
Corrections for the book NONLINEAR PROGRAMMING: 2ND
EDITION, Athena Scientific, 1999, by Dimitri P. Bertsekas

Note: Many of these corrections have been incorporated in the
2nd Printing of the book. See the end of this file for corrections
to the 2nd and 3rd Printings.

Last updated: 1/19/2015

p. 16 (-6) Change x < 2π to y < 2π

p. 21 (+4) Change 4π
3 to 5π

6

p. 43 The following is a more streamlined proof of Prop. 1.2.1 (it eliminates
the vector pk). The modifications begin at the 8th line of p. 44, where pk

is introduced, but the proof is given here in its entirety for completeness.

Proof: Consider the Armijo rule, and to arrive at a contradiction, assume
that x is a limit point of {xk} with ∇f(x) 6= 0. Note that since {f(xk)} is
monotonically nonincreasing, {f(xk)} either converges to a finite value or
diverges to −∞. Since f is continuous, f(x) is a limit point of {f(xk)}, so
it follows that the entire sequence {f(xk)} converges to f(x). Hence,

f(xk)− f(xk+1) → 0.

By the definition of the Armijo rule, we have

f(xk)− f(xk+1) ≥ −σαk∇f(xk)′dk. (1.16)

Hence, αk∇f(xk)′dk → 0. Let {xk}K be a subsequence converging to x.
Since {dk} is gradient related, we have

lim sup
k→∞

k∈K

∇f(xk)′dk < 0,

and therefore
{αk}K → 0.

Hence, by the definition of the Armijo rule, we must have for some index
k ≥ 0

f(xk)− f
(

xk + (αk/β)dk
)

< −σ(αk/β)∇f(xk)′dk, ∀ k ∈ K, k ≥ k,
(1.17)

that is, the initial stepsize s will be reduced at least once for all k ∈ K,
k ≥ k. Since {dk} is gradient related, {dk}K is bounded, and it follows
that there exists a subsequence {dk}

K
of {dk}K such that

{dk}
K
→ d,
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where d is some vector which must be nonzero in view of the definition of
a gradient related sequence. From Eq. (1.17), we have

f(xk)− f(xk + αkdk)

αk
< −σ∇f(xk)′dk, ∀ k ∈ K, k ≥ k, (1.18)

where αk = αk/β. By using the mean value theorem, this relation is written
as

−∇f(xk + α̃kdk)′dk < −σ∇f(xk)′dk, ∀ k ∈ K, k ≥ k,

where α̃k is a scalar in the interval [0, αk]. Taking limits in the above
equation we obtain

−∇f(x)′d ≤ −σ∇f(x)′d

or
0 ≤ (1− σ)∇f(x)′d.

Since σ < 1, it follows that

0 ≤ ∇f(x)′d, (1.19)

which contradicts the definition of a gradient related sequence. This proves
the result for the Armijo rule.

Consider now the minimization rule, and let {xk}K converge to x with
∇f(x) 6= 0. Again we have that {f(xk)} decreases monotonically to f(x).
Let x̃k+1 be the point generated from xk via the Armijo rule, and let α̃k

be the corresponding stepsize. We have

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k+1) ≥ −σα̃k∇f(xk)′dk.

By repeating the arguments of the earlier proof following Eq. (1.16), re-
placing αk by α̃k, we can obtain a contradiction. In particular, we have

{α̃k}K → 0,

and by the definition of the Armijo rule, we have for some index k ≥ 0

f(xk)− f
(

xk + (α̃k/β)dk
)

< −σ(α̃k/β)∇f(xk)′dk, ∀ k ∈ K, k ≥ k,

[cf. Eq. (1.17)]. Proceeding as earlier, we obtain Eqs. (1.18) and (1.19)
(with αk = α̃k/β), and a contradiction of Eq. (1.19).

The line of argument just used establishes that any stepsize rule that
gives a larger reduction in cost at each iteration than the Armijo rule
inherits its convergence properties. This also proves the proposition for the
limited minimization rule. Q.E.D.

p. 49 (-4 and -3) Change f(xk) to ∇f(xk)
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p. 54 (+11) Change “Condition (i)” to “The hypothesis”

p. 54 (-9) Change “condition (i)” to “the hypothesis”

p. 59 (Figure)Change “Eqs. (2.26) and (2.27)” to “Eqs. (1.34) and (1.35)”

p. 101 (+1) Change the first two equations to

c1 min
{

∇f(xk)′D∇f(xk), ‖∇f(xk)‖3
}

≤ −∇f(xk)′
(

(1−βm)dkS +βmdN
)

,

‖(1− βm)dkS + βmdN‖ ≤ c2 max
{

‖D∇f(xk)‖, ‖∇f(xk)‖1/2
}

,

p. 116 (-5) Change “‖xk − x∗‖” to “‖xk − x(α)‖”

p. 134 (-11) Change “be a linear combination” to “either be 0 or be a
linear combination”

p. 156 (+14) Change pkpk ′

pk′pk to pkpk ′

pk′qk

p. 162 (+20) Change “that is” to “i.e.,”

p. 176 (+2) Change “Prob. 1.8.1” to “Prob. 1.9.1”

p. 183 (-18) Change “is very important” to “are very important”

p. 188 (+23) Change [WiH59] to [WiH60]

p. 212 (-4) Change αk = βmks to αk = βmk

p. 221 (+5) Change x0 to xk

p. 221 (-6) Change x0 to xk

p. 227 (+15) Change “Zoutendijk’s method uses ...” to “Zoutendijk’s
method rescales dk so that xk + dk is feasible, and uses ...”

p. 268 (+18) The assumption of Proposition 2.7.1 should be modified to
include a condition that f(x1, . . . , xi−1, ξ, xi+1, . . . , xm) viewed as a func-
tion of ξ, attains a unique minimum ξ̄ over Xi, AND is monotonically
nonincreasing in the interval from xi to ξ̄. [In the 1st edition of the book,
the function f(x1, . . . , xi−1, ξ, xi+1, . . . , xm) was assumed strictly convex in
ξ, but in the process of generalizing the proposition in the 2nd edition, the
assumptions were not stated correctly.] What follows is a corrected state-
ment with an edited proof and a comment on the assumptions at the end.
Replace Prop. 7.2.1 and its proof with the following:
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Proposition 2.7.1: (Convergence of Block Coordinate De-
scent) Suppose that f is continuously differentiable over the set X of
Eq. (2.111). Furthermore, suppose that for each x = (x1, . . . , xm) ∈ X
and i,

f(x1, . . . , xi−1, ξ, xi+1, . . . , xm)

viewed as a function of ξ, attains a unique minimum ξ̄ over Xi, and
is monotonically nonincreasing in the interval from xi to ξ̄. Let {xk}
be the sequence generated by the block coordinate descent method
(2.112). Then, every limit point of {xk} is a stationary point.

Proof: Denote

zki =
(

xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , x

k
m

)

.

Using the definition (2.112) of the method, we obtain

f(xk) ≥ f(zk1 ) ≥ f(zk2 ) ≥ · · · ≥ f(zkm−1) ≥ f(xk+1), ∀ k. (2.113)

Let x̄ =
(

x̄1, . . . , x̄m

)

be a limit point of the sequence {xk}, and note
that x̄ ∈ X since X is closed. Equation (2.113) implies that the sequence
{

f(xk)
}

converges to f(x̄). We will show that x̄ is a stationary point.
Let {xkj | j = 0, 1, . . .} be a subsequence of {xk} that converges to x̄.

From the definition (2.112) of the algorithm and Eq. (2.113), we have

f
(

xkj+1

)

≤ f
(

z
kj

1

)

≤ f
(

x1, x
kj

2 , . . . , x
kj
m

)

, ∀ x1 ∈ X1.

Taking the limit as j tends to infinity, we obtain

f(x̄) ≤ f(x1, x̄2, . . . , x̄m), ∀ x1 ∈ X1. (2.114)

Using the conditions for optimality over a convex set (Prop. 2.1.2 in Section
2.1), we conclude that

∇1f(x̄)′(x1 − x̄1) ≥ 0, ∀ x1 ∈ X1,

where ∇if denotes the gradient of f with respect to the component xi.

The idea of the proof is now to show that {z
kj

1 } converges to x̄ as

j → ∞, so that by repeating the preceding argument with {z
kj

1 } in place
of {xkj}, we will have

∇2f(x̄)′(x2 − x̄2) ≥ 0, ∀ x2 ∈ X2.

We can then continue similarly to obtain

∇if(x̄)′(xi − x̄i) ≥ 0, ∀ xi ∈ Xi,
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for all i = 1, . . . ,m. By adding these inequalities, and using the Cartesian
product structure of the set X , it follows that ∇f(x̄)′(x − x̄) ≥ 0 for all
x ∈ X , i.e., x̄ is stationary, thereby completing the proof.

To show that {z
kj

1 } converges to x̄ as j → ∞, we assume the contrary,

or equivalently that {z
kj

1 − xkj} does not converge to zero. Let γkj =

‖z
kj

1 − xkj‖. By possibly restricting to a subsequence of {kj}, we may
assume that there exists some γ > 0 such that γkj ≥ γ for all j. Let

s
kj

1 =
(

z
kj

1 − xkj

)

/γkj . Thus, z
kj

1 = xkj + γkjs
kj

1 , ‖s
kj

1 ‖ = 1, and s
kj

1 differs

from zero only along the first block-component. Notice that s
kj

1 belongs
to a compact set and therefore has a limit point s̄1. By restricting to a

further subsequence of {kj}, we assume that s
kj

1 converges to s̄1.

Let us fix some ǫ ∈ [0, 1]. Since 0 ≤ ǫγ ≤ γkj , the vector xkj + ǫγs
kj

1

lies on the segment joining xkj and xkj + γkjs
kj

1 = z
kj

1 , and belongs to X
because X is convex. Using the fact that f is monotonically nonincreasing

on the interval from xkj to z
kj

1 , we obtain

f
(

z
kj

1

)

= f
(

xkj + γkjs
kj

1

)

≤ f
(

xkj + ǫγs
kj

1

)

≤ f
(

xkj

)

.

Since f(xk) converges to f(x̄), Eq. (2.113) shows that f
(

z
kj

1

)

also con-
verges to f(x̄). Taking the limit as j tends to infinity, we obtain f(x̄) ≤
f
(

x̄ + ǫγs̄1) ≤ f(x̄). We conclude that f(x̄) = f
(

x̄ + ǫγs̄1), for every
ǫ ∈ [0, 1]. Since γs̄1 6= 0 and by Eq. (2.114), x̄1 attains the minimum of
f(x1, x̄2, . . . , x̄m) over x1 ∈ X1, this contradicts the hypothesis that f is
uniquely minimized when viewed as a function of the first block-component.

This contradiction establishes that z
kj

1 converges to x̄, which as remarked
earlier, shows that ∇2f(x̄)′(x2 − x̄2) ≥ 0 for all x2 ∈ X2.

By using {z
kj

1 } in place of {xkj}, and {z
kj

2 } in place of {z
kj

1 } in
the preceding arguments, we can show that ∇3f(x̄)′(x3 − x̄3) ≥ 0 for all
x3 ∈ X3, and similarly ∇if(x̄)′(xi− x̄i) ≥ 0 for all xi ∈ Xi and i. Q.E.D.

Note that the uniqueness of minimum and monotonic nonincrease
assumption in Prop. 2.7.1 is satisfied if f is strictly convex in each block-
component when all other block-components are held fixed. An alternative
assumption under which the conclusion of Prop. 2.7.1 can be shown is that
the sets Xi are compact (as well as convex), and that for each i and x ∈ X ,
the function of the ith block-component ξ

f(x1, . . . , xi−1, ξ, xi+1, . . . , xm)

attains a unique minimum overXi, when all all other block-components are
held fixed. The proof is similar (in fact simpler) to the proof of Prop. 2.7.1

[to show that {z
kj

1 } converges to x̄, we note that {x
kj+1
1 } lies in the compact

set X1, so a limit point, call it ξ̄, is a minimizer of f(x1, x̄2, . . . , x̄m) over
x1 ∈ X1, and since x̄1 is also a minimizer, it follows that ξ̄ = x̄1].
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A more general and sometimes useful version of the block coordinate
descent method is one where the block-components are iterated in an ir-
regular order instead of a fixed cyclic order. The result of Prop. 2.7.1 can
be shown for a method where the order of iteration may be arbitrary as
long as there is an integer M such that each block-component is iterated at
least once in every group of M contiguous iterations. The proof is similar
to the one of Prop. 2.7.1. [Take a limit point of the sequence generated
by the algorithm, and a subsequence converging to it, with the properties
that 1) every two successive elements of the subsequence are separated by
at least M block-component iterations, and 2) every group of M contigu-
ous iterations that starts with an element of the subsequence corresponds
to the same order of block-components. Then, proceed as in the proof of
Prop. 2.7.1.]

p. 303 (+3) Change “Prop. 3.2.1” to “Prop. 3.2.1, and assume that x∗ is
a regular point” (The proof of this theorem is correct, but the hypothesis,
which was stated correctly in the 1st edition, was inadvertedly corrupted
when it was reworded for the 2nd edition. This is also true for the correction
in p. 315.)

p. 315 (+14) Change “Prop. 3.3.2” to “Prop. 3.3.2, and assume that x∗

is a regular point”

p. 335 (Figure and +5) Change “(2,1)” to “(1,2)”

p. 349 (+7) Replace the portion:
For a feasible x, let F (x) be the set of all feasible directions at x defined
by

F (x) =
{

d | d 6= 0, and for some α > 0, g(x+ αd) ≤ 0 for all α ∈ [0, α]
}

by the following portion:
For a feasible x, let F (x) be the set consisting of the origin plus all feasible
directions at x defined by

F (x) =
{

d | for some α > 0, g(x+ αd) ≤ 0 for all α ∈ [0, α]
}

p. 354 (+18) Change “inequality constraints” to “equality constraints”

p. 408 (-2) Change “that” to “than”

p. 418 (+11) Change “(b) Using ...” to “(b) Assume that Q is invertible.
Using ...”

p. 423 (Fig. 4.2.8) Change “ 1
c (e

cg − 1)” to “ 1
c (µe

cg − 1)”.

p. 423 (Fig. 4.2.8) Change “−µ2

2c ” to “−µ
c ”.

p. 432 (-12) Change

f(xk + αkdk) = min
α∈[0,s]

f(xk + αdk).
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to

f(xk + αkdk) + cP (xk + αkdk) = min
α∈[0,s]

{

f(xk + αdk) + cP (xk + αdk)
}

.

p. 525 (+8) Change “Exercise 5.4.7” to “Exercise 5.4.6”

p. 525 (+13) Change “Let Assumption 5.4.1 hold.” to “Let Assumption
5.4.1 hold and assume that the epigraphs

{

(x, γ) | f1(x) ≤ γ
}

,
{

(x, γ) | f2(x) ≤ γ
}

are closed subsets of ℜn+1.” (The discussion preceding the proposition as-
sumes the closure of these epigraphs.)

p. 533 (-4) Change “compact” to “closed”

p. 535 (-14) Change “The proof is the same as the one given in Prop.
3.4.3.” to “To verify this, take any u1, u2 ∈ P , α ∈ [0, 1], and ǫ > 0, and
choose x1, x2 ∈ X such that g(xi) ≤ ui and f(xi) ≤ p(ui) + ǫ, i = 1, 2.
Then, by using the convexity of X , f , and gj, it is seen that

p
(

αu1 + (1 − α)u2

)

≤ αp(u1) + (1− α)p(u2) + ǫ.

This implies that αu1 + (1 − α)u2 ∈ P , so that P is convex, and also, by
taking the limit as ǫ → 0, that p is convex over P .”

p. 536 (+13) Change “Exercises 5.4.7 and 5.4.8” to “Exercise 5.4.7”

p. 540 (-5) Change “≤ f(x̃) + g(x̃)′µ∗ + ǫ.” to “≤ f(x∗) + g(x∗)′µ∗ + ǫ.”

p. 549 (-11) Change “closed convex” to “closed”

p. 578 (-8) Change “We eliminate” to “We modify the problem so that
the constraint

∑m
i=1 xij ≤ Tjyj is replaced by

∑m
i=1 xij ≤ Tj . Then we

eliminate”

p. 582 (+2) Change “that” to “than”

p. 585 (5) A correct statement of Exercise 5.5.6 is as follows:
Statement: Let E be a matrix with entries -1, 0, or 1, and at most two
nonzero entries in each of its columns. Show that E is totally unimodular
if and only if the rows of E can be divided into two subsets such that for
each column with two nonzero entries, the following hold: if the two nonzero
entries in the column have the same sign, their rows are in different subsets,
and if they have the opposite sign, their rows are in the same subset.

p. 609 (+14) Change µℜr to µ ∈ ℜr

p. 615 (+10) Change last “=” to “≤”

p. 624 In paragraph starting with “There are several ...” change five in-
stances of “S” to “Sk”
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p. 624 (+3 and +9) Delete “q̃k ≤ q(µ)” from the expression for the set
Sk.

p. 635 (-3) Change
∑∞

k=0(s
k)2 < ∞ to

∑∞

k=0(s
k)2‖gk‖2 < ∞

p. 649 (+8) Change “is the minimum of the dimensions of the range space
of A and the range space” to “is equal to the dimension of the range space
of A and is also equal to the dimension of the range space”

p. 651 (-14) Change “if xk ≤ yk,” to “if xk ≤ yk for all k,”

p. 675 (+7) Change “differentiable over C” to “differentiable over ℜn”

p. 676 (+10) Change “differentiable over C” to “differentiable over ℜn”

p. 677 (-9) Change “Convex” to “where α is a positive number. Convex”

p. 704 (+10) Change “al y ∈ Y ” to “all y ∈ Y ”

p. 705 (+12) Change “j = 1, . . . , r” to “j ∈ {1, . . . , r}”

p. 710 (-2) Change “< µ” to “≤ µ”

p. 725 (-9) Change “... g(ᾱ < g(b) ...” to “... g(ᾱ) < g(b) ...”

p. 727 (+6) Change “... αk+1 = āk ...” to “... αk+1 = ᾱk ....”

p. 727 (+6) Change “... g(b̄k) < g(αk) ...” to “... g(b̄k) < g(ᾱk) ....”

p. 764 (-) Change “[RoW97]” to “[RoW98]”. Change “1997” to “1998”

p. 765 (-4) Change ”Real Analysis” to “Principles of Mathematical Anal-
ysis”

Corrections to the 2ND PRINTING

p. 49 (+3 and +4) Change f(xk) to ∇f(xk)

p. 100 (+20) Exercise 1.4.4 is flawed and the algorithm needs to be mod-
ified. Replace the portion:

Let also dkN be the Newton direction −
(

∇2f(xk)
)−1

∇f(xk) if ∇2f(xk) is
nonsingular, and be equal to dkS otherwise. Consider the method

xk+1 = xk + αk
(

(1− αk)dkS + αkdkN
)

,

where αk = βmk

and mk is the first nonnegative integer m such that the
following three inequalities hold:

f(xk)−f
(

xk+βm
(

(1−βm)dkS+βmdN
))

≥ −σβm∇f(xk)′
(

(1−βm)dkS+βmdN
)

,

c1 min
{

∇f(xk)′D∇f(xk), ‖∇f(xk)‖3
}

≤ −∇f(xk)′
(

(1−βm)dkS +βmdN
)

,

‖(1− βm)dkS + βmdN‖ ≤ c2 max
{

‖D∇f(xk)‖, ‖∇f(xk)‖1/2
}

,
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where β and σ are scalars satisfying 0 < β < 1 and 0 < σ < 1/2, and c1
and c2 are scalars satisfying c1 < 1 and c2 > 1.

with the following:

Let also dkN be defined as in Exercise 1.4.3. Consider the method

xk+1 = xk + αk
(

(1− αk)dkS + αkdkN
)

,

where αk = βmk
and mk is the first nonnegative integer m such that

f(xk)−f
(

xk+βm
(

(1−βm)dkS+βmdN
))

≥ −σβm∇f(xk)′
(

(1−βm)dkS+βmdN
)

,

where β and σ are scalars satisfying 0 < β < 1 and 0 < σ < 1/2.

Change also the corresponding part of the hint, i.e., delete “each of the
three inequalities is satisfied for m sufficiently large, so” and also “(cf. the
last two inequalities)”

p. 134 (-9) Change ”be a linear combination” to ”either be 0 or be a linear
combination”

p. 156 (+14) See correction for page 156 of the 1st printing.

p. 162 (-8) See correction for page 162 of the 1st printing.

p. 214 (+9) Change “closed cone” to “polyhedral cone”

p. 225 (-3) Change x0 to xk

p. 226 (+4) Change x0 to xk

p. 227 (+7) Change “Zoutendijk’s method uses ...” to “Zoutendijk’s
method rescales dk so that xk + dk is feasible, and uses ...”

p. 273 (+18) See correction for page 268 of the 1st printing.

p. 362 (-3) Change “inequality constraints” to “equality constraints”

p. 428 (+7) Change “some positive” to “any positive”

p. 504 (-1) Change “(Exercise 5.1.3)” to “, see Exercise 5.1.3”

p. 556 (+13) Change “the the” to “that the”

p. 561 (+13) Change “... G is a continuous concave function ...” to “...
G is a continuous convex function ...”

p. 576 (-1) Figure 5.5.3 is incorrect. Replace it by the following:

p. 595 (-15) See correction for page 585 of the 1st printing for a correct
statement of Exercise 5.5.6.

p. 629 (+4) Change

∂ǫ1q(µ) + · · ·+ ∂ǫmq(µ) ⊂ ∂ǫq(µ), ∀ µ with q(µ) > −∞,
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0 xi

fi(xi,mi)

Xi(1) Xi(2) Xi(3) Xi(4)

Figure 5.5.3. Production modes and
cost function of a discrete resource al-
location problem. Here there are four
modes of production, mi = 1, 2, 3, 4,
and corresponding constraints, xi ∈

Xi(mi). The choice mi = 1 corre-
sponds to no production (xi = 0).

to

∂ǫ1q1(µ) + · · ·+ ∂ǫmqm(µ) ⊂ ∂ǫq(µ), ∀ µ with q(µ) > −∞,

p. 634 See correction for page 624 of the 1st printing.

p. 634 (-8) Delete “q̃k ≤ q(µ)” from the expression for the set Sk.

p. 635 (+2) Delete “q̃k ≤ q(µ)” from the expression for the set Sk.

p. 649 (+10) Change xi to xi (twice).

p. 660 (-4) Change “... x = (x1, . . . , n).” to “... x = (x1, . . . , xn).”

p. 691 In the figure, change “f(z)+(z−x)′∇f(x)” to “f(x)+(z−x)′∇f(x)”

p. 743 (-9) Change “... g(ᾱ < g(b) ...” to “... g(ᾱ) < g(b) ...”

p. 745 (+6) Change “... αk+1 = āk ...” to “... αk+1 = ᾱk ....”

p. 745 (+6) Change “... g(b̄k) < g(αk) ...” to “... g(b̄k) < g(ᾱk) ....”

Corrections to the 3RD PRINTING

p. 116 (-5) Change “‖xk − x∗‖” to “
∥

∥xk − x(α)
∥

∥”

p. 184 (-18) Change “6.4.6 in Section 6.4” to “5.4.5 in Section 5.4”

p. 564 Delete lines 14 and 15, which define x̃.

p. 576 See correction for page 576 of the 2nd printing.

p. 649 (-3) Change “q∗ − q(µ) ≤ ...” to “q∗ − q(µ) ≥ ...”

p. 693 (-9) Change “Prop. Prop.” to “Prop.”
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