policy is an open-loop policy that consists of the schedule
generated by the index policy or the greedy policy. The corresponding cost-to-go can then
be computed using Eq. (2.1). In general, however, the computation of the cost-to-go of the
base policy may be much more difficult. In particular, when the number of states is very
large, the DP recursion (4.3) may be infeasible.

A conceptually straightforward approach for computing the rollout control at a given state
x and timek is to use Monte Carlo simulation. This was suggested by Tesauro (1996) in

100 BERTSEKAS AND CASTAÑON

the context of backgammon. To implement this approach, we consider all possible controls
u ∈ U (x) and we generate a “large” number of simulated trajectories of the system starting
from x, usingu as the first control, and using the policyπ thereafter. Thus a simulated
trajectory has the form

xi+1 = f (xi , µi (xi), wi), i = k+ 1, . . . , T − 1,

where the first generated state is

xk+1 = f (x,u, wk),

and each of the disturbanceswk, . . . , wT−1 is an independent random sample from the
given distribution. The costs corresponding to these trajectories are averaged to compute
an approximationQ̃k(x,u) to theQ-factorQk(x,u). The approximation becomes increas-
ingly accurate as the number of simulated trajectories increases. Once the approximate
Q-factor Q̃k(x,u) corresponding to each controlu ∈ U (x) is computed, we can obtain the
(approximate) rollout control̃µk(x) by the minimization

µ̃k(x) = arg min
u∈U (x)

Q̃k(x,u).

Unfortunately, this method suffers from the excessive computational overhead of the
Monte Carlo simulation. We are thus motivated to consider approximations that involve
reduced overhead, and yet capture the essence of the basic rollout idea. We describe next an
approximation approach of this type, and in the following section, we discuss its application
to stochastic scheduling problems.

Approximation Using Scenarios

Let us suppose that we approximate the cost-to-go of the base policyπ usingcertainty
equivalence. In particular, given a statexk at timek, we fix the remaining disturbances at
some nominal values̄wk, w̄k+1, . . . , w̄T−1, and we generate a state and control trajectory of
the system using the base policyπ starting fromxk and timek. The corresponding cost is
denoted byJ̃k(xk), and is used as an approximation to the true costJk(xk). The approximate
rollout control at state-time(xk, k) based onπ is given by

µ̃k(xk) = arg min
u∈U (Xk)

E{g(xk,u, w)+ J̃k+1(f (xk,u, w))}.

We thus need to runπ from all possible next statesf (xk,u, w) and evaluate the corre-
sponding approximate cost-to-gõJk+1(f (xk,u, w)) using a single state-control trajectory
calculation based on the nominal values of the uncertainty.

The certainty equivalent approximation involves a single nominal trajectory of the re-
maining uncertainty. To strengthen this approach, it is natural to consider multiple trajecto-
ries of the uncertainty, calledscenarios, and to construct an approximation to the relevant
Q-factors that involves, for every one of the scenarios, the cost of the base policyπ . Mathe-

ROLLOUT ALGORITHMS 101

matically, we assume that we have a method, which at each statexk, generatesM uncertainty
sequences

wm(xk) = (wm
k , w

m
k+1, . . . , w

m
T−1), m= 1, . . . ,M.

The sequenceswm(xk) are the scenarios at statexk. The costJk(xk) of the base policy is
approximated by

J̃k(xk, r) = r0+
M∑

m=1

rmCm(xk), (4.6)

wherer = (r0, r1, . . . , r M) is a vector of parameters to be determined, andCm(xk) is the
cost corresponding to an occurrence of the scenariowm(xk), when starting at statexk and
using the base policy. We may interpret the parameterrm as an “aggregate weight” that
encodes the aggregate effect on the cost-to-go function of the base policy of uncertainty
sequences that are similar to the scenariowm(xk). We will assume for simplicity thatr does
not depend on the time indexk or the statexk. However, there are interesting possibilities
for allowing a dependence ofr on k or xk (or both), with straightforward changes in the
following methodology. Note that, ifr0 = 0, the approximation (4.6) may be also be
viewed aslimited simulation approach, based on just theM scenarioswm(xk), and using
the weightsrm as “aggregate probabilities.”

Given the parameter vectorr , and the corresponding approximatioñJk(xk, r) to the
cost of the base policy, as defined above, a corresponding approximate rollout policy is
determined by

µ̃k(x) = arg min
u∈U (x)

Q̃k(x,u, r), (4.7)

where

Q̃k(x,u, r) = E{g(x,u, w)+ J̃k+1(f (x,u, w), r)} (4.8)

is the approximateQ-factor. We envision here that the parameterr will be determined by an
off-line “training” process and it will then be used for calculating on-line the approximate
rollout policy as above.

One may use standard methods of Neuro-Dynamic Programming (NDP for short) to train
the parameter vectorr . In particular, we may view the approximating functionJ̃k(xk, r)
of Eq. (4.6) as a linear feature-based architecture where the scenario costsCm(xk) are the
features at statexk. One possibility is to use a straightforward least squares fit ofJ̃k(xk, r)
to random sample values of the cost-to-goJk(xk). These sample values may be obtained by
Monte-Carlo simulation, starting from a representative subset of states. Another possibility
is to use Sutton’s TD(λ). We refer to the books by Bertsekas and Tsitsiklis (1996) and
Sutton and Barto (1998), and the survey by Barto et al. (1995) for extensive accounts of
training methods and relating techniques.

We finally mention a variation of the scenario-based approximation method, whereby
only a portion of the future uncertain quantities are fixed at nominal scenario values, while

102 BERTSEKAS AND CASTAÑON

the remaining uncertain quantities are explicitly viewed as random. The cost of scenariom
at statexk is now a random variable, and the quantityCm(xk) used in Eq. (4.6) should be
theexpectedcost of this random variable. This variation is appropriate and makes practical
sense as long as the computation of the corresponding expected scenario costsCm(xk) is
convenient.

5. Rollout Algorithms for Stochastic Quiz Problems

We now apply the rollout approach based on certainty equivalence and scenarios to variants
of the quiz problem where there is no optimal policy that is open-loop, such as the situations
(e)–(i) given in Section 1. The state after questionsi1, . . . , i k have been successfully
answered, is the current partial schedule(i1, . . . , i k), and possibly the list of surviving quiz
takers [in the case where there are multiple quiz takers, as in variant (g) of Section 1]. A
scenario at this state corresponds to a (deterministic) sequence of realizations of some of
the future random quantities, such as:

(1) The list of turns that will be missed in answer attempts from timek onward; this is for
the case of variant (e) in Section 1.

(2) The list of new questions that will appear and old questions that will disappear from
timek onward; this is for the case of variant (f) in Section 1.

(3) The specific future times at which the surviving quiz takers will drop out of the quiz;
this is for the case of variant (g) in Section 1.

Given any scenario of this type at a given state, and a base heuristic such as an index or
a greedy policy, the corresponding value of the heuristic [cf. the costCm(xk) in Eq. (4.6)]
can be easily calculated. The approximate value of the heuristic at the given state can be
computed by weighing the values of all the scenarios using a weight vectorr , as in Eq. (4.6).
In the case of a single scenario, a form of certainty equivalence is used, whereby the value of
the scenario at a given state is used as the (approximate) value of the heuristic starting from
that state. In the next section we present computational results for the case of a problem,
which is identical to the one tested in Section 3, but a turn may be missed with a certain
probability.

6. Computational Experiments with Stochastic Quiz Problems

The class of quiz problems which we used in our computational experiments is similar
to the class of problems used in Section 3, with the additional feature that an attempt to
answer a question can be blocked with a prespecified probability, corresponding to the case
of variant (e) in Section 1. The problems involve 20 questions and 20 time periods, where
each question has a prescribed set of times where it can be attempted. The result of a
blocking event is a loss of opportunity to answer any question at that state. Unanswered
questions can be attempted in future stages, until a wrong answer is obtained.

ROLLOUT ALGORITHMS 103

In order to evaluate the performance of the base policy for rollout algorithms, we use a
particular version of the scenario approach described previously. Assume that the blocking
probability is denoted byPb. At any stagek, givenM stages remaining and this blocking
probability, the equivalent scenario duration is computed as the smallest integer greater than
or equal to the expected number of stages remaining:

Te = dPb ∗ (M − k)e

Using this horizon, the expected cost of a base heuristic is computed as the cost incurred
for an equivalent deterministic quiz problem starting with the current state, with remaining
durationTe. The cost of the strategy obtained by the base policy is approximated using the
resulting value function for this horizon, as computed by Eq. (2.1).

As in Section 4, we used seven algorithms in our experiments:
1. The optimal stochastic dynamic programming algorithm.
2. The greedy heuristic, where questions are ranked in decreasingpi vi , and, for each

stagek, the feasible unanswered question with the highest ranking is selected.
3. The index heuristic, where questions are ranked by decreasingpi vi /(1− pi vi), and

for each stagek, the feasible unanswered question with the highest ranking is selected.
4. The one-step rollout policy based on the greedy heuristic and certainty equivalence

policy evaluation, where, at each stagek, for every feasible unanswered questioni k and
prior sequencei1, . . . , i k−1, the question is chosen according to the rollout rule (2.4). The
functionH uses the greedy heuristic as the base policy, and its performance is approximated
by the performance of an equivalent non-blocking quiz problem as described above.

5. The one-step rollout policy based on the index heuristic and certainty equivalence
policy evaluation, where the functionH in (2.4) uses the index heuristic as the base policy,
and is approximated using the certainty equivalence approach described previously.

6. The selective two-step lookahead rollout policy based on the greedy heuristic, with
certainty equivalence policy evaluation corresponding to an equivalent non-blocking quiz
problem with horizon described as above.

7. The selective two-step lookahead rollout policy based on the index heuristic, with
certainty equivalence policy evaluation corresponding to an equivalent non-blocking quiz
problem with horizon described as above.

The problems selected for evaluation involve 20 possible questions and 20 stages, which
are small enough so that exact solution using dynamic programming is possible. Associated
with each question is a sequence of times, determined randomly for each experiment, when
that question can be attempted. Floating point values were assigned randomly to each
question from 1 to 10 in each problem instance. The probabilities of successfully answering
each question were also chosen randomly, between a specified lower bound and 1.0. In
order to evaluate the performance of the last six algorithms, each suboptimal algorithm was
simulated 10,000 times, using independent event sequences determining which question
attempts were blocked and which questions were answered correctly.

Our experiments focused on the effects of three factors on the relative performance of the
different algorithms:

a) The lower bound on the probability of successfully answering a question, which varied
from 0.2 to 0.8.

104 BERTSEKAS AND CASTAÑON

Table 3.Performance of the different algorithms as
the minimum probability of success of answering
a question varies. The numbers reported are per-
centage of the performance of the optimal, averaged
across 30 independent problems.

Minimum Prob. 0.2 0.4 0.6 0.8
of Success

Greedy Heuristic 54% 63% 73% 82%
One-Step Rollout 85% 89% 90% 88%
Two-Step Rollout 87% 89% 90% 88%

Index Heuristic 56% 67% 78% 84%
One-Step Rollout 86% 89% 90% 88%
Two-Step Rollout 87% 90% 90% 88%

b) The average percent of questions which can be answered at any one stage, which
ranged from 10% to 50%.

c) The probability that individual question attempts will not be blocked, ranging from
0.3 to 1.0.

As in Section 4, for each experimental condition, we generated 30 independent problems
and solved them with each of the 7 algorithms, and evaluate the corresponding performance
using 10,000 Monte Carlo runs. The average performance is reported for each condition.

The first set of experiments fixed the average percentage of questions which can be an-
swered at a single stage to 10%, the probability that question attempts will not be blocked
to 0.6, and varied the lower bound on the probability of successfully answering a question
across four conditions: 0.2, 0.4, 0.6 and 0.8. Table 3 shows the results of our experiments.
The average performance of the greedy and index heuristics in each condition are expressed
as a percentage of the optimal performance. The results for this experiment are very similar
to the results we obtained earlier for deterministic quiz problems. Without rollouts, the
performance of either heuristic is poor, whereas the use of one-step rollouts can recover a
significant percentage of the optimal performance. As the risk associated with answering
questions decreases, the performance of the heuristics improves, and the resulting improve-
ment offered by the use of rollouts decreases. On average, the advantage of using selective
two-step rollouts is small, but this advantage can be large for selected difficult problems.

The second set of experiments fixed the lower bound on the probability of successfully
answering a question to 0.2, and varied the average percent of questions which can be
answered at any one stage across 3 levels: 10%, 30%, and 50%. The results of these experi-
ments are summarized in Table 4. As in the deterministic quiz problems, the performance of
the greedy and index heuristics improves as the number of questions which can be answered
at any one time approaches 100%. The results show that, even in cases where the heuristics
achieve good performance, rollout strategies offer significant performance gains.

The last set of experiments focused on varying the blocking probability that an attempt to
answer a question at any one time is not blocked over 3 conditions: 0.3, 0.6, and 1.0. The
last condition corresponds to the deterministic quiz problems of Section 3. Table 5 contains
the results of these experiments. As the blocking probability increases, there is increased

ROLLOUT ALGORITHMS 105

Table 4. Performance of the different al-
gorithms as the average number of ques-
tions per period increases. The numbers
reported are percentage of the performance
of the optimal, averaged across 30 indepen-
dent problems.

Problem Density 0.1 0.3 0.5

Greedy Heuristic 54% 65% 78%
One-Step Rollout 85% 88% 91%
Two-Step Rollout 87% 89% 91%

Index Heuristic 56% 74% 87%
One-Step Rollout 86% 89% 92%
Two-Step Rollout 87% 90% 92%

Table 5.Performance of the different algo-
rithms on stochastic quiz problems as the
probability of non-blocking increases. The
numbers reported are percentage of the per-
formance of the optimal, averaged across
30 independent problems.

Probability 0.3 0.6 1.0
of Nonblocking

Greedy Heuristic 73% 54% 41%
One-Step Rollout 90% 85% 75%
Two-Step Rollout 91% 87% 81%

Index Heuristic 75% 56% 43%
One-Step Rollout 91% 86% 77%
Two-Step Rollout 91% 87% 81%

randomness as to whether the questions may be available in the future. This increased
randomness leads to improved performance of myopic strategies, as shown in Table 5.
Again, the advantages of the rollout strategies are evident even in this favorable case.

The results in Tables 3, 4, and 5 provide ample evidence that rollout strategies offer
superior performance for stochastic quiz problems, while maintaining polynomial solution
complexity.

7. Quiz Problems with Graph Precedence Constraints

The previous set of experiments focused on quiz problems where questions could be at-
tempted during specific time periods, with no constraints imposed on the questions which
had been attempted previously. In order to study the effectiveness of rollout strategies
for problems with precedence constraints, we defined a class of quiz problems where the
sequence of questions to be attempted must form a connected path in a graph. In these

106 BERTSEKAS AND CASTAÑON

problems, a question attempt cannot be blocked as in the problems of Section 6, so there
exists an optimal open-loop policy.

Let G = (N ,A) be a directed graph where the nodesN represent questions in a quiz
problem. Associated with each noden is a value for answering the question correctly,
vn, and a probability of correctly answering the question,pn. Once a question has been
answered correctly at noden, the value of subsequent visits to noden is reduced to zero,
and there is no risk of failure on subsequent visits to noden.

The graph constrains the quiz problem as follows: a questionn1 may be attempted at
stagek only if there is an arc(n,n1) ∈ A, wheren is the question attempted at stagek− 1.
The graph-constrained quiz problem of durationN consists of finding a pathn0,n1, . . . ,nN

in the graphG such thatn0 is the fixed starting node,(nk,nk+1) ∈ A for all k = 0, . . . , N−1,
and the path maximizes the expected value of the questions answered correctly before the
first erroneous answer.

The previous heuristic algorithms can be extended to the graph constrained case. The
greedy heuristic can be described as follows: Given that the current attempted question
wasn, determine the feasible questionsi such that(n, i) ∈ A. Select the feasible question
which has the highest expected value for the next attemptpi vi . In the graph-constrained
problem, it is possible that there are no feasible questions with positive value, and the path
is forced to revisit a question already answered. If no feasible question has positive value,
the greedy heuristic is modified to select a feasible node which has been visited the least
number of times among the feasible nodes from noden. The index heuristic is defined
similarly, except that the indexpi vi /(1− pi vi) is used to rank the feasible questions.

One-step rollout policies can be based on the greedy or index heuristics, as before. Since
the class of problems is similar to the deterministic quiz problems discussed before, it is
straightforward to determine the expected value associated with a given policy. The rollout
policies are based on exact evaluation of these expected values.

In the experiments below, we compare the following five algorithms:

(1) The optimal dynamic programming algorithm.

(2) The greedy policy.

(3) The index policy.

(4) The one-step rollout policy based on the greedy heuristic.

(5) The one-step rollout policy based on the index heuristic.

The first set of experiments involves problems with 16 questions and 16 stages. This
problem size is small enough to permit exact solution using the dynamic programming
algorithm. The questions were valued from 1 to 10, selected randomly. On average, each
node was connected to 5 other nodes, corresponding to 30% density. In these experiments,
the probability of successfully answering a question was randomly selected between a lower
bound and 1.0, and the lower bound was varied from 0.2 to 0.8, thereby varying the average
risk associated with a problem.

Table 6 summarizes the results of these experiments. The first observation is that the
performance of the heuristics in graph-constrained problems is relatively superior to the

ROLLOUT ALGORITHMS 107

Table 6.Performance of the different algorithms on
graph-constrained quiz problems as the minimum
probability of success of answering a question in-
creases. The probability of successfully answering
a question was randomly selected between a lower
bound and 1.0, and the lower bound was varied from
0.2 to 0.8. The numbers reported are percentage of
the performance of the optimal, averaged across 30
independent problems.

Minimum Prob. 0.2 0.4 0.6 0.8
of Success

Greedy Heuristic 74% 77% 77% 84%
One-Step Rollout 94% 94% 91% 94%

Index Heuristic 84% 87% 89% 90%
One-Step Rollout 95% 96% 96% 95%

performance obtained in the experiments in Section 4. This is due in part to the lack of
structure concerning when questions could be attempted in the problems tested in Section 4.
In contrast, the graph structure in this section provides a time-invariant set of constraints,
leading to better performance. In spite of this improved performance, the results show
that rollout algorithms can improve the performance of the heuristics, to levels where
the achieved performance is roughly 95% of the performance of the optimal dynamic
programming algorithm, with a significant reduction in computation cost compared with
the optimal algorithm.

To illustrate the performance of rollout algorithms on larger problems, we ran experiments
on graphs involving 100 questions and 100 stages. For problems of this size, exact solution
via dynamic programming is computationally infeasible. The problems involved graphs
with 10% density and varying risks as before. The results are summarized in Table 7. Since
there is no optimal solution for reference, the results provide the average improvement by
the rollout strategies over the corresponding heuristics, expressed as a percentage of the
performance achieved by the rollout strategies. The average improvement achieved by the
rollout algorithms, as shown in Table 7, is consistent with the corresponding improvement
shown in Table 6. The results indicate that rollout strategies continue to offer significant
performance advantages over the corresponding heuristics. In contrast with the optimal
dynamic programming algorithm, the average computation time of the rollout algorithms
for these problems is a fraction of a second on a Sun HyperSparc workstation.

8. Conclusion

In this paper, we studied stochastic scheduling problems arising from variations of a clas-
sical search problem known as the quiz problem. We grouped these variations into two
classes: the deterministic quiz problems, for which optimal strategies can be expressed
as deterministic sequences, and the stochastic quiz problems, for which optimal strategies

108 BERTSEKAS AND CASTAÑON

Table 7. Performance improvement achieved by rollout algo-
rithms over the corresponding heuristics on 100 question graph-
constrained quiz problems as the minimum probability of suc-
cess of answering a question increases. The numbers reported
are percentage of the performance of the rollout algorithms,
averaged across 30 independent problems.

Minimum Prob. 0.2 0.4 0.6 0.8
of Success

Improvement over Greedy by
One-Step Rollout 28% 29% 31% 24%

Improvement over Index by
One-Step Rollout 13% 12% 10% 6%

are feedback functions of the problem state. For either of these classes, the computa-
tional complexity of obtaining exact optimal solutions grows exponentially with the size
of the scheduling problem, limiting the applicability of exact techniques such as stochastic
dynamic programming.

In this paper, we develop near-optimal solution approaches for deterministic and stochas-
tic quiz problems that are computationally tractable based on the use of rollout algorithms.
For stochastic quiz problems, we introduced a novel approach to policy evaluation, based on
the use of scenarios, which resulted in polynomial complexity algorithms for obtaining near-
optimal strategies. Our computational experiments show that these rollout algorithms can
substantially improve the performance of index-based and greedy algorithms for both deter-
ministic and stochastic quiz problems. The performance achieved by the rollout algorithms
is quite close to the optimal, and appears insensitive to the quality of the corresponding
heuristic performance.

References

Barto, A. G., S. J. Bradtke, and S. P. Singh. (1995). “Learning to Act Using Real-Time Dynamic Programming,”
Artificial Intelligence72, 81–138.

Bertsekas, D. P., J. N. Tsitsiklis, and C. Wu. (1997). “Rollout Algorithms for Combinatorial Optimization,”
Heuristics3, 245–262.

Bertsekas, D. P., and J. N. Tsitsiklis. (1996).Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.
Ross, S. M. (1983).Introduction to Stochastic Dynamic Programming. N.Y.: Academic Press.
Sutton, R., and A. G. Barto. (1998).Reinforcement Learning. Cambridge, MA: MIT Press.
Tesauro, G., and G. R. Galperin. (1996). “On-Line Policy Improvement Using Monte Carlo Search,” presented

at the 1996 Neural Information Processing Systems Conference, Denver, CO.
Whittle, P. (1982).Optimization over Time, vol. I. N.Y.: Wiley.

