
504 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

Distributed Power Control Algorithms for Wireless
Networks

Cynara Wu and Dimitri P. Bertsekas, Fellow, IEEE

Abstract—Power control has been shown to be an effective way
to increase capacity in wireless systems. In previous work on power
control, it has been assumed that power levels can be assigned from
a continuous range. In practice, however, power levels are assigned
from a discrete set. In this work, we consider the minimization of
the total power transmitted over given discrete sets of available
power levels subject to maintaining an acceptable signal quality for
each mobile. We have developed distributed iterative algorithms
for solving a more general version of this integer programming
problem, which is of independent interest, and have shown that
they find the optimal solution in a finite number of iterations which
is polynomial in the number of power levels and the number of mo-
biles.

Index Terms—Cellular networks, distributed algorithms, integer
programming, power control.

I. INTRODUCTION

E FFICIENT resource utilization is a primary problem
in cellular communications systems. Resource issues

include assigning transmit power levels to users subject to
acceptable signal quality, providing varying levels of service to
different priority classes, and maintaining connections in the
presence of user movements. Given a set of users that wish
to be connected, transmit power levels must be assigned. We
propose a distributed algorithm that determines if there is a
power assignment providing an acceptable signal quality for
each user and if so, provides a solution that minimizes the
total transmitted power. Minimizing energy consumption is
important when users have limited battery power.

A great deal of work has been done on power control. Algo-
rithms have been developed and shown to minimize the number
of channels required to accommodate every user [3], to maxi-
mize the minimum signal-to-noise ratio (SNR) with a constraint
on the total transmitted power [2], and to minimize the total
transmitted power [5], [7]. However, these algorithms all as-
sume that power can be allocated from a continuous range. Our
work does not make such assumptions and restricts assigned
power levels to be from given discrete sets, more accurately re-
flecting actual systems. In addition, while our algorithms can be
used to assign power levels in order to minimize the total trans-
mitted power subject to obtaining acceptable SNRs for each
mobile, our formulation is more general and can be applied

Manuscript received September 30, 1999; revised April 14, 2000. This work
was supported by NSF under Grant NCR-9 622 636.

C. Wu is withMalachite Technologies, Inc., Methuen, MA 01844 USA.
D. Bertsekas is with the Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology; Cambridge, MA 02135 USA (e-mail:
dimitrib@mit.edu).

Publisher Item Identifier S 0018-9545(01)03938-X.

to other linear and nonlinear integer programming problems,
which are of independent interest. Furthermore, we show that
our algorithms admit an on-line and distributed implementation,
allowing the addition and deletion of constraints which corre-
spond to arrivals and departures of users.

We first formally define in Section II the problem which we
are addressing. Then, in Section III, we generalize the problem
to an integer programming problem with certain constraints. In
Section IV, we develop an iterative algorithm for solving this in-
teger programming problem and show that the algorithm solves
the problem in a finite number of iterations. The algorithm is
simple to implement, can be implemented in a distributed envi-
ronment, and requires computation which is polynomial in the
number of variables and the cardinality of the discrete sets. In
Section V, we discuss variations of the iterative algorithm in-
volving the addition and deletion of constraints. In Section VI,
we discuss distributed versions of the iterative algorithm. In Sec-
tion VII, we describe some computational results.

II. PROBLEM FORMULATION

We consider a system of cells in which mobiles are to
establish a connection. Each cell contains a single base station.
Depending on the distance between a mobile and a base station
as well as path loss, fading, and shadowing, the power received
at base stationthat is transmitted by mobileis attenuated by a
gain . Mobile can communicate with a base station provided
its SNR is above some given threshold. We are given a finite
set of discrete power levels from which to assign to mobile
. The goal is to determine whether there exists an assignment

of power levels and base stations to all mobiles so that each
mobile’s SNR is acceptable, and if so, find an assignment that
minimizes the total transmitted power.

Let denote the power transmitted by mobileand de-
note the base station to which mobileis assigned. The SNR of
mobile at base station is then

SNR

where is the receiver noise at the base station. The power
control problem we wish to solve has the form

subject to

(1)

0018–9545/01$10.00 © 2001 IEEE

WU AND BERTSEKAS: DISTRIBUTED POWER CONTROL ALGORITHMS 505

Therefore, if is an optimal solution,
the th mobile should be assigned to base stationat power
level . Equivalently, the problem can be written as

subject to

The relaxed version of problem , in which the power
levels at which the mobiles are transmitting are selected from
continuous intervals, can be solved by an iterative algorithm de-
scribed by Yates and Huang [7]. At each iteration of their algo-
rithm, each mobile adjusts its power to the minimum power nec-
essary to obtain the threshold SNR at some base station under
the assumption that all other users maintain their previous power
levels. They show that synchronous and asynchronous versions
of the algorithm converge to optimal solutions.

In the next section, we describe an integer programming gen-
eralization of problem and provide an iterative algorithm
to solve it. This algorithm is similar to that of Yates and Huang
for the relaxed version of the power control problem.

III. I NTEGERPROGRAMMING GENERALIZATION

In this section, we provide an integer programming general-
ization of the power control problem, , described above. We
consider a cost minimization problem with the following form:

subject to

where
optimization vector;
real numbers;

and functions mapping vectors in to
real numbers;

sets given finite sets of real numbers.
In the above problem statement and in what follows, all vec-
tors are viewed as column vectors. The problem is illustrated by
Fig. 1 for the case where

and is the set of nonnegative integers less than some arbitrary
constant for .

It can be seen that the power control problem is a special case
of problem . This is illustrated in the following example for
the case of just two mobiles and two base stations.

Example 1: Consider the power control problem in which
we have two mobiles and two base stations. The power levels
are constrained to be integers less than or equal to some positive

Fig. 1. Illustration of problem(P). The region specified by the constraints
h (x) � b is shaded. The feasible region consists of the dots/points that lie
within the shaded region.

integer . The problem can be formulated as a problem of type
as follows:

subject to

The problem is illustrated in Fig. 2 for the case where

and

The feasible region for each of the constraints are indicated in
parts (a) and (b), and the intersection is indicated in part (c). The
optimal solution is . Note that the feasible region
need not be a convex polyhedron.

Let denote the Cartesian product of :

For any , and ,
we make the following assumptions regarding :

Assumption 1:If , then

where is a unit vector in with a 1 in the th position and
0’s elsewhere. Furthermore, we have

for

Assumption 2: is monotonically nondecreasing in; i.e.,

if then

Assumption 1 states that increasing theth component of
increases and either decreases or does not affect

506 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

Fig. 2. Illustration of the power control problem for Example 1. The shaded regions of parts (a) and (b) represent the region satisfying the first and second
constraints. The shaded region of part (c) represents the region satisfying both constraints.

for . Note that from Assumption 1, we have
so that

(2)

In the case where the constraint functionsare linear, Assump-
tion 1 is satisfied if the corresponding constraint matrix has pos-
itive elements along the diagonal and nonpositive elements off
the diagonal.

As was seen in Example 1, the power control problem is
a special case of . It is straightforward to show that it satisfies
Assumptions 1 and 2.

In general, we can view as a problem involving the al-
location of discrete resources to users. The resource allo-
cation is represented by the vector, where is the quantity
of resource allocated to user. Each user requires that some
objective, or constraint, is met, i.e., . Assumption
1 essentially specifies that the effects of resources allocated to
other users impede or have no effect on a user’s ability to sat-
isfy its constraint. Assumption 2 specifies that resources have
nonnegative incremental costs. The goal is to minimize some
function of the resources being allocated subject to satisfying

each user’s constraint. This integer programming problem and
the algorithms described in this paper should be useful in con-
texts more general than power control.

IV. A LGORITHMS FORSOLVING PROBLEM

In this section, we describe an algorithm that will determine
an optimal solution of problem if one exists. If the problem
has no feasible solution, the algorithm will determine that none
exists. Note that if the problem is feasible, there is an optimal so-
lution since there can be only a finite number of feasible points.

We first define some additional notation

value of after the th iteration of

an algorithm

means

means

where for some

We assume that we start with a point
such that if has a feasible solution,

satisfies , where is some optimal

WU AND BERTSEKAS: DISTRIBUTED POWER CONTROL ALGORITHMS 507

solution. (An optimal solution is guaranteed to exist when
has a feasible solution since the sets are assumed finite.)
One possibility is to set to the minimum value in

If problem has no feasible solution, there is no restriction
on . Note that if is feasible, then since and
Assumption 2 holds, must be optimal.

We define the set , for , as follows:

Essentially, is an element of if it satisfies the th constraint.
For the problem in Example 1, the shaded regions in parts (a)
and (b) of Fig. 2 represent and , respectively. For

, we also define the following set of scalars associated
with a point :

Essentially, is the set of values in such that setting the
th component of to any value in the set, while leaving the

remaining components of unchanged, results in the updated
value of satisfying the th constraint. In other words, for

, the scalar is an element of if the vector
given by

is an element of . Again referring to the problem in Example
1, for any point is the set of valuessuch
that is in the shaded region of Fig. 2, part (a), and
is the set of valuessuch that is in the shaded region of
Fig. 2, part (b).

Note that by definition of the sets and , if is not an
element of for any , then cannot contain
any values less than or equal to due to Assumption 1. Fur-
thermore, if is the minimum value of , then is
the set of values in that are greater than or equal to

A. Typical Iteration of the Minimum Feasible Value Assignment
(MFVA)

Given a point such that ,
select some index satisfying .

• If no such exists, the algorithm terminates and returns
the point . (It will be shown that in this case, is
optimal.)

• If such an does exist, then if the set is empty,
the algorithm terminates (it will be shown that in this case,
the problem is infeasible). Otherwise, set to the
smallest value in the set ; i.e., set to the
smallest value in such that . For ,
we set :

for
for

(3)

Fig. 3. Illustration of the MFVA algorithm for the problem of Example 2.

The MFVA algorithm starts with an initial point and con-
tinuously applies the iteration described by (3) until a termina-
tion condition is reached. It is illustrated by the example that
follows.

Example 2: Consider the following power control problem:

subject to

As noted previously, the problem satisfies Assumptions 1 and 2.
The results of applying the MFVA algorithm to this problem is
illustrated in Fig. 3. The darkly shaded region represents the fea-
sible region in which both constraints are satisfied. The lightly
shaded region represents the region in which neither constraint
is satisfied. At each iteration of the algorithm, each component
remains less than or equal to that of the optimal solution, and
a different constraint is satisfied, possibly causing a previously
satisfied constraint to no longer be satisfied. The sequence of
points generated by the algorithm therefore alternates between
the regions where exactly one of the constraints is satisfied until
a point is reached in which both of the constraints are satisfied.

To prove that the algorithm terminates, we first show that each
application of iteration (3) to a vector results in a vector

such that one component is strictly greater than the
corresponding component of , i.e., that ,
for some , while the remaining components
remain unchanged. The number of iterations involving updating
any particular component is then bounded by the number of
values in the set since once is equal to the maximum value
in , the set must be empty. The number of iterations is
therefore bounded by the number of values in all of the sets of

.
Proposition 1: If for some and

is nonempty, then .
Proof: Since , we have . As a

result, we obtain

(4)

508 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

For any , we have

(5)

Combining (4) and (5), we have

(6)

From Assumption 1, (6) and (2) imply that .
As a result of Prop. 1, an iteration of the MFVA algorithm

starting with a vector yields a vector of which the
th component is strictly greater than that of . Therefore, the

MFVA algorithm terminates after a finite number of iterations
for any initial point . The algorithm either terminates when
the current point satisfies for ,
or when the set is empty for some
such that . The following proposition and corollary
show that given an appropriate starting point , the algorithm
will terminate with an optimal solution in the former situation
when the problem is feasible and will terminate in the latter
situation when the problem is infeasible. In what follows,
refers to some optimal solution whenever problem is fea-
sible. If problem is not feasible, refers to the point such
that for .

Proposition 2: If problem is feasible, and satisfies
and for some , then the set

is nonempty. Furthermore,
.

Proof: Define as follows:

for
for

Since is an optimal solution, we have

Since and , for , we have from Assump-
tion 1

Therefore, we have , and it follows that is an el-
ement of . Therefore, is nonempty. The min-
imum of this set must be less than or equal to, and it follows
from Prop. 1 that .

It follows from Prop. 2 that if an iteration of the MFVA algo-
rithm is executed, we have .

Corollary 3: Given an initial starting point , the
MFVA algorithm terminates in a finite number of iterations
under one of the following two conditions: either we have

for , in which case is an op-
timal solution to , or the set is empty for some

such that , in which case there is no
feasible solution to .

Proof: We have shown that the MFVA algorithm termi-
nates and that when this occurs, either the current point

satisfies for , or the set is
empty for some such that . Consider
the former situation, and let be the resulting vector. Then
we have for , and therefore is
feasible. By induction using the results from Prop. 2, we have

, so must be optimal. Consider next the latter sit-
uation. If is empty for any such that , then
from Prop. 2, problem is infeasible.

The main idea of the algorithm is to increase some compo-
nent of at each iteration while keeping .
Each component can be adjusted at most times, where

denotes the cardinality of a set. There are therefore at most
or iterations, by which point ei-

ther the optimal solution has been found, or it is determined that
the problem is infeasible.

As noted earlier, if during a particular iteration of the MFVA
algorithm, is some index satisfying and the set

is not empty, then consists of points greater
than or equal to . We can construct a variant of the MFVA
algorithm in which instead of setting to the smallest
value in , we simply increase to the next
higher value in the set . It is straightforward to show that this
single-step variant of the MFVA algorithm also finds the optimal
solution of if one exists in a finite number of iterations,
and that it has the same complexity bound on the number of re-
quired iterations as the standard MFVA algorithm. This variant
may be useful in contexts where it is difficult to determine the
set . For instance, in the power control problem, it may
be possible to only determine whether a mobile user has a suf-
ficient SNR and not to determine what power level is necessary
to satisfy the signal to noise threshold if the current ratio is not
sufficient. In this case, the power level of the mobile user can
be incrementally increased until its threshold ratio is reached.
Computational experiments show that the number of iterations
required for the variant to find the optimal solution is typically
less than 5% greater than the number required for the standard
MFVA algorithm to find the optimal solution, so the poten-
tial convenience afforded by the variant described may be well
worth the extra computation involved.

V. MODIFYING THE CONSTRAINTS OFPROBLEM

In a cellular network, the number of users that need to be con-
nected to the base station varies as users arrive and depart. The
optimal power assignments change as a result of the arrivals and
departures. In this section, we consider how the optimal solution
to changes when the problem is modified as a result of in-
creasing or decreasing the dimension of the optimization vector

, as well as adding or removing a constraint. In the context of
the power control problem, this corresponds to the arrival or de-
parture of a mobile.

Given an optimal solution to problem , we will show
that an optimal solution to a new problem that augments
problem with an additional constraint can be found by using

as a starting point for the MFVA algorithm. Given an op-
timal solution to problem , we will show that an optimal
solution to a new problem that removes a constraint from
problem can be found by using as a starting point for an

WU AND BERTSEKAS: DISTRIBUTED POWER CONTROL ALGORITHMS 509

“inverse” algorithm that finds an appropriate starting point for
the MFVA algorithm.

B. Addition of a Constraint

Assume problem is feasible and we have an optimal solu-
tion. Suppose we are given a new problem that differs from
the original in that the dimension of the optimization vector is
increased by one, and it has one more constraint. Problem
has the form

subject to

where the optimization variable is now a
vector in , the , for , are as before, and

is a given real number. The sets , for ,
are as before, and is a given finite set of nonnegative real
numbers. The functions and , for map
vectors in to real numbers. Furthermore, we assume that
if , we have

and

We assume that Assumption 1 holds for the new problem, while
Assumption 2 is modified as follows:

Assumption 2’: is monotonically increasing; i.e.,

if then

Using an optimal solution to the original problem as a partial
starting point, the MFVA algorithm can be used to solve the new
problem, as shown in the next proposition.

Proposition 4: Let be an optimal solution of .
Let be an optimal solution of if is fea-
sible, and let be such that for

if is not feasible. Given the starting
point , where satis-
fies for and satisfies

, the MFVA algorithm terminates in
a finite number of iterations under one of the following two
conditions: either we have for ,
in which case is an optimal solution to , or the set

is empty for some such that
, in which case there is no feasible solution to .

Proof: Due to Corollary 3, it is sufficient to show that if
is feasible, , for . Assume the con-

trary, that for some . Define so that

For any , if , we have

where the first inequality follows from Assumption 1 and the
second inequality follows since is feasible for problem .
For any , if , we have

The first three inequalities follow from Assumption 1 and the
fact that we have . The last inequality fol-
lows since is feasible for problem . is therefore a fea-
sible solution to problem . Since for some ,
we have , it follows that , and is a better
solution than to problem , yielding a contradiction.

To insure that , we can initialize
as follows:

C. Removal of a Constraint

Assume problem is feasible and we have an optimal so-
lution. We are given a new problem that differs from the
original in that it has one fewer variable and one fewer set of
constraints. As in Section V-A, if , we have

and

We also use the same assumptions as in Section V-A.
Let be some optimal solution to . Since is feasible

for , we have

Due to Assumption 1, we also have

Therefore, is feasible for , and has an optimal solu-
tion. In order to find an optimal solution to problem , we can
start with a solution initialized as follows:

and run the MFVA algorithm to solve problem . Another
possibility, which aims at a better starting point , is to ini-
tialize as

and run an “inverse” version of the MFVA algorithm. Recall that
during an iteration of the MFVA algorithm, some component of

is increased to the smallest value in its feasible set so that
its corresponding constraint is satisfied. Consider an “inverse”
algorithm in which an iteration consists of some component of

being decreased to the smallest value in its feasible set so that

510 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

Fig. 4. Illustration of an “inverse” MFVA algorithm that does not correctly find
the optimal solution in the case where a constraint is removed. The algorithm
iteratively decreases some component so that its corresponding constraint is still
satisfied. Starting at the point(4; 4), the algorithm terminates at the point(3; 3)
even though the optimal solution is the point(2; 2).

its corresponding constraint is still satisfied. As illustrated in
Fig. 4, such an algorithm may not find an optimal solution.

Instead, we consider an alternative “inverse” version of the
MFVA algorithm that obtains a point such
that , and then run the MFVA algorithm starting with.
This “inverse” algorithm is described below. We first define for

, the set as follows:

For , we also define the following set of scalars
associated with a point :

Note that the sets and are analogous to the sets
and defined in Section IV. In these sets, the inequalities
are reversed. Also note that by definition of the two sets, ifis
not an element of for any , then can not
contain any values greater than or equal todue to Assumption
1. Furthermore, if is the maximum value of , then

is the set of values in that are less than or equal to

C. Typical Iteration of the Maximum Infeasible Value Assign-
ment (MIVA)

Given a point such that ,
select some index satisfying .

• If no such exists, the algorithm terminates and returns
the point . (It will be shown that in this case, is
optimal.)

• If such an does exist, then if the set is empty,
the algorithm terminates (it will be shown that in this case,
the problem is infeasible). Otherwise, set to the
largest value in such that ; i.e., set

to the largest value in the set . For , we
set :

for
for

(7)
The Maximum Infeasible Value Assignment algorithm

(MIVA) starts with an initial point and continuously ap-
plies the iteration described by (7) until a termination condition
is reached. It is illustrated by the example below.

Example 3: Consider the following power control problem
in which we have three mobile users in a single cell with a
threshold requirement of 0.4635:

subject to

Using the MFVA algorithm, we can obtain the optimal solution
.

Suppose the second mobile user ends its connection, resulting
in the following problem

subject to

Using the resulting point from the original problem,
, as the starting point, running the MIVA al-

gorithm results in the point . The progression of
the algorithm is illustrated in Fig. 5. Note that , for

, where is the optimal solution for this
problem , and therefore would be an appropriate starting
point for the MFVA algorithm.

The proof of the algorithm terminating in a finite number of
iterations is analogous to that of the MFVA algorithm. As in that
case, each application of the iteration to a vector results in a
vector such that one component is strictly less than the
corresponding component of , i.e., that ,
for some , while the remaining components re-
main unchanged. The number of iterations involving any partic-
ular component is then bounded by the number of values in
the set since once is equal to the minimum value in ,
the set must be empty. The number of iterations is there-
fore bounded by the number of values in all of the sets of.

Consider the following problem:

subject to

WU AND BERTSEKAS: DISTRIBUTED POWER CONTROL ALGORITHMS 511

Fig. 5. Illustration of the MIVA algorithm.

As shown in the following proposition, given an appropriate
starting point, the MIVA algorithm will terminate with an op-
timal solution to problem if is feasible. If is not
feasible, the algorithm will terminate without a solution.

Proposition 5: Let be an optimal solution to problem
if is feasible. If is not feasible, let be such that

for . Given a starting point
, the MIVA algorithm terminates in a finite number

of iterations under one of the following conditions: either we
have for , in which case is an
optimal solution to , or the set is empty for some

such that , in which case there is no
feasible solution to .

Proof: The proof is analogous to those of Proposition 2
and Correlation 3 and is omitted.

Returning to the problem of finding an optimal solution to
given an optimal solution to , we propose to run the

MIVA algorithm starting with the point initialized as fol-
lows:

(8)

where is an optimal solution to . If the algorithm
terminates with a solution, we use the resulting pointas
a starting point for the MFVA algorithm. If the algorithm
terminates without a solution, we use the point, where

as a starting point for the MFVA algorithm.
For this method to yield an optimal solution to problem ,
we need the following condition.

D. Constraint Monotonicity Condition
Let be any point satisfying the constraints

(9)

and let be any point satisfying the constraints

(10)

Then we have , for .

Under this condition, we can show that the proposed algo-
rithm will find an optimal solution to problem . Note that the
constraints provided by (9) and (10) form the feasible regions of

and , respectively. In what follows, let denote an op-
timal solution to problem if is feasible. If is not
feasible, let be the point such that

(11)

Proposition 6: Let the Constraint Monotonicity Condition
hold and consider the following sequence of steps. Starting with
a point initialized according to (8), run the MIVA algo-
rithm. If the algorithm finds an optimal solution to problem ,
let be this solution. Otherwise, if problem is infeasible, let

be the point given in (11). Run the MFVA algorithm starting
with the point . The resulting vector is an optimal solution to
problem .

Proof: We have already shown that the point is fea-
sible for problem . As a result of the Constraint Mono-
tonicity Condition, satisfies . The MIVA algo-
rithm will therefore find an optimal solution to if problem

is feasible. Also as a result of the Constraint Monotonicity
Condition, any solution to satisfies , where is
any optimal solution to . If is not feasible, the point
given by (11) also satisfies . Since has an optimal
solution, it follows from Corollary 3 that running the MFVA al-
gorithm starting with will result in an optimal solution.

It can be shown that the power control problem satisfies
the Constraint Monotonicity Condition. If the Constraint
Monotonicity Condition does not hold, the sequence of steps
described in Prop. 6 is not guaranteed to find an optimal solu-
tion to problem since any optimal solution of problem

may not satisfy , for , where is
some optimal solution to problem . To guarantee finding an
optimal solution to problem we can start with a solution

initialized as follows:

and run the MFVA algorithm to solve problem .
The following proposition provides an alternative condition

under which the Constraint Monotonicity Condition holds.
Proposition 7: Suppose that

for (12)

for all vectors of the form , where
is a positive constant. Then the Constraint Monotonicity Con-

dition holds.
Proof: Assume the contrary, that for some

, we have , where
satisfies (9) and satisfies (10). Let be the
index such that is maximized:

Let be a vector in such that . Since
, we have from (12)

512 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

Note that . For , we have

since maximizes . Therefore, we have

for

It follows that

contradicting the assumption thatsatisfies (9).
When the constraints are linear, we can rewrite problem

as

subject to

and the condition described by Prop. 7 corresponds to the
matrix being diagonally dominant.

VI. DISTRIBUTED ALGORITHMS

In this section, we consider synchronous and asynchronous
distributed versions of the MFVA algorithm. We assume that
problem is feasible and show that the algorithms will find
an optimal solution to problem in a finite number of itera-
tions. If problem is not feasible, the arguments below can
be modified to show that in this case, similar to the sequential
version, the distributed algorithms will terminate with an infea-
sible solution.

B. Synchronous MFVA

Given a point such that ,
we assume we have processors, each of which is respon-
sible for updating a component of . Specifically, for

, we have

where is updated by processoraccording to some given
function . We also assume the updates occur simultaneously,
and each processor receives all of the updated values in time
for the next iteration. The synchronous parallel version of the
MFVA algorithm is given below and illustrated in Fig. 6.

Given a point such that
, each processorsuch that , sets to the

smallest value in the set ; i.e., is the smallest
value in such that . Each processorsuch that

, sets

if
if

(13)

The following proposition shows that given an appropriate
starting point, this algorithm obtains an optimal solution to
problem in a finite number of iterations.

Proposition 8: Let be some optimal solution to problem
. Suppose the synchronous distributed version of the MFVA

algorithm described by (13) is run with a starting point

Fig. 6. Illustration of the synchronous parallel MFVA algorithm for the
problem of Example 2.

. Then for some finite, is an optimal solution to for
all .

Proof: From Proposition 2, we have that
for all such that . During each iteration

for which we have for at least some, at least one
component of is strictly increased. Since the number of times
each component of can be increased is finite, the number of
such iterations must also be finite. Therefore, for some finite,
we must have for , so must be
feasible. By induction, we have , so must be
optimal. According to the algorithm, we have
for since , for .

Note that as currently stated, the algorithm continues indef-
initely, even after an optimal solution has been obtained. One
possible method for determining when an optimal solution has
been obtained is for each processor to compare updated values
of components with the previous values. When none of the com-
ponents has changed, is an optimal solution and processors
no longer need to update their components.

C. Asynchronous MFVA

In describing the asynchronous distributed version,
we use the framework presented in [1, Sect. 6.1]. Let

, where

Value of the th component of at time

We assume that there is a set of times at which
one or more components of are updated. Let be the
set of times at which is updated. As in the synchronous
case, we assume we have processors, each of which is re-
sponsible for updating a component of . Here, however, we
assume that the processors do not necessarily have access to the
most recent values of the other components. Specifically, we as-
sume that for any is the time at which
the value of the th component that was most recently available
at the processor updating was last updated. Therefore, if
each processor used the values of components most recently re-
ceived, we would have

WU AND BERTSEKAS: DISTRIBUTED POWER CONTROL ALGORITHMS 513

where are given functions and are times such that

Note that a processor may not necessarily receive updated
values of a component in the order that they were sent; i.e.,

for

may not necessarily hold.
The asynchronous version of the MFVA algorithm is given

below.
For all and all , let

be the vector of components being stored at timeby the pro-
cessor updating . We have

if
if

(14)

where

Note that the values used to update are the maximum of
the ones received for each component instead of the ones most
recently received. As will be seen in Proposition 9, updates of
any component results in a value that is greater than or equal to
the previous value. Therefore, using the maximum of the values
received results in using the most recently updated values.

The following proposition shows that given an appropriate
starting point, this algorithm eventually obtains an optimal so-
lution to problem .

Proposition 9: Let be some optimal solution to problem
. Suppose the asynchronous distributed version of the

MFVA algorithm described by (14) is run with a starting point
. Let the set be the set of times in which

at least one component’s value is changed. Then the set
contains a finite number of elements. Furthermore, ifis the
maximum element of , then is an optimal solution to

.
Proof: From Proposition 2, we have that
for all such that and .

If or , we have
. Since the number of times each component ofcan be

increased is finite, the set must contain a finite number of
times. Let be the maximum value in . Since each update sent
by a processor is eventually received by every other processor,
we must have for , and

for . Therefore, must be
feasible. By induction, we have , so must be
optimal.

We do not discuss the issue of detecting when an optimal so-
lution has been found. This issue is addressed in [1, Sect. 8.1],
as well as in [6]. A related issue is how to construct a parallel
synchronous or asynchronous implementation of the algorithm
of Section V-B for the case where a constraint is removed. One
possibility is to run a (synchronous or asynchronous) parallel
version of the MIVA, detect its termination using one of the

TABLE I
NUMBER OF ITERATIONS REQUIRED TO FIND AN OPTIMAL SOLUTION

USING THE PREVIOUS SOLUTION AS A STARTING POINT AND USING THE

VECTOR(0; . . . ; 0) AS A STARTING POINT

schemes of [1] and [6], and then run a (synchronous or asyn-
chronous) parallel version of the MFVA.

VII. COMPUTATIONAL RESULTS

We have implemented sequential versions of the MFVA and
MIVA algorithms to obtain empirical results. We summarize the
results as follows.

• As noted in Section IV, the number of iterations is bounded
by the number of values in all of the sets of feasible points
for each component. In fact, the maximum number of iter-
ations is the number required for the single-step variant to
terminate. If the problem is feasible, the maximum number
is the number of values in all of the sets of feasible points
for each component less than or equal to the corresponding
component of some optimal solution. If the problem is in-
feasible, the maximum number is the number of values in
all of the sets of feasible points for each component. Com-
putational experiments show that the number of iterations
required for the MFVA algorithm to terminate is typically
greater than 95% of the maximum bound.

• When a new user enters the system, running the MFVA
algorithm using as a starting point the optimal solution
for the problem prior to the new user’s arrival typically
results in substantial computational savings. Table I shows
results from a power control problem involving a system
of ten by ten cells and approximately nine hundred mobile
users. The number of iterations required to find the optimal
solution for an initial problem is given, along with the
number of iterations required to find the optimal solution
when additional users enter the system.

• When an existing user departs from the system, running
the MIVA algorithm to find an appropriate point from
which to run the MFVA algorithm typically results in so-
lutions in which each component is very close to the min-
imum value in its corresponding feasible set. It therefore
seems more efficient to simply run the MFVA algorithm
starting with a vector in which each component is initial-
ized to the minimum value in its corresponding feasible
set. Additional computational results should be conducted
to determine whether there are situations in which the
MIVA algorithm yields computational savings. In prac-
tice, one may want to use the simpler heuristic algorithm

514 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 2, MARCH 2001

mentioned first in Section V-B (cf. Fig. 4) whenever a
user departs from the system, and perform a reoptimiza-
tion periodically or when a new user arrives that cannot be
accommodated by running the MFVA algorithm starting
from the current operating point.

VIII. SUMMARY

In this paper, we considered the problem of minimizing the
total power transmitted subject to providing acceptable SNRs
to all users when power levels are to be assigned from discrete
sets. We generalized this problem to an integer programming
problem with certain constraints. We presented an iterative algo-
rithm for the problem as well as synchronous and asynchronous
distributed versions, and showed that they solve the problem in a
finite number of iterations. We also discussed extensions appli-
cable to the power control problem involving situations where
a new user enters the system or where an existing user exits the
system.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989;
Belmont, MA: Athena Scientific, 1997.

[2] A. Grandhi, J. Zander, and R. Yates, “Wireless personal communica-
tions,” , vol. 1, pp. 257–270, 1994–95.

[3] S. Papavassiliou and L. Tassiulas, “Improving the capacity in wireless
networks through integrated channel base station and power assign-
ment,” IEEE Trans. Veh. Technol., vol. 47, pp. 417–427, 1998.

[4] , “Joint optimal channel base station and power assignment for
wireless access,”IEEE Trans. Network, vol. 4, pp. 857–872, 1996.

[5] J. Rulnick and N. Bambos, “Mobile power management for wireless
communication networks,”Wireless Networks, vol. 3, pp. 3–14, 1997.

[6] S. A. Savari and D. P. Bertsekas, “Finite termination of asynchronous
iterative algorithms,”Parallel Comput., vol. 22, pp. 39–56, 1996.

[7] R. Yates and C. Huang, “Integrated power control and base station as-
signment,”IEEE Trans. Veh. Technol., vol. 44, pp. 638–644, 1995.

Cynara Wu received the S.B., S.M., and Ph.D. degrees in electrical engineering
from the Massachusetts Institute of Technology, Cambridge, in 1989, 1990, and
1999, respectively. Her doctoral research focused on dynamic resource alloca-
tion for cellular communications systems.

She is currently with Malachite Technologies, Methuen, MA, conducting re-
search on network optimization.

Dimitri P. Bertsekas (S’70–SM’77–F’84) received the combined B.S.E.E. and
B.S.M.E. degrees from the National Technical University of Athens, Greece, in
1965, the M.S.E.E. degree from George Washington University, Washington,
DC, in 1969, and the Ph.D. degree in system science from the Massachusetts
Institute of Technology, Cambridge, in 1971.

He has held faculty positions with the Engineering-Economic Systems De-
partment, Stanford University (1971–1974) and the Electrical Engineering De-
partment of the University of Illinois, Urbana (1974–1979). He is currently Pro-
fessor of Electrical Engineering and Computer Science at the Massachusetts In-
stitute of Technology. He consults regularly with private industry and has held
editorial positions in several journals. He has conducted research in the areas
of estimation and control of stochastic systems, linear, nonlinear and dynamic
programming, data communication networks, parallel and distributed compu-
tation, and neural networks, and has written numerous papers in each of these
areas. He is the author or coauthor of 11 textbooks and research monographs,
includingData Networks(Englewood Cliffs, NJ: Prentice-Hall, 1992, 2nd ed.),
Dynamic Programming and Optimal Control, (2 volumes), (Athena Scientific,
1995),Neuro-Dynamic Programming, (Belmont, MA: Athena Scientific, 1996),
Network Optimization, (Belmont, MA: Athena Scientific, 1998), andNonlinear
Programming, (Belmont, MA: Athena Scientific 1999, 2nd ed.).

