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Abstract

We consider finite-state Markov decision processes, and prove convergence and rate of con-
vergence results for certain least squares policy evaluation algorithms of the type known as
LSPE(λ). These are temporal difference methods for constructing a linear function approxima-
tion of the cost function of a stationary policy, within the context of infinite-horizon discounted
and average cost dynamic programming. We introduce an average cost method, patterned after
the known discounted cost method, and we prove its convergence for a range of constant stepsize
choices. We also show that the convergence rate of both the discounted and the average cost
methods is optimal within the class of temporal difference methods. Analysis and experiment
indicate that our methods are substantially and often dramatically faster than TD(λ), as well
as more reliable.
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1 Introduction

We consider finite-state Markov decision processes (MDP) with the discounted and the average
cost criteria. We focus on a single stationary policy, and discuss the approximate evaluation of
the corresponding cost function (in the discounted case) or bias/differential cost function (in the
average cost case). Such evaluation methods are essential for approximate policy iteration, including
gradient-descent type of algorithms (e.g., actor-critic algorithms [1]) when parametrized policies are
considered. A prominent algorithm for approximating this cost function using a linear combination
of basis functions is TD(λ). This is an iterative temporal differences (TD) method, which uses a
single infinitely long sample trajectory, and depends on a scalar parameter λ ∈ [0, 1] that controls a
tradeoff between accuracy of the approximation and susceptibility to simulation noise. The method
was originally proposed for discounted problems by Sutton [2], and analyzed by several authors,
including Dayan [3], Gurvits, Lin, and Hanson [4], Pineda [5], Tsitsiklis and Van Roy [6]. An
extension to average cost problems and λ ∈ [0, 1) was proposed and analyzed by Tsitsiklis and Van
Roy [7, 8] (the case λ = 1 may lead to divergence and was excluded; it needs a different treatment
as given by Marbach and Tsitsiklis [9]).

Alternatively, there are two least squares-based algorithms, which employ the same approxima-
tion framework as TD(λ), but use simulation more efficiently. In particular, let us denote by J = TJ
a (linear, multiple-step) Bellman equation involving a single policy, and let Π denote projection on
a subspace of basis functions with respect to a suitable Euclidean projection norm. Then TD(λ)
aims to solve the projected Bellman equation J = ΠTJ, with a stochastic approximation (SA) type
of iteration. The two least squares-based algorithms solve the same linear equation, but they use
simulation to construct directly the low-dimensional quantities defining the equation, instead of
only the solution itself, unlike TD(λ). The two algorithms are called the least squares temporal
difference algorithm, LSTD(λ), first proposed by Bradtke and Barto [10] for λ = 0 and generalized
by Boyan [11] to λ ∈ (0, 1], and the least squares policy evaluation algorithm, LSPE(λ), first pro-
posed for stochastic shortest path problems by Bertsekas and Ioffe [12]. Roughly speaking, LSPE(λ)
differs from LSTD(λ) in that LSPE(λ) can be viewed as a simulation-based approximation of the
value iteration algorithm, and is essentially a Jacobi method, while LSTD(λ) solves directly at each
iteration an approximation of the equation. The differences between LSPE(λ) and LSTD(λ) become
more pronounced in the important application context where they are embedded within a policy
iteration scheme, as explained in Section 6. Both LSPE(λ) and LSTD(λ) have superior performance
to standard TD(λ), as suggested not only by practice but also by theory: it has been shown by
Konda [13] that LSTD(λ) has optimal convergence rate, compared to other TD(λ) algorithms, and
it will be shown in this paper that LSPE(λ) has the same property. Both algorithms have been
applied to approximate policy iteration. In fact, in the original paper [12] (see also the book by
Bertsekas and Tsitsiklis [14]), LSPE(λ) was called “λ-policy iteration” and applied in the frame-
work of optimistic policy iteration, a version of the simulation-based approximate policy iteration,
to solve the computer game Tetris, which involves a very large state space of approximately 2200

states. LSTD(λ) was applied with approximate policy iteration by Lagoudakis and Parr [15]. Both
works reported favorable computational results which were not possible by using TD(λ).

In this paper we will focus on the LSPE(λ) algorithm, analyzing its convergence for the average
cost case (Section 3), and analyzing its rate of convergence for both the discounted and average cost
cases (Section 4). The convergence of LSPE(λ) under the discounted criterion has been analyzed in
previous works. In particular, LSPE(λ) uses a parameter λ ∈ [0, 1], similar to other TD methods,
and a positive stepsize. For discounted problems, Nedić and Bertsekas [16] proved the convergence
of LSPE(λ) with a diminishing stepsize, while Bertsekas, Borkar, and Nedić [17], improving on the
analysis of [16], proved the convergence of LSPE(λ) for a range of constant stepsizes including the
unit stepsize. Both analysis and experiment have indicated that LSPE(λ) with a constant stepsize
has better performance than standard TD(λ) as well as LSPE(λ) with a diminishing stepsize. In
this paper, we will focus on the constant stepsize version. There has been no rigorous analysis of
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LSPE(λ) in the context of the average cost problem, despite applications of LSPE(λ) with policy
gradient in this context [18], and one of the purposes of this paper is to provide such an analysis.

The average cost case requires a somewhat more general treatment than the proof given in [17] for
the discounted case. LSPE(λ) is a simulation-based fixed point iteration, the convergence of which
relies on the underlying mapping being a contraction. The projected Bellman equation in the average
cost case involves sometimes nonexpansive mappings (unlike the discounted case where it involves
contraction mappings with known modulus determined in part by the discount factor). Two means
for inducing or ensuring the contraction property required by LSPE(λ) are (i) the choice of basis
functions and (ii) a constant stepsize. The former, (i), is reflected by a condition given by Tsitsiklis
and Van Roy [7] on the basis functions of the average cost TD(λ) algorithm, which is required to
ensure that the projected Bellman equation has a unique solution and also induces contraction for
the case of λ > 0, and the case of λ = 0 and an aperiodic Markov chain, as illustrated in Prop. 2 in
Section 3. The latter, (ii), is closely connected to the damping mechanism for turning nonexpansive
mappings into contraction mappings (this is to be differentiated from the role of a constant and
diminishing stepsizes used in SA algorithms, which is to track a varying system without ensuring
convergence of the iterates, in the case of a constant stepsize, and to enforce convergence through
averaging the noise, in the case of a diminishing stepsize). Our convergence analysis of a constant
stepsize LSPE(λ) will involve both (i) and (ii), and arguments that are technically different and
more general than those of [17]. Our analysis also covers the convergence results of [17] for the
discounted case, and simplifies proofs in the latter work.

For convergence rate analysis, we will show that in both the discounted and average cost cases,
LSPE(λ) with any constant stepsize under which it converges has the same convergence rate as
LSTD(λ). In fact, we will show that LSPE(λ) and LSTD(λ) converge to each other at a faster
rate than they converge to the common limit. This was conjectured, but not proved, by [17] in the
discounted case. Since Konda [13] has shown that LSTD(λ) has optimal asymptotic convergence
rate, as mentioned earlier, LSPE(λ) with a constant stepsize shares this optimality property.

Let us mention that the part of the iterations in LSTD(λ) and LSPE(λ) that approximates
low-dimensional quantities defining the projected Bellman equation/fixed point mapping can be
viewed as a simple SA algorithm, whose convergence under a fixed policy is ensured by the law
of large numbers for samples from a certain Markov chain. This connection provides the basis for
designing two-time-scale algorithms using LSTD(λ) and LSPE(λ) when the policy is changing. We
will highlight this in the context of approximate policy iteration with actor-critic type of policy
gradient methods, which are two-time-scale SA algorithms, when we discuss the use of LSTD(λ)
and LSPE(λ) as a critic (Section 6).

The paper is organized as follows. In Section 2, after some background on TD with function ap-
proximation, we introduce the LSPE(λ) method, we motivate the convergence analysis of Section 3,
and we also provide a qualitative comparison to LSTD(λ). In Section 3, we provide convergence
results for LSPE(λ) by using a spectral radius analysis. We also introduce a contraction theorem for
nonexpansive fixed point iterations involving Euclidean projections, we use this theorem to analyze
the contraction properties of the mapping associated with the average cost TD(λ), and to interpret
all of our convergence results for λ > 0, but only some of our results for λ = 0. In Section 4, we
discuss the convergence rate of LSPE(λ) for both the discounted and the average cost cases, and we
show that it is identical to that of LSTD(λ). In Section 5, we provide some computational results
that are in agreement with the analytical conclusions, and indicate a substantial and often dramatic
speed of convergence advantage over TD(λ), even when the latter is enhanced with Polyak-type av-
eraging. Finally, in Section 6, we discuss various extensions, as well as application of the algorithms
in the context of approximate policy iteration.
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2 Preliminaries: the Average Cost LSPE(λ) and LSTD(λ)
Algorithms

We focus on a time-homogeneous finite-state Markov chain whose states are denoted by 1, . . . , n.
Let P be the state transition probability matrix with entries Pij = p(X1 = j|X0 = i), where the
random variable Xt is the state at time t. Throughout the paper we operate under the following
recurrence assumption (in the last section we discuss the case where this assumption is violated).

Assumption 1. The states of the Markov chain form a single recurrent class.

Under the above assumption, the Markov chain has a unique invariant distribution π = [π(1), . . . , π(n)],
which is the unique probability distribution satisfying the system of equations πP = π. We allow
the possibility that the chain may be aperiodic or periodic, in which case, with slight abuse of
terminology, we say that P is aperiodic or periodic, respectively.

Let g(i, j) be the cost of transition from state i to state j, and let g be the length-n column
vector with components the expected state costs

∑n
j=1 Pijg(i, j), i = 1, . . . , n. It is well known that

the average cost starting at state i,

lim
t→∞

1
t+ 1

t∑
k=0

E
[
g(Xk, Xk+1) | X0 = i],

is a constant η∗ independent of the initial state i, and

η∗ = πg.

The differential cost function, or bias function, that we aim to approximate, is defined by

h(i) = lim
t→∞

t∑
k=0

E
[
g(Xk, Xk+1)− η∗ | X0 = i], i = 1, . . . n,

when the Markov chain is aperiodic, and is defined by the Cesaro limit when the Markov chain is
periodic: for i = 1, . . . n,

h(i) = lim
t→∞

1
t+ 1

t∑
m=0

m∑
k=0

E
[
g(Xk, Xk+1)− η∗ | X0 = i].

It satisfies the average cost dynamic programming equation, which in matrix notation is

h = g − η∗e+ Ph, (1)

where e is the length-n column vector of all 1s, and h is treated as a length-n column vector. Under
the recurrence Assumption 1, the function h is the unique solution of this equation up to addition
of a scalar multiple of e.

2.1 Background of the TD/Function Approximation Approach

In LSPE(λ) and LSTD(λ), like in recursive TD(λ), we use an n × s matrix Φ to approximate the
bias function h with a vector of the form Φr,

h ≈ Φr.

In particular, for each state i, we introduce the vector

φ(i)′ =
[
φ1(i), . . . , φs(i)

]
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which forms the ith row of the matrix Φ. We view these rows as describing attributes or features of
the corresponding state i, and we view the columns of Φ as basis functions. We denote by S ⊆ <n

the subspace spanned by the basis vectors,

S = {Φr | r ∈ <s}.

We adopt throughout our paper for the average cost case the following assumption from [7], which
differs from the discounted counterpart in that e 6∈ S.

Assumption 2. The columns of the matrix [ Φ e ] are linearly independent.

For every λ ∈ [0, 1), all algorithms, LSPE(λ) (as will be shown), LSTD(λ), and TD(λ), compute
the same vector r and hence the same approximation of h on the subspace S. This approximation,
denoted by Φr∗, is the solution of a fixed point equation parametrized by λ,

Φr = ΠT (λ)(Φr).

Here Π is a projection mapping on S, and T (λ) is a mapping that has h as a fixed point (unique
up to a constant shift); the details of the two mappings will be given below. Both mappings play a
central role in the analysis of Tsitsiklis and Van Roy [7] of the TD(λ) algorithm, as well as in our
subsequent analysis of LSPE(λ).

We define the mapping T : <n 7→ <n by

TJ = g − η∗e+ PJ,

and view the Bellman equation (1) as the fixed point equation h = Th. We consider the multiple-step
fixed point equations h = Tmh,m ≥ 1, and combine them with geometrically decreasing weights
that depend on the parameter λ ∈ [0, 1), thereby obtaining the fixed point equation:

h = T (λ)h, λ ∈ [0, 1), (2)

where

T (λ) = (1− λ)
∞∑

m=0

λmTm+1. (3)

In matrix notation, the mapping T (λ) can be written as

T (λ)J = (1− λ)
∞∑

m=0

λmPm+1J +
∞∑

m=0

λmPm(g − η∗e),

or more compactly as
T (λ)J = P (λ)J + (I − λP )−1(g − η∗e), (4)

where the matrix P (λ) is defined by

P (λ) = (1− λ)
∞∑

m=0

λmPm+1. (5)

Note that T (0) = T and P (0) = P for λ = 0. When function approximation is used, a positive λ
improves approximation accuracy, in the sense that will be explained later.

The projection norm with respect to which Π, the operation of projection on S is defined, is
the weighted Euclidean norm specified by the invariant distribution vector π. This choice of norm
is important for convergence purposes. (There are other possible choices of norm, which may be
important in the context of policy iteration and the issue of exploration [14, 19], but this subject is
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beyond the scope of the present paper.) In particular, we denote by ‖ · ‖π the weighted Euclidean
norm on <n,

‖z‖π =

(
n∑

i=1

π(i)z2
i

)1/2

, ∀ z = (z1, . . . , zn) ∈ <n,

and define
ΠJ = Φr̂J ,

where

r̂J = arg min
r∈<s

‖Φr − J‖π = arg min
r∈<s

n∑
i=1

π(i)
(
φ(i)′r − J(i)

)2
.

In matrix notation, with D being the diagonal matrix D = diag
(
π(1), . . . , π(n)

)
,

Π = Φ(Φ′DΦ)−1Φ′D. (6)

By Tsitsiklis and Van Roy [6, Lemma 1],

‖P (λ)‖π ≤ 1, ‖ΠP (λ)‖π ≤ 1, ∀ λ ∈ [0, 1), (7)

so ΠT (λ), λ ∈ [0, 1) are nonexpansive mappings with respect to ‖ · ‖π; their contraction properties
will be discussed later in Section 3.2.

Tsitsiklis and Van Roy [7] show that there is a unique solution Φr∗ of the fixed point equation:

Φr∗ = ΠT (λ)(Φr∗), (8)

to which recursive TD(λ) algorithms converge in the limit. Tsitsiklis and Van Roy [7] also provide
an estimate of the error between Πh, the projection of the true bias function, and Φr∗, modulo
a constant shift, which indicates that the error diminishes as λ approaches 1. Their analysis was
given under Assumptions 1, 2, and the additional assumption that P is aperiodic, but extends to
the periodic case as well. Their error analysis supports the use of Φr∗ as approximation of h in
approximate value iteration or in actor-critic algorithms. (Sharper and more general error bounds
for projected equations have been recently derived in our paper [20].)

It will be useful for our purposes to express ΠT (λ) and the solution r∗ explicitly in terms of
matrices and vectors of dimension s, and to identify fixed point iterations on the subspace S with
corresponding iterations on the space of r. Define

B = Φ′DΦ, A = Φ′D(P (λ) − I)Φ, (9)

b = Φ′D

∞∑
m=0

λmPm(g − η∗e), (10)

where the matrix P (λ) is defined by (5), and the vector b can also be written more compactly as

b = Φ′D(I − λP )−1(g − η∗e). (11)

Using the definitions of Π [cf. (6)] and T (λ) [cf. (4)], it is easy to verify that

ΠT (λ)(Φr) = ΦB−1(Ar + b) + Φr, (12)

with the linear term corresponding to

ΠP (λ)(Φr) = Φ(I +B−1A)r, (13)
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and, by the linear independence of columns of Φ,

r∗ = −A−1b.

It follows from (12) that the fixed point iteration

J1 = ΠT (λ)J0

on S is identical to the following iteration on <s with Φri = Ji, i = 0, 1:

r1 = r0 +B−1(Ar0 + b), (14)

and similarly, the damped iteration

J1 =
(
(1− γ)I + γΠT (λ)

)
J0

on S is identical to
r1 = r0 + γB−1(Ar0 + b). (15)

These relations will be used later in our analysis to relate the LSPE(λ) updates on the space of r to
the more intuitive approximate value iterations on the subspace S.

2.2 The LSPE(λ) Algorithm

We now introduce the LSPE(λ) algorithm for average cost problems. Let (x0, x1, . . .) be an infinitely
long sample trajectory of the Markov chain associated with P , where xt is the state at time t. Let
ηt be the following estimate of the average cost at time t:

ηt =
1

t+ 1

t∑
k=0

g(xk, xk+1),

which converges to the average cost η∗ with probability 1. We define our algorithm in terms of the
solution of a linear least squares problem and the temporal differences

dt(m) = g(xm, xm+1)− ηm + φ(xm+1)′rt − φ(xm)′rt.

In particular, we define r̃t by

r̃t = arg min
r∈<s

t∑
k=0

(
φ(xk)′r − φ(xk)′rt −

t∑
m=k

λm−kdt(m)

)2

. (16)

The new vector rt+1 of LSPE(λ) is obtained by interpolating from the current iterate with a constant
stepsize γ:

rt+1 = rt + γ(r̃t − rt). (17)

It is straightforward to verify that the least squares solution is

r̃t = rt + B̄−1
t (Ātrt + b̄t),

where
B̄t =

Bt

t+ 1
, Āt =

At

t+ 1
, b̄t =

bt
t+ 1

,
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and the matrices Bt, At and vector bt are defined by1

Bt =
t∑

k=0

φ(xk)φ(xk)′, At =
t∑

k=0

zk

(
φ(xk+1)′ − φ(xk)′

)
,

bt =
t∑

k=0

zk

(
g(xk, xk+1)− ηk

)
, zk =

k∑
m=0

λk−mφ(xm).

These matrices and vectors can be computed recursively:

B̄t = t
t+1 B̄t−1 + 1

t+1φ(xt)φ(xt)′, (18)

Āt = t
t+1 Āt−1 + 1

t+1zt

(
φ(xt+1)′ − φ(xt)′

)
, (19)

b̄t = t
t+1 b̄t−1 + 1

t+1zt

(
g(xt, xt+1)− ηt

)
, (20)

zt = λzt−1 + φ(xt). (21)

The matrices B̄t, Āt, and vector b̄t are convergent. Using the analysis of Tsitsiklis and Van Roy [7,
Lemma 4] on average cost TD(λ) algorithms, and Nedić and Bertsekas [16] on discounted LSPE(λ)
algorithms, it can be easily shown that with probability 1

B̄t → B, Āt → A, b̄t → b,

as t→∞, where A, B, and b are given by (9)-(10).
Our average cost LSPE(λ) algorithm (17) thus uses a constant stepsize γ and updates the vector

rt by
rt+1 = rt + γB̄−1

t

(
Āt rt + b̄t

)
. (22)

In the case where γ = 1, rt+1 is simply the least squares solution of (16). In Section 3 we will
derive the range of stepsize γ that guarantees the convergence of LSPE(λ) for various values of λ.
For this analysis, as well as for a high-level interpretation of the LSPE(λ) algorithm, we need the
preliminaries given in the next subsection.

2.3 LSPE(λ) as Simulation-Based Fixed Point Iteration

We write the LSPE(λ) iteration (22) as a deterministic iteration plus stochastic noise:

rt+1 = rt + γB−1(Art + b) + γ
(
Ztrt + ζt

)
, (23)

where Zt and ζt are defined by

Zt = B̄−1
t Āt −B−1A, ζt = B̄−1

t b̄t −B−1b,

and they converge to zero with probability 1. Similar to its discounted case counterpart in [17], the
convergence analysis of iteration (23) can be reduced to that of its deterministic portion under a
spectral radius condition. In particular, (23) is equivalent to

rt+1 − r∗ =
(
I + γB−1A+ γZt

)(
rt − r∗

)
+ γ
(
Ztr

∗ + ζt
)
. (24)

When Zt → 0 and ζt → 0, the stochastic noise term γ(Ztr
∗ + ζt) diminishes to 0, and the iteration

matrix (I + γB−1A+ γZt) converges to the matrix (I + γB−1A). Thus, convergence hinges on the
condition

σ(I + γB−1A) < 1, (25)

where for any square matrix F , σ(F ) denotes the spectral radius of F (i.e., the maximum of the
moduli of the eigenvalues of F ). This is shown in the following proposition.

1A theoretically slightly better version of the algorithm is to replace the term ηk in bt by ηt; the resulting updates
can be computed recursively as before. The subsequent convergence analysis is not affected by this modification, or
any modification in which ηt → η∗ with probability 1.
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Proposition 1. Assume that Assumptions 1 and 2 and the spectral radius condition (25) hold. Then
the average cost LSPE(λ) iteration (22) converges to r∗ = −A−1b with probability 1 as t→∞.

Proof. The spectral radius condition implies that there exists an induced matrix norm ‖ · ‖w such
that

σ(I + γB−1A) ≤ ‖I + γB−1A‖w < 1. (26)

For any sample trajectory such that Zt → 0, there exists t̄ such that for all t ≥ t̄,

‖I + γB−1A+ γZt‖w < 1− ε

for some positive ε, and consequently, from (24)

‖rt+1 − r∗‖w ≤ (1− ε)‖rt − r∗‖w + γ‖Ztr
∗ + ζt‖w.

The above relation implies that for all sample trajectories such that both Zt → 0 and ζt → 0 (so
that γ‖Ztr

∗ + ζt‖w → 0), we have rt − r∗ → 0. Since the set of these trajectories has probability 1,
we have rt → r∗ with probability 1.

The preceding proposition implies that for deriving the convergence condition of the constant
stepsize LSPE(λ) iteration (23) (e.g., range of stepsize γ), we can focus on the deterministic portion:

rt+1 = rt + γB−1(Art + b). (27)

This deterministic iteration is equivalent to

Φrt+1 = Fγ,λ(Φrt), (28)

where
Fγ,λ = (1− γ)I + γΠT (λ), (29)

[cf. (15) and its equivalent iteration]. To exploit this equivalence between (27) and (28), we will
associate the spectral radius condition σ(I+γB−1A) < 1 with the contraction and non-expansiveness
of the mapping Fγ,λ on the subspace S.2 In this connection, we note that the spectral radius
σ(I + γB−1A) is bounded above by the induced norm of the mapping Fγ,λ restricted to S with
respect to any norm, and that the condition σ(I + γB−1A) < 1 is equivalent to Fγ,λ being a
contraction mapping on S for some norm. It is convenient to consider the ‖ · ‖π norm and use
the non-expansiveness or contraction property of Fγ,λ to bound the spectral radius σ(I + γB−1A),
because the properties of ΠT (λ) under this norm are well-known. For example, using the fact

‖P (λ)‖π ≤ 1, ‖ΠP (λ)‖π ≤ 1, ∀ λ ∈ [0, 1),

we have that the mapping Fγ,λ of (29) is nonexpansive for all λ ∈ [0, 1) and γ ∈ (0, 1], so

σ(I + γB−1A) ≤ 1, ∀ λ ∈ [0, 1), ∀ γ ∈ (0, 1]. (30)

Thus, to prove that the spectral radius condition σ(I + γB−1A) < 1 holds for various values of
λ and γ, we may follow one of two approaches:

(1) A direct approach, which involves showing that the modulus of each eigenvalue of I + γB−1A
is less than 1; this is the approach followed by Bertsekas et al. [17] for the discounted case.

2Throughout the paper, we say that a mapping G : <n 7→ <n is a contraction or is nonexpansive over a set X ⊆ <n

if ‖G(x) − G(y)‖ ≤ ρ‖x − y‖ for all x, y ∈ X, where ρ ∈ (0, 1) or ρ = 1, respectively. The set X and the norm ‖ · ‖
will be either clearly implied by the context or specified explicitly.
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(2) An indirect approach, which involves showing that the mapping Fγ,λ = (1 − γ)I + γΠT (λ) is
a contraction with respect to ‖ · ‖π.

The first approach provides stronger results and can address exceptional cases that the second
approach cannot handle (we will see that one such case is when λ = 0 and γ = 1), while the
second approach provides insight, and yields results that can be applied to more general contexts
of compositions of Euclidean projections and nonexpansive mappings. The second approach also
has the merit of simplifying the analysis. As an example, in the discounted case with a discount
factor β, because the mapping T (λ) (given by the multiple-step Bellman equation for the discounted
problem) is a ‖ · ‖π-norm contraction with modulus ρ(β, λ) = (1−λ)β

1−λβ ≤ β for all λ ∈ [0, 1], it follows
immediately from the second approach that the constant stepsize discounted LSPE(λ) algorithm
converges if its stepsize γ lies in the interval

(
0, 2

1+ρ(β,λ)

)
. This simplifies parts of the proof given

in [17]. For the average cost case, we will give both lines of analysis in Section 3, and the assumption
that e 6∈ S (Assumption 2) will play an important role in both, as we will see.

Note a high-level interpretation of the LSPE(λ) iteration, based on (23): With γ chosen in
the convergence range of the algorithm (given in Section 3), the LSPE(λ) iteration can be viewed
as a contracting (possibly damped) approximate value iteration plus asymptotically diminishing
stochastic noise εt [cf. (23), (27) and (28)],

Φrt+1 = Fγ,λ(Φrt) + εt.

2.4 The LSTD(λ) Algorithm

A different least squares TD algorithm, the average cost LSTD(λ) method, calculates at time t

r̂t+1 = −Ā−1
t b̄t. (31)

For large enough t the iterates are well-defined3 and converge to r∗ = −A−1b. Thus LSTD(λ)
estimates by simulation two quantities defining the solution to which TD(λ) converges. We see that
the rationales behind LSPE(λ) and LSTD(λ) are quite different: the former approximates the fixed
point iteration Φrt+1 = Fγ,λ(Φrt) [or when γ = 1, the iteration Φrt+1 = ΠT (λ)(Φrt)] by introducing
asymptotically diminishing simulation noise in its right-hand side, while the latter solves at each
iteration an increasingly accurate simulation-based approximation to the equation Φr = ΠT (λ)(Φr).

Note that LSTD(λ) differs from LSPE(λ) in an important respect: it does not use an initial
guess r0 and hence cannot take advantage of any knowledge about the value of r∗. This can make
a difference in the context of policy iteration, where many policies are successively evaluated, often
using relatively few simulation samples, as discussed in Section 6.

Some insight into the connection of LSPE(λ) and LSTD(λ) can be obtained by verifying that
the LSTD(λ) estimate r̂t+1 is also the unique vector r̂ satisfying

r̂ = arg min
r∈<s

t∑
k=0

(
φ(xk)′r − φ(xk)′r̂ −

t∑
m=k

λk−md̂(m)

)2

, (32)

where
d̂(m) = g(xm, xm+1)− ηm + φ(xm+1)′r̂ − φ(xm)′r̂.

Note that finding r̂ that satisfies (32) is not a least squares problem, because the expression in
the right-hand side of (32) involves r̂. Yet, the similarity with the least squares problem solved by

3The inverse Ā−1
t exists for t sufficiently large. The reason is that Āt converges with probability 1 to the matrix

A = Φ′D(P (λ) − I)Φ, which is negative definite (in the sense r′Ar < 0 for all r 6= 0) and hence invertible (see the
proof of Lemma 7 of [7]).
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LSPE(λ) [cf. (16)] is evident. Empirically, the two methods also produce similar iterates. Indeed, it
can be verified from (22) and (31) that the difference of the iterates produced by the two methods
satisfies the following recursion:

rt+1 − r̂t+1 =
(
I + γB̄−1

t Āt

)
(rt − r̂t) +

(
I + γB̄−1

t Āt

)
(r̂t − r̂t+1). (33)

In Section 4 we will use this recursion and the spectral radius result σ(I + γB−1A) < 1 of Section 3
to establish one of our main results, namely that the difference rt − r̂t converges to 0 faster than rt
and r̂t converge to their limit r∗.

3 Convergence of Average Cost LSPE(λ) with a Constant
Stepsize

In this section, we will analyze the convergence of the constant stepsize average cost LSPE(λ)
algorithm under Assumptions 1 and 2. We will derive conditions guaranteeing that σ(I+γB−1A) <
1, and hence guaranteeing that LSPE(λ) converges, as per Prop. 1. In particular, the convergent
stepsize range for LSPE(λ) will be shown to contain the interval (0, 1] for λ ∈ (0, 1), the interval
(0, 1) for λ = 0, and the interval (0, 1] for λ = 0 and an aperiodic Markov chain (Prop. 2). We will
then provide an analysis of the contraction property of the mapping Fλ,γ underlying LSPE(λ) with
respect to the ‖ · ‖π norm, which yields as a byproduct an alternative line of convergence proof, as
discussed in Section 2.3.

For both lines of analysis, our approach will be to investigate the properties of the stochastic
matrix P (λ), the approximation subspace S and its relation to the eigenspace of P (λ), and the
composition of projection Π on S with P (λ), and to then, for the spectral radius-based analysis, pass
the results to the s-dimensional matrix I+γB−1A using equivalence relations discussed in Section 2.

3.1 Convergence Analysis Based on Spectral Radius

We start with a general result relating to the spectral radius of certain matrices that involve pro-
jections. In the proof we will need an extension of a Euclidean norm to the space Cn of n-tuples of
complex numbers. For any Euclidean norm ‖ · ‖ in <n (a norm of the form ‖x‖ =

√
x′Qx, where Q

is a positive definite symmetric matrix), the norm of a complex number x+ iy ∈ Cn is defined by

‖x+ iy‖ =
√
‖x‖2 + ‖y‖2.

For a set X ⊆ <n, we denote by X + iX the set of complex numbers {x+ iy | x ∈ X, y ∈ X}. We
also use the fact that for a projection matrix Π that projects a real vector to a subspace of <n, the
complex vector Πz has as its real and imaginary parts the projections of the corresponding real and
imaginary parts of z, respectively.

Lemma 1. Let S be a subspace of <n and let C be an n×n real matrix, such that for some Euclidean
norm ‖ · ‖ we have ‖C‖ ≤ 1. Denote by Π the projection matrix which projects a real vector onto
S with respect to this norm. Let ν be a complex number with |ν| = 1, and let ξ be a vector in Cn.
Then ν is an eigenvalue of ΠC with corresponding eigenvector ξ if and only if ν is an eigenvalue of
C with corresponding eigenvector ξ, and νξ ∈ S + iS.

Proof. Assume that ΠCξ = νξ. We claim that Cξ ∈ S + iS; if this were not so, we would have

‖Cξ‖ > ‖ΠCξ‖ = ‖νξ‖ = |ν| ‖ξ‖ = ‖ξ‖,

which contradicts the assumption ‖C‖ ≤ 1. Thus, Cξ ∈ S+ iS, which implies that Cξ = ΠCξ = νξ,
and νξ ∈ S + iS. Conversely, if Cξ = νξ and νξ ∈ S + iS, we have ΠCξ = νξ.

11



We now specialize the preceding lemma to obtain a necessary and sufficient condition for the
spectral radius condition (25) to hold.

Lemma 2. Let ν be a complex number with |ν| = 1 and let z be a nonzero vector in Cs. Then under
Assumption 2, ν is an eigenvalue of I +B−1A and z is a corresponding eigenvector if and only if ν
is an eigenvalue of P (λ) and Φz is a corresponding eigenvector.

Proof. We apply Lemma 1 for the special case where C = P (λ), S is the subspace spanned by the
columns of Φ, and the Euclidean norm is ‖ · ‖π. We have ‖P (λ)‖π = 1 [cf. (7)]. Since

ΠP (λ)Φ = Φ(I +B−1A)

[cf. (13)], and by Assumption 2, Φ has linearly independent columns, we have that (ν, z) is an
eigenvalue/eigenvector pair of I + B−1A if and only if (ν,Φz) is an eigenvalue/eigenvector pair of
ΠP (λ), which by Lemma 1, for a complex number ν with |ν| = 1, holds if and only if ν is an
eigenvalue of P (λ) and Φz is a corresponding eigenvector.

We now apply the preceding lemma to prove the convergence of LSPE(λ).

Proposition 2. Under Assumptions 1 and 2, we have

σ(I + γB−1A) < 1,

and hence the average cost LSPE(λ) iteration (22) with constant stepsize γ converges to r∗ with
probability 1 as t→∞, for any one of the following cases:

(i) λ ∈ (0, 1) and γ ∈ (0, 1];

(ii) λ = 0, γ ∈ (0, 1], and P is aperiodic;

(iii) λ = 0, γ ∈ (0, 1], P is periodic, and all its eigenvectors that correspond to some eigenvalue ν
with ν 6= 1 and |ν| = 1, do not lie in the subspace S = {Φr | r ∈ <s};

(iv) λ = 0, γ ∈ (0, 1).

Proof. We first note that by (30), we have σ(I + γB−1A) ≤ 1, so we must show that I + γB−1A
has no eigenvalue with modulus 1.

In cases (i)-(iii), we show that there is no eigenvalue ν of P (λ) that has modulus 1 and an
eigenvector of the form Φz, and then use Lemma 2 to conclude that σ(I + B−1A) < 1. This also
implies that σ(I + γB−1A) < 1 for all γ ∈ (0, 1), since I + γB−1A = (1− γ)I + γ(I +B−1A).

Indeed, in both cases (i) and (ii), P (λ) is aperiodic [in case (i), all entries of P (λ) are positive, so
it is aperiodic, while in case (ii), P (0) is equal to P , which is aperiodic by assumption]. Thus, the
only eigenvalue of P (λ) with unit modulus is ν = 1, and its eigenvectors are the scalar multiples of
e, which are not of the form Φz by Assumption 2.

In case (iii), a similar argument applies, using the hypothesis.
Finally, consider case (iv). By Lemma 2, an eigenvalue ν of I+B−1A with |ν| = 1 is an eigenvalue

of P with eigenvectors of the form Φz. Hence we cannot have ν = 1, since the corresponding
eigenvectors of P are the scalar multiples of e, which cannot be of the form Φz by Assumption 2.
Therefore, the convex combinations (1− γ) + γν, γ ∈ (0, 1), lie in the interior of the unit circle for
all eigenvalues ν of I +B−1A, showing that σ(I + γB−1A) < 1 for γ ∈ (0, 1).

Remark 1. We give an example showing that when λ = 0 and P is periodic, the matrix I +B−1A
can have spectral radius equal to 1, if the assumption in case (iii) of Prop. 2 is not satisfied. Let

P =
[

0 1
1 0

]
, Φ =

[
1
−1

]
.
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For any r ∈ <, using (9), we have

(I +B−1A)r = (Φ′DΦ)−1Φ′DPΦr = −r,

so σ(I+B−1A) = 1. Here the eigenvectors corresponding to the eigenvalue −1 of P are the nonzero
multiples of (1,−1)′, and belong to S.

Remark 2. Our analysis can be extended to show the convergence of LSPE(λ) with a time varying
stepsize γt, where γt for all t lies in a closed interval contained in the range of stepsizes given by
Prop. 2. This follows from combining the spectral radius result of Prop. 2 with a refinement in the
proof argument of Prop. 1. In particular, the refinement is to assert that for all γ in the closed
interval given above, we can choose a common norm ‖ · ‖w in the proof of Prop. 1. This in turn
follows from explicitly constructing such a norm using the Jordan form of the matrix I + γB−1A
(for a related reference, see e.g., Ortega and Rheinboldt [21], p. 44).

3.2 Contraction Property of Fγ,λ with respect to ‖ · ‖π

For the set of pairs (λ, γ) given in the preceding spectral radius analysis (Prop. 2), Fγ,λ of (28)
is a contraction mapping with respect to some, albeit unknown, norm. We will now refine this
characterization of Fγ,λ by deriving the pairs (λ, γ) for which Fγ,λ is a contraction with respect to the
norm ‖ · ‖π (see the subsequent Prop. 4). These values form a subset of the former set; alternatively,
as discussed in Section 2.3, one can follow this line of analysis to assert the convergence of LSPE(λ)
for the respective smaller set of stepsize choices (the case λ = 0 turns out to be exceptional).

First, we prove the following proposition, which can be applied to the convergence analysis of
general iterations involving the composition of a nonexpansive linear mapping and a projection on
a subspace. The analysis generalizes some proof arguments used in the error analysis in [7], part of
which is essentially also based on the contraction property.

Proposition 3. Let S be a subspace of <n and let H : <n 7→ <n be a linear mapping,

H(x) = Cx+ d,

where C is an n × n matrix and d is a vector in <n. Let ‖ · ‖ be a Euclidean norm with respect to
which H is nonexpansive, and let Π denote projection onto S with respect to that norm.

(a) ΠH has a unique fixed point if and only if either 1 is not an eigenvalue of C, or else the
eigenvectors corresponding to the eigenvalue 1 do not belong to S.

(b) If ΠH has a unique fixed point, then for all γ ∈ (0, 1), the mapping

Gγ = (1− γ)I + γΠH

is a contraction, i.e., for some scalar ργ ∈ (0, 1), we have

‖Gγx−Gγy‖ ≤ ργ‖x− y‖, ∀ x, y ∈ <n.

Proof. (a) The linear mapping ΠH has a unique fixed point if and only if 1 is not an eigenvalue
of ΠC. By Lemma 1, 1 is an eigenvalue of ΠC if and only if 1 is an eigenvalue of C with the
corresponding eigenvectors in S + iS, from which part (a) follows.

(b) Since ΠH has a unique fixed point, we have z 6= ΠCz for all z 6= 0. Hence, ∀ z ∈ <n, either
ΠCz 6∈ {cz|c ∈ <}, or ΠCz = cz for some scalar c ∈ [−1, 1) due to the nonexpansiveness of ΠC. In
the first case we have

‖(1− γ)z + γΠCz‖ < (1− γ)‖z‖+ γ‖ΠCz‖
≤ (1− γ)‖z‖+ γ‖z‖ = ‖z‖, (34)
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where the strict inequality follows from the strict convexity of the norm, and the weak inequality
follows from the non-expansiveness of ΠC. In the second case, (34) follows easily. If we define
ργ = sup{‖(1 − γ)z + γΠCz‖ | ‖z‖ ≤ 1}, and note that the supremum above is attained by
Weierstrass’ Theorem, we see that (34) yields ργ < 1 and

‖(1− γ)z + γΠCz‖ ≤ ργ‖z‖, ∀ z ∈ <n.

By letting z = x− y, with x, y ∈ <n, and by using the definition of Gγ , part (b) follows.

We can now derive the pairs (λ, γ) for which the mapping Fγ,λ underlying the LSPE(λ) iteration
is a ‖ · ‖π-norm contraction.

Proposition 4. Under Assumptions 1 and 2, the mapping

Fγ,λ = (1− γ)I + γΠT (λ)

is a contraction with respect to ‖ · ‖π for either one of the following cases:

(i) λ ∈ (0, 1) and γ ∈ (0, 1],

(ii) λ = 0 and γ ∈ (0, 1).

Proof. For γ ∈ (0, 1), we apply Prop. 3, with H equal to T (λ), C equal to the stochastic matrix
P (λ), and S equal to the subspace spanned by the columns of Φ. The mapping ΠT (λ) has a unique
fixed point, the vector Φr∗, as shown by Tsitsiklis and Van Roy [7] [this can also be shown simply
by using Prop. 3 (a)]. Thus, the result follows from Prop. 3 (b).

Consider now the remaining case, γ = 1 and λ ∈ (0, 1). Then T (λ) is a linear mapping involving
the matrix P (λ) [cf. (4)]. Since λ > 0 and all states form a single recurrent class, all entries of P (λ)

are positive [cf. (5)]. Thus P (λ) can be expressed as a convex combination

P (λ) = (1− α)I + αP̄

for some α ∈ (0, 1), where P̄ is a stochastic matrix with positive entries. We make the following
observations:

(i) P̄ corresponds to a nonexpansive mapping with respect to the norm ‖ · ‖π. The reason is
that π is an invariant distribution of P̄ , i.e., π = πP̄ , [as can be verified by using the relation
π = πP (λ)]. Thus, we have ‖P̄ z‖π ≤ ‖z‖π for all z ∈ <n [6, Lemma 1], implying that P̄ has
the non-expansiveness property mentioned.

(ii) Since P̄ has all positive entries, the states of the Markov chain corresponding to P̄ form a
single recurrent class. Hence the eigenvectors of P̄ corresponding to the eigenvalue 1 are the
nonzero scalar multiples of e, which by Assumption 2, do not belong to the subspace S.

It follows from Prop. 3 (with P̄ in place of C, and α in place of γ) that ΠP (λ) is a contraction with
respect to the norm ‖ · ‖π, which implies that ΠT (λ) is also a contraction.

Remark 3. As Prop. 2 and Prop. 4 suggest, if P is aperiodic, ΠT (0) may not be a contraction on
the subspace S with respect to the norm ‖ ·‖π, while it is a contraction on S with respect to another
norm. As an example, let

P =

 0 1 0
1/2 0 1/2
1/2 0 1/2

 , Φ =

 0 1
1 0
0 0

 ,
g =

[
0 0 0

]′
, η∗ = 0,

14



and note that P is aperiodic. Then π = (1/3, 1/3, 1/3), so the norm ‖ · ‖π coincides with a scaled
version of the standard Euclidean norm. Let Φ1 and Φ2 denote the columns of Φ. For λ = 0,

ΠT (0)Φ1 −ΠT (0)(0) = ΠPΦ1 = Φ2.

Since ‖Φ1‖π = ‖Φ2‖π, ΠT (0) is not a contraction on S with respect to ‖ · ‖π. However, according to
Prop. 2 (ii), we have σ(I +B−1A) < 1, which implies that ΠT (0) is a contraction on S with respect
to a different norm.

4 Rate of Convergence of LSPE(λ)

In this section we prove that LSPE(λ) has the same asymptotic convergence rate as LSTD(λ), for
any constant stepsize γ under which LSPE(λ) converges. The proof applies to both the discounted
and average cost cases and for all values of λ for which convergence has been proved (λ ∈ [0, 1] for
the discounted case and λ ∈ [0, 1) for the average cost case).

For both discounted4 and average cost cases, the LSPE(λ) updates can be expressed as

rt+1 = rt + γB̄−1
t

(
Āt rt + b̄t

)
,

while the LSTD(λ) updates can be expressed as

r̂t+1 = −Ā−1
t b̄t.

Informally, it has been observed in [17] that rt became close to and “tracked” r̂t well before the
convergence to r∗ took place - see also the experiments in Section 5. The explanation of this
phenomenon given in [17] is a two-time-scale type of argument: when t is large, Āt, B̄t and b̄t change
slowly so that they are essentially “frozen” at certain values, and rt then “converges” to the unique
fixed point of the linear system

r = r + γB̄−1
t

(
Āt r + b̄t

)
,

which is −Ā−1
t b̄t, the value of r̂t of LSTD(λ).

In what follows, we will make the above argument more precise, by first showing that the distance
between LSPE(λ) and LSTD(λ) iterates shrinks at the order of O(1/t) (Prop. 5). We will then appeal
to the results of Konda [13], which show that the LSTD(λ) iterates converge to their limit at the

4For the β-discounted criterion and λ ∈ [0, 1], the update rules of LSPE(λ) and LSTD(λ) are given by (22) and
(31), respectively, with the corresponding matrices

Bt =
tX

k=0

φ(xk) φ(xk)′, At =
tX

k=0

zk

`
βφ(xk+1)′ − φ(xk)′

´
,

bt =
tX

k=0

zk g(xk, xk+1), zk =
kX

m=0

(βλ)k−mφ(xm),

(see [17]); and the stepsize of LSPE(λ) is chosen in the range
“
0, 2

1+ρ(β,λ)

”
, where ρ(β, λ) =

(1−λ)β
1−λβ

(cf. [17, Prop.

3.1] and also our discussion in Section 2.3). The matrix Āt and vector b̄t converge to A and b, respectively, with

A = Φ′D(P (β,λ) − I)Φ, b = Φ′D(I − λβP )−1g,

where

P (β,λ) = (1− λ)
∞X

m=0

λm(βP )m+1, λ ∈ [0, 1],

(see [16]). LSPE(λ) and LSTD(λ) converge to the same limit r∗ = −A−1b. Alternatively, one may approximate
relative cost differences, similar to the average cost case and to the discussion in [8]; the resulting iterates may have
lower variance. Our analysis can be easily applied to such algorithm variants.

15



order of O(1/
√
t). It then follows that LSPE(λ) and LSTD(λ) converge to each other at a faster

time scale than to the common limit; the asymptotic convergence rate of LSPE(λ) also follows as a
consequence (Prop. 6).

For the results of this section, we assume the conditions that ensure the convergence of LSPE(λ)
and LSTD(λ) algorithms. In particular, we assume the following conditions:

Condition 1. For the average cost case, Assumptions 1 and 2 hold, and in addition, for LSPE(λ),
the stepsize γ is chosen as in Prop. 2; and for the β-discounted case, Assumption 1 holds, the
columns of Φ are linearly independent, and in addition, for LSPE(λ), the stepsize γ is in the range(
0, 2

1+ρ(β,λ)

)
, where ρ(β, λ) = (1−λ)β

1−λβ (cf. [17]).

The difference between the LSPE(λ) and LSTD(λ) updates can be written as [cf. (33)]

rt+1 − r̂t+1 =
(
I + γB̄−1

t Āt

)
(rt − r̂t) +

(
I + γB̄−1

t Āt

)
(r̂t − r̂t+1). (35)

The norm of the difference term r̂t − r̂t+1 of the LSTD(λ) iterates in the right-hand side above is of
the order O(1/t), as shown in the next lemma. To simplify the description, in what follows, we say
a sample path is convergent if it is such that Āt, B̄t, and b̄t converge to A, B, and b, respectively.
(All such paths form a set of probability 1, on which both LSTD(λ) and LSPE(λ) converge to
r∗ = −A−1b.)

Lemma 3. Let Condition 1 hold and consider a convergent sample path. Then for each norm ‖ · ‖,
there exists a constant C such that for all t sufficiently large,

‖r̂t+1 − r̂t‖ ≤
C

t
.

Proof. This is a straightforward verification. By definition of the LSTD(λ) updates, we have

‖r̂t+1 − r̂t‖ =
∥∥Ā−1

t b̄t − Ā−1
t−1b̄t−1

∥∥
≤
∥∥Ā−1

t − Ā−1
t−1

∥∥∥∥b̄t∥∥+
∥∥Ā−1

t−1

∥∥∥∥b̄t − b̄t−1

∥∥ . (36)

Since
∥∥b̄t∥∥ → ‖b‖ and

∥∥Ā−1
t−1

∥∥ → ∥∥A−1
∥∥, we have

∥∥b̄t∥∥ ≤ C1,
∥∥Ā−1

t−1

∥∥ ≤ C2 for some constants C1

and C2 and for all t sufficiently large. Thus we only need to bound the terms
∥∥Ā−1

t − Ā−1
t−1

∥∥ and∥∥b̄t − b̄t−1

∥∥ by C
t for some constant C. By the definition of b̄t, it can be seen that for t sufficiently

large, for the average cost case,∥∥b̄t − b̄t−1

∥∥ ≤ 1
t
‖zt(g(xt)− ηt)‖+

1
t
‖b̄t‖ ≤

C

t

for some constant C, (since zt, ηt, and b̄t are bounded for all t), and similarly, the relation holds for
the discounted case (the difference being without the term ηt). By the definition of Āt,∥∥Ā−1

t − Ā−1
t−1

∥∥ =
∥∥(t+ 1)A−1

t − tA−1
t−1

∥∥
=
∥∥A−1

t + t
(
A−1

t −A−1
t−1

)∥∥
≤
∥∥A−1

t

∥∥+ t
∥∥A−1

t −A−1
t−1

∥∥ .
Applying the Sherman-Morisson formula for matrix inversion to A−1

t in the second term of the last
expression, it can be seen that for β ∈ [0, 1],∥∥Ā−1

t − Ā−1
t−1

∥∥ ≤∥∥A−1
t

∥∥+ t

∥∥∥∥∥A−1
t−1zt (βφ(xt+1)′ − φ(xt)′)A−1

t−1

1 + (βφ(xt+1)′ − φ(xt)′)A−1
t−1zt

∥∥∥∥∥
=

1
t+ 1

∥∥Ā−1
t

∥∥+

∥∥∥∥∥ Ā−1
t−1zt (βφ(xt+1)′ − φ(xt)′) Ā−1

t−1

t+ (βφ(xt+1)′ − φ(xt)′) Ā−1
t−1zt

∥∥∥∥∥
≤C2

t
+
C3

t
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for some constant C3 and t sufficiently large. Combine these relations with (36) and the claim
follows.

The next result provides the rate at which the LSPE(λ) and LSTD(λ) iterates converge to each
other.

Proposition 5. Under Condition 1, the sequence of random variables t(rt − r̂t) is bounded with
probability 1.

Proof. Consider a convergent sample path. Since σ(I + γB−1A) < 1 (as proved in [17, Prop. 3.1]
for the discounted case and in our Prop. 2 of Section 3 for the average cost case), we may assume
that there exist a scalar ρ ∈ (0, 1) and a norm ‖ · ‖w such that

‖I + γB̄−1
t Āt‖w ≤ ρ

for all t sufficiently large. From (35), we see that

‖rt+1 − r̂t+1‖w ≤
∥∥I + γB̄−1

t Āt

∥∥
w
‖rt − r̂t‖w +

∥∥I + γB̄−1
t Āt

∥∥
w
‖r̂t − r̂t+1‖w.

Thus, using also Lemma 3 with the norm being ‖ · ‖w, we obtain

‖rt+1 − r̂t+1‖w ≤ ρ ‖rt − r̂t‖w +
ρC

t
,

for all t sufficiently large. This relation can be written as

ζt+1 ≤
t+ 1
t

ρ ζt +
t+ 1
t

ρC, (37)

where
ζt = t ‖rt − r̂t‖w.

Let t̄ be such that ρ̄ < 1, where ρ̄ = t̄+1
t̄ ρ. Then, for all t ≥ t̄, from the relation ζt+1 ≤ ρ̄ ζt + ρ̄ C

[cf. (37)], we have

ζt ≤ ρ̄(t−t̄) ζt̄ +
Cρ̄(1− ρ̄(t−t̄))

1− ρ̄
≤ ζt̄ +

Cρ̄

1− ρ̄
.

Thus the sequence ζt is bounded, which implies the desired result.

Note that Prop. 5 implies that the sequence of random variables tα(rt− r̂t) converges to zero with
probability 1 as t → ∞ for any α < 1. Using this implication, we now show that LSPE(λ) has the
same convergence rate as LSTD(λ), assuming that LSTD(λ) converges to its limit with error that
is normally distributed, in accordance with the central limit theorem (as shown by Konda [13]). We
denote by N(0,Σ) a vector-valued Gaussian random variable with zero mean and covariance matrix
Σ.

Proposition 6. Let Condition 1 hold. Suppose that the sequence of random variables
√
t (r̂t−r∗) of

LSTD(λ) converges in distribution to N(0,Σ0) as t→∞. Then for any given initial r0, the sequence
of random variables

√
t (rt − r∗) of LSPE(λ) converges in distribution to N(0,Σ0) as t→∞.

Proof. Using the definition of LSPE(λ) and LSTD(λ) [cf. (22) and (31)], it can be verified that
√
t+ 1(rt+1 − r∗) =

√
t+ 1

(
I + γB̄−1

t Āt

)
(rt − r̂t+1) +

√
t+ 1(r̂t+1 − r∗),

and thus it suffices to show that
√
t+ 1

(
I + γB̄−1

t Āt

)
(rt − r̂t+1) → 0 with probability 1. (Here

we have used the following fact: if Xn converges to X in distribution and Zn converges to 0 with

17



probability 1, then Xn +Zn converges to X in distribution. See e.g., Duflo [22, Properties 2.1.2 (3)
and (4)], p. 40.)

Consider a sample path for which both LSTD(λ) and LSPE(λ) converge. Choose a norm ‖ · ‖.
When t is sufficiently large, we have ‖I + γB̄−1

t Āt‖ ≤ C for some constant C, so that∥∥√t+ 1
(
I + γB̄−1

t Āt

)
(rt − r̂t+1)

∥∥ ≤ C
√
t+ 1 (‖rt − r̂t‖+ ‖r̂t − r̂t+1‖) .

Since ‖r̂t − r̂t+1‖ ≤ C′

t for some constant C ′ (Lemma 3), the second term C
√
t+ 1‖r̂t − r̂t+1‖

converges to 0. By Prop. 5, the first term, C
√
t+ 1‖rt − r̂t‖, also converges to 0. The proof is thus

complete.

Remark 4. A convergence rate analysis of LSTD(λ) and TD(λ) is provided by Konda [13, Chapter
6]. (In this analysis, the estimate ηt for the average cost case is fixed to be η∗ in both LSTD(λ)
and TD(λ) for simplicity.) Konda shows [13, Theorem 6.3] that the covariance matrix Σ0 in the
preceding proposition is given by Σ0 = A−1Γ(A′)−1, where Γ is the covariance matrix of the Gaussian
distribution to which

√
t (Ātr

∗ + b̄t) converges in distribution. As Konda also shows [13, Theorem
6.1], LSTD(λ) has the asymptotically optimal convergence rate compared to other recursive TD(λ)
algorithms (the ones analyzed in [6] and [7]), whose updates r̃t have the form

r̃t+1 = r̃t + γtztdt,

where
dt = g(xt, xt+1)− ηt + (φ(xt+1)′ − φ(xt)′)r̃t

for the average cost case, and

dt = g(xt, xt+1) + (βφ(xt+1)′ − φ(xt)′)r̃t

for the β-discounted case. The convergence rate of LSTD(λ) is asymptotically optimal in the fol-
lowing sense. Suppose that γ−1/2

t (r̃t− r∗) converges in distribution to N(0,Σ), (which can be shown
under common assumptions – see [13, Theorem 6.1] – for analyzing asymptotic Gaussian approx-
imations for iterative methods), and also suppose that the limit γ̄ = limt→∞(γ−1

t+1 − γ−1
t ) is well

defined. Then, the covariance matrix Σ of the limiting Gaussian distribution is such that Σ− γ̄ Σ0

is positive semidefinite. (In particular, this means that if γt = 1
ct , where c is a constant scalar, then

γ̄ = c and
√
t(r̃t − r∗) converges in distribution to N(0, Σ

c ), where Σ
c − Σ0 is positive semidefinite.)

Remark 5. We have proved that LSPE(λ) with any constant stepsize (under which LSPE(λ)
converges) has the same asymptotic optimal convergence rate as LSTD(λ), i.e., the convergence rate
of LSPE(λ) does not depend on the constant stepsize. Essentially, the LSPE(λ) iterate rt tracks the
LSTD(λ) iterate r̂t at the rate of O(t) regardless of the value of the stepsize (see Prop. 5 and its
proof), while the LSTD(λ) update converges to r∗ at the slower rate of O(

√
t). This explains why

the constant stepsize does not affect the asymptotic convergence rate of LSPE(λ). On the other
hand, the stepsize γ affects the spectral radius of the matrix (I + γB−1A) and the corresponding
scalar ρ (see the proof of Prop. 5), and therefore also the (geometric) rate at which ‖rt − r̂t‖w, the
distance between the LSPE(λ) and LSTD(λ) iterates, converges to 0. This can also be observed
from the computational results of the next section.

Remark 6. Similar to the argument in Remark 2, our convergence rate results Props. 5 and 6 extend
to LSPE(λ) with a time varying stepsize γt, where γt for all t lies in a closed interval contained in
the range of stepsizes given by Condition 1. This can be seen by noticing that the norm ‖ · ‖w in
the proof of Prop. 5 can be chosen to be the same for all γ in the above closed interval.
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5 Computational Experiments

The following experiments on three examples show that

• LSPE(λ) and LSTD(λ) converge to each other faster than to the common limit, and

• the algorithm of recursive TD(λ) with Polyak averaging, which theoretically also has asymptot-
ically optimal convergence rate (cf. Konda [13]), does not seem to scale well with the problem
size.

Here are a few details of the three algorithms used in experiments. We use pseudoinverse for
matrix inversions in LSPE(λ) and LSTD(λ) at the beginning stages, when matrices tend to be
singular. The stepsize γ in LSPE(λ) is taken to be 1, except when noted. Recursive TD(λ) algorithms
tend to diverge during early stages, so we truncate the components of their updates r̃t to be within the
range [−1000, 1000]. The TD(λ) algorithm with Polyak averaging, works as follows. The stepsizes
γt of TD(λ) are taken to be an order of magnitude greater than 1/t, γt = 1/t0.8 in our experiments.
The updates r̃t of TD(λ) are then averaged over time to have 1

t+1

∑t
i=0 r̃i as the updates of the

Polyak averaging algorithm. (For a general reference on Polyak averaging, see e.g., Kushner and
Yin [23].)

In all the following figures, the horizontal axes index the time in the LSPE(λ), LSTD(λ), and
TD(λ) iterations, which use the same single sample trajectory.

Example 1. This is a 2-state toy example. The parameters are:

P =
[
0.2 0.8
0.7 0.3

]
, g(1, j) = 1, g(2, j) = 2, j = 1, 2.

We use one basis function: Φ =
[
1 2

]′. The updates of LSPE(λ), LSTD(λ), TD(λ), and TD(λ)
with Polyak averaging are thus one dimensional scalars. The results are given in Fig. 1. �
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Figure 1: Computational results obtained for Example 1. Graphs of updates of average cost
LSPE(λ), LSTD(λ), TD(λ), and TD(λ) with Polyak averaging (TD-P) using the same single tra-
jectory and for different values of λ. At the scale used, LSPE(λ) and LSTD(λ) almost coincide with
each other. The behavior of TD(λ) with Polyak averaging conforms with the theoretical analysis in
this case.

Example 2. This example is a randomly generated fast-mixing Markov chain with 100 states
indexed by 1 to 100. The state transition probability matrix is

P = 0.1I + 0.9R,
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(a) Distance plots for λ = 0.7
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(b) Updates for λ = 0.7
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(c) Distance plots for λ = 0.9
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(d) Updates for λ = 0.9

Figure 2: Computational results obtained for Example 2. Graphs of distances and updates of the
TD algorithms using the same single trajectory and for different values of λ. Only the parts within
the range of the vertical axis are shown. (a) and (c): Distances between LSPE(λ) and LSTD(λ)
(d-LSPE-LSTD), between LSPE(λ) and the limit (d-LSPE-Limit), and between LSTD(λ) and the
limit (d-LSTD-Limit). LSPE(λ) and LSTD(λ) are at all times much closer to each other than to the
limit. (b) and (d): Graphs of one of the components of the updates of LSPE(λ), LSTD(λ), TD(λ),
and TD(λ) with Polyak averaging (TD-P). We were not able to get TD(λ) to converge in this case.

where I is the identity matrix, and R is a random stochastic matrix with mutually independent rows
which are uniformly distributed in the space of probability distributions over the state space. The
per-stage costs are

g(i, j) =

{
rand, i < 90,
i/30 + rand, i = 90, . . . , 100,

where rand denotes a random number uniform in [0, 1] and independently generated for each i. We
use 3 basis functions in the average cost case.

Even though the chain mixes rapidly, because of the cost structure, it is not an easy case for the
recursive TD(λ) algorithm. The results are given in Figs. 2 and 3. �

Example 3. This example is a 100-state Markov chain that has a random walk structure and a slow
mixing rate relative to the previous example. Using P (j|i) as a shorthand for p(X1 = j | X0 = i),
we let the state transition probabilities be

P (i|i) = 0.1, P (i+ 1|i) = P (i− 1|i) = 0.45, i = 2, . . . , 99,
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(a) λ = 0.7, γ = 1, Initial iterations
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(b) λ = 0.7, γ = 1
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(c) λ = 0.7, γ = 0.1, initial iterations
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(d) λ = 0.7, γ = 0.1

Figure 3: Comparison LSTD(λ) and LSPE(λ) with different constant stepsizes γ for Example 2.
Plotted are one of the components of the updates of LSPE(λ) and LSTD(λ).

P (1|1) = 0.1, P (2|1) = 0.9, P (100|100) = 0.1, and P (99|100) = 0.9. The per-stage costs are the
same as in Example 2, and so are the basis functions. The results are given in Figs. 4 and 5. �

6 Extensions to Multiple Policies and Policy Iteration

In this section, we discuss various uses and extensions of LSPE(λ) for the more general MDP
problem that involves optimization over multiple policies (as opposed to just a single policy as we
have assumed so far). The main difficulty here is that when function approximation is introduced, the
contraction properties that are inherent in the single policy evaluation case are lost. In particular,
the corresponding projected Bellman equation (which is now nonlinear) may have multiple fixed
points or none at all (see De Farias and Van Roy [24]). As a result the development of LSPE-type
algorithms with solid convergence properties becomes very difficult.

However, there is one important class of MDP for which the aforementioned difficulties largely
disappear, because the corresponding (nonlinear) projected Bellman equation involves a contrac-
tion mapping under certain conditions. This is the class of discounted optimal stopping problems,
for which Tsitsiklis and Van Roy [25] have shown the contraction property and analyzed the ap-
plication of TD(0). It can be shown that LSPE(0) can also be applied to such problems, and its
convergence properties can be analyzed using appropriate extensions of the methods of the present
paper. Note that the deterministic portion of the iteration here involves a nonlinear contraction
mapping. Because of this nonlinearity, the least squares problem corresponding to LSTD(0) is not
easy to solve and thus LSTD(λ) is not easy to apply. This analysis is reported elsewhere (see Yu
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(a) Distance plots for λ = 0.7
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(b) Distance plots for λ = 0.9
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(c) Distance plots for λ = 0.98
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Figure 4: Computational results obtained for Example 3. Graphs of distances and updates of the
TD algorithms using the same single trajectory and for different values of λ. Only the parts within
the range of the vertical axis are shown. (a), (b) and (c): Distances between LSPE(λ) and LSTD(λ)
(d-LSPE-LSTD), between LSPE(λ) and the limit (d-LSPE-Limit), and between LSTD(λ) and the
limit (d-LSTD-Limit). LSPE(λ) and LSTD(λ) are closer to each other than to the limit for most of
the time. (d): Graphs of one of the components of the updates of LSPE(λ), LSTD(λ), TD(λ), and
TD(λ) with Polyak averaging (TD-P). The convergence of the recursive TD(λ) (hence also that of
the Polyak averaging) is much slower than LSPE(λ) and LSTD(λ) in this case.

and Bertsekas [26,27]).
Let us now consider the use of LSPE(λ) and LSTD(λ) in the context of approximate policy

iteration. Here, multiple policies are generated, each obtained by policy improvement using the
approximate cost function or Q-function of the preceding policy, which in turn may be obtained by
using simulation and LSPE(λ) or LSTD(λ). This context is central in approximate DP, and has
been discussed extensively in various sources, such as the books by Bertsekas and Tsitsiklis [14], and
Sutton and Barto [19]. Lagoudakis and Parr [15] discuss LSTD(λ) in the context of approximate
policy iteration and discounted problems, and report favorable computational results. The use
of LSPE(λ) in the context of approximate policy iteration was proposed in the original paper by
Bertsekas and Ioffe [12], under the name λ-policy iteration, and favorable results were reported in
the context of a challenging tetris training problem, which could not be solved using TD(λ).

Generally, one may distinguish between two types of policy iteration: (1) regular where each
policy evaluation is done with a long simulation in order to achieve the maximum feasible policy
evaluation accuracy before switching to a new policy via policy improvement, and (2) optimistic
where each policy evaluation is done inaccurately, using a few simulation samples (sometimes only
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(a) λ = 0.7, γ = 1
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(b) λ = 0.7, γ = 0.5
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(c) λ = 0.7, γ = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−100

0

100

200

300

400

500

t

 

 

Limit
LSTD
LSPE

(d) λ = 0.9, γ = 1
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(e) λ = 0.9, γ = 0.5
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Figure 5: Comparison of LSTD(λ) and LSPE(λ) with different constant stepsizes γ for Example 3.
Plotted are one of the components of the updates of LSPE(λ) and LSTD(λ).

one), before switching to a new policy. The tradeoffs between these two variants are discussed
extensively in the literature, with experience tending to favor the optimistic variants. However,
the behavior of approximate policy iteration is extremely complicated, as explained for example in
Bertsekas and Tsitsiklis [14, Section 6.4], so there is no clear understanding of the circumstances
that favor the regular or optimistic versions.

Given our convergence rate analysis, it appears that LSPE(λ) and LSTD(λ) should perform com-
parably when used for regular policy iteration, since they have an identical asymptotic convergence
rate. However, for optimistic policy iteration, the asymptotic convergence rate is not relevant, and
the ability to make fast initial progress is most important. Within this context, upon change of
a policy, LSPE(λ) may rely on the current iterate rt for stability, but LSTD(λ) in its pure form
may be difficult to stabilize (think of LSTD(λ) within an optimistic policy iteration framework that
changes policy after each sample). It is thus interesting to investigate the circumstances in which
one method may be having an advantage over the other.

An alternative to the above use of approximate policy iteration in the case of multiple poli-
cies is a policy gradient method. Let us outline the use of LSTD(λ) and LSPE(λ) algorithms in
the policy gradient method of the actor-critic type, as considered by Konda and Tsitsiklis [1], and
Konda [13]. This discussion will also clarify the relation between LSTD(λ)/LSPE(λ) and SA algo-
rithms. Actor-critic algorithms are two-time-scale SA algorithms in which the actor part refers to
stochastic gradient descent iterations on the space of policy parameters at the slow time-scale, while
the critic part is to estimate/track at the fast time-scale the cost function of the current policy,
which can then be used in the actor part for estimating the gradient. Konda and Tsitsiklis [1], and
Konda [13] have analyzed this type of algorithms with the critic implemented using TD(λ). When
we implement the critic using least squares methods such as LSPE(λ) and LSTD(λ), at the fast
time-scale, we track directly the mapping which defines the projected Bellman equation associated
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with the current policy. This is to be contrasted with the TD(λ)-critic in which we only track the
solution of the projected Bellman equation without estimating the mapping/equation itself.

To make our point more concrete, we consider here the average cost criterion. (Other cost criteria
are similar.) We consider randomized policies parametrized by a d-dimensional vector θ, and we
view the state-action pairs as the joint state variables. The basis functions, the projected Bellman
equation and its solution, as well as the Bellman equation, now depend on θ. We will use subscripts
to indicate this dependence. Under certain differentiability conditions, the gradient of the average
cost ∇η∗(θ) can be expressed as (see e.g., Konda and Tsitsiklis [1], Konda [13, Chapter 2.3])

∇η∗(θ) = Q′θDθΨθ = (ΠθQθ)′DθΨθ,

where Qθ is the Q-factor, or equivalently, the bias function of the MDP on the joint state-action
space, Dθ is as before the diagonal matrix with the invariant distribution πθ of the Markov chain on
its diagonal, Ψθ is an n×dmatrix whose columns consist of a certain set of basis functions determined
by θ, and Πθ is the projection on a certain subspace col(Φθ) such that col(Φθ) ⊇ col(Ψθ). We consider
one variant of the actor-critic algorithm, (the idea that follows applies similarly to other variants),
in which the critic approximates the projection ΠθQθ by Φθr

∗
θ , the solution of the projected Bellman

equation J = ΠθT
(λ)
θ J , and then uses it to approximate the gradient:

∇η∗(θ) ≈ (Φθr
∗
θ)′DθΨθ.

This is biased estimation, with the bias diminishing as λ tends to 1 or as the subspace col(Φθ) is
enlarged.

When the critic is implemented using LSTD(λ) or LSPE(λ), the actor part has the form of a
stochastic gradient descent iteration, as with the TD(λ)-critic:

θt = θt−1 − αtst, (38)

where αt is a stepsize and st is an estimate of ∇η∗(θt), while gradient estimation can be done as
follows. Let (x0, x1, . . . , xt, . . .) be a single infinitely long simulation trajectory with xt being the
state-action at time t. Omitting the explicit dependence on θ of various quantities such as g and φ
for notational simplicity, we define iterations

ηt = (1− δt)ηt−1 + δtg(xt, xt+1), (39)
qt = (1− δt)qt−1 + δtφ(xt)ψ(xt)′, (40)

and

zt = λzt−1 + φ(xt), (41)

b̄t = (1− δt)b̄t−1 + δtzt

(
g(xt, xt+1)− ηt

)
(42)

B̄t = (1− δt)B̄t−1 + δtφ(xt)φ(xt)′, (43)

Āt = (1− δt)Āt−1 + δtzt

(
φ(xt+1)′ − φ(xt)′

)
, (44)

[cf. (18)-(21) for LSPE(λ) under a single policy]. In the above, δt is a stepsize that satisfies the
standard conditions

∑∞
t=0 δt = ∞,

∑∞
t=0 δ

2
t <∞, as well as the additional eventually non-increasing

condition: δt ≤ δt−1 for t sufficiently large. Furthermore, the stepsizes αt and δt satisfy
∑∞

t=0 αt =
∞,
∑∞

t=0 α
2
t <∞, and

lim
t→∞

αt

δt
→ 0,

which makes θt evolve at a slower time-scale than the iterates (39)-(40) and (42)-(44), which use δt
as the stepsize. Possible choices of such sequences are αt = 1

1+t ln t and δt = 1
t+1 , or αt = 1

t+1 and
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δt = t−c with c ∈ (1/2, 1). The latter is indeed preferred, as it makes the estimates depend “less”
on the data from the remote past. We let rt be updated either by LSTD(λ) or LSPE(λ) with a
constant stepsize γ ∈ (0, 1] as given in the present paper, i.e.,

rt+1 = −Ā−1
t b̄t, or rt+1 = rt + γB̄−1

t

(
Ā−1

t rt + b̄t
)
.

Then, under standard conditions (which involve the boundedness of θt and st, the smoothness of
η∗(θ), Ψθ, and Φθ), viewing zt as part of the Markov process (xt, xt+1, zt), one can apply the results
of Borkar [28] and [29, Chapter 6] to show that θt can be viewed as “quasi-static” for the iterates in
(39)-(40) and (42)-(44). In particular, the latter iterates track the respective quantities associated
with θt:

ηt ≈ η∗(θt), qt ≈ Φ′
θt
DθtΨθt , b̄t ≈ bθt ,

B̄t ≈ Bθt , Āt ≈ Aθt ,

with the differences between the two sides asymptotically diminishing as t → ∞. In the above,
note particularly that bθt , Bθt , Aθt together with Φθt define the projected Bellman equation and
its associated mapping Πθt

T
(λ)
θt

at θt, therefore the iterates b̄t, B̄t, Āt track the projected Bellman
equation/mapping associated with θt. From this one can further show (under a uniform contraction
condition such as supt ‖(1− γ)I + γΠθt

T
(λ)
θt
‖πθt

< 1 in the case of LSPE(λ)) that rt tracks r∗θt
:

rt ≈ r∗θt
,

and hence r′tqt tracks the approximating gradient:

r′tqt ≈ (Φθtr
∗
θt

)′DθtΨθt ,

with asymptotically diminishing differences. In the actor’s iteration (38), one may let st = r′tqt or let
st be a bounded version of r′tqt. The limiting behavior of θt can then be analyzed following standard
methods.

7 Concluding Remarks

In this paper, we introduced an average cost version of the LSPE(λ) algorithm, and we proved
its convergence for any λ ∈ (0, 1) and any constant stepsize γ ∈ (0, 1], as well as for λ = 0 and
γ ∈ (0, 1). We then proved the optimal convergence rate of LSPE(λ) with a constant stepsize for
both the discounted and average cost cases. The analysis and computational experiments also show
that LSPE(λ) and LSTD(λ) converge to each other at a faster scale than they converge to the
common limit.

Our algorithm and analysis apply not only to a single infinitely long trajectory, but also to
multiple infinitely long simulation trajectories. In particular, assuming k trajectories, denoted by
{xj,0, xj,1, . . .}, j = 1, . . . , k, the least squares problem for LSPE(λ) can be formulated as the mini-
mization of

∑k
j=1 αjfj,t(r), where fj,t(r) is the least squares objective function for the j-th trajectory

at time t as in the case of a single trajectory, and αj is a positive weight on the j-th trajectory,
with

∑k
j=1 αj = 1. Asymptotically, the algorithm will be speeded up by a factor k at the expense

of k times more computation per iteration, so in terms of running time for the same level of error
to convergence, the algorithm will be essentially unaffected. On the other hand, we expect that the
transient behavior of the algorithm would be significantly improved, especially when the Markov
chain has a slow mixing rate. This conjecture, however, is not supported by a quantitative analysis
at present.

When the states of the Markov chain form multiple recurrent classes C1, . . . , Cm, (assuming there
are no transient states), it is essential to use multiple simulation trajectories, in order to construct an
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approximate cost function that reflects the costs of starting points from different recurrent classes.
While there is no unique invariant distribution, the one that relates to our algorithm using multiple
trajectories, is π(i) = πk(i)

∑
{j|xj,0∈Ck} αj , i ∈ Ck, where πk is the unique invariant distribution

on the set Ck. Our earlier analysis can be adapted to show for the average cost case that the
constant stepsize LSPE(λ) algorithm converges if the basis functions and the eigenvectors of the
transition matrix P corresponding to the eigenvalue 1 are linearly independent. The approximate
cost function may be combined with the average costs of the recurrent classes (computed separately
for each trajectory) to design proper approximate policy iteration schemes in the multi-chain context.

We finally note that in recent work [30], we have extended the linear function approximation
framework to the approximate solution of general linear equations (not necessarily related to MDP).
Some of the analysis of the present paper is applicable to this more general linear equation context,
particularly in connection to rate of convergence and to compositions of projection and nonexpansive
mappings.
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