
A Neuro-Dynamic Programming Approach to
Retailer Inventory Management1

Benjamin Van Royyz

Dimitri P. Bertsekasz

Yuchun Leey

John N. Tsitsiklisz

yUnica Technologies, Inc.

Lincoln North

Lincoln, MA 01773

and

zLaboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139

1This material is based upon work supported by the National Science Foundation un-

der award number 9561500. Any opinions, �ndings, and conclusions or recommendations

expressed in this publication are those of the authors and do not necessarily re
ect the

views of the National Science Foundation.

ABSTRACT

We present a model of two-echelon retailer inventory systems, and we cast

the problem of generating optimal control strategies into the framework of dy-

namic programming. We formulate two speci�c case studies, for which the

underlying dynamic programming problems involve thirty-three and forty-six

state variables, respectively. Because of the enormity of these state spaces,

classical algorithms of dynamic programming are inapplicable. To address

these complex problems, we develop approximate dynamic programming al-

gorithms. The algorithms are motivated by recent research in arti�cial intel-

ligence involving simulation{based methods and neural network approxima-

tions, and they are representative of algorithms studied in the emerging �eld

of neuro-dynamic programming. We assess performance of resulting solutions

relative to optimized s{type (\order{up{to") policies, which are generally ac-

cepted as reasonable heuristics for the types of problems we consider. In both

case studies, we are able to generate control strategies substantially superior

to the heuristics, reducing inventory costs by approximately ten percent.

1

1 Introduction

Many important problems in operations research involve sequential decision-

making under uncertainty, or stochastic control. Dynamic programming (Bertse-

kas, 1995) provides an omnipotent framework for studying such problems, as

well as a suite of algorithms for computing optimal decision policies. Unfor-

tunately, the overwhelming computational requirements of these algorithms

render them inapplicable to most realistic problems. As a result, complex

stochastic control problems that arise in the real world are usually addressed

using drastically simpli�ed analyses and/or heuristics.

An exciting new alternative that is more closely tied to the sound frame-

work of dynamic programming is being developed in the emerging �eld of

neuro-dynamic programming (Bertsekas and Tsitsiklis, 1996). This approach

makes use of ideas from arti�cial intelligence involving simulation{based al-

gorithms and functional approximation techniques such as neural networks.

The outcome is a methodology for approximating dynamic programming solu-

tions without demanding the associated computational requirements.

Over the past few years, neuro-dynamic programming methods have gen-

erated several notable success stories. Examples include a program that plays

Backgammon at the world champion level (Tesauro, 1992), an elevator dis-

patcher that is more e�cient than several heuristics employed in practice

(Crites and Barto, 1996), and an approach to job shop scheduling (Zhang

and Dietterich, 1996). Additional case studies reported by Bertsekas and

Tsitsiklis (1996) further demonstrate signi�cant promise for neuro-dynamic

programming. However, neuro-dynamic programming is a young �eld, and

the algorithms that have been most successful in applications are not fully

understood at a theoretical level. Furthermore, there is a large conglom-

eration of algorithms proposed by researchers in the �eld, and each one is

complicated and parameterized by many values that must be selected by a

user. It is unclear which algorithms and parameter settings will work on a

particular problem, and when a method does work, it is still unclear which

ingredients were actually necessary for success. Because of this, application of

neuro-dynamic programming often requires trial and error, in a long process

of parameter tweaking and experimentation.

In this paper, we describe work directed towards developing a stream-

lined neuro-dynamic programming approach for optimizing performance of

1

retailer inventory systems (Nahmias and Smith, 1993). This is the problem

of ordering and positioning retailer inventory at warehouses and stores in or-

der to meet customer demands while simultaneously minimizing storage and

transportation costs. This problem can also be viewed as a simple example

from the broad class of multi-echelon inventory control problems that has re-

ceived signi�cant attention in the �eld of supply-chain management (Lee and

Billington, 1993).

The remainder of this paper is organized as follows. The next section

provides an overview of the research and results obtained. Section 3 de-

scribes in detail the model of retailer inventory systems used in this study,

while Section 4 discusses the use of s{type policies in this model. Dynamic

programming and neuro-dynamic programming are presented in Sections 5

and 6, respectively. Rather than presenting the methodologies in full gener-

ality, the material in these sections is customized to the purposes of retailer

inventory management. Experimental results are discussed in Section 7. Sec-

tion 8 contains some concluding remarks. Finally, formal state equations are

provided in the appendix as a mathematically precise description of our re-

tailer inventory system model.

2 Overview of Research

Rather than simply describing the �nal results obtained at the end of this

research, we attempt in this paper to present some of the obstacles that were

encountered and how they were overcome. We hope that this will lead to a

better perspective on the state-of-the-art in neuro-dynamic programming, as

well as the potential di�culty of applying the methodology. In this section,

we overview the steps taken in this research and the results obtained at the

end of the process. Subsequent sections provide a far more detailed account

of what we discuss here.

In formulating a model of retailer inventory systems, we attempted to

re
ect the complexities that make the problem di�cult. However, we did

not attempt to capture all aspects of the problem that may be required for

modeling a real-world retailer inventory system. The objective of this study

was to establish the viability of neuro-dynamic programming as an e�ective

approach to optimizing retailer inventory systems. We expect that success

demonstrated on the models we present will generalize to more realistic mod-

els.

To gauge the e�cacy of the neuro-dynamic programming algorithms de-

2

veloped in this study, performance was compared with optimized s{type

policies (i.e., \order-up-to" policies), which have been the most commonly

adopted approach in past research concerning optimization of retailer invent-

ory systems (Nahmias and Smith, 1993; Nahmias and Smith, 1994). The

details of this heuristic method are discussed in Section 4.

In choosing and customizing neuro-dynamic programming algorithms for

the purpose of retailer inventory management, an e�ort was made to minimize

the complexity of the methods. Only ingredients deemed critical to success

were included, and we avoided many of the \frills" that make for additional

parameters to be tweaked. We initially selected two neuro-dynamic program-

ming algorithms and specialized them for the purposes of retailer inventory

management. The two algorithms were approximate policy iteration and an

on-line temporal-di�erence method (Bertsekas and Tsitsiklis, 1996).

In solving a stochastic control problem like that of retailer inventory man-

agement, neuro-dynamic programming algorithms approximate the problem's

cost-to-go function by tuning parameters of an approximation architecture.

Appropriate approximation architectures must be chosen for the problem at

hand. In this research, we chose to employ linear and multilayer perceptron

(neural network) architectures coupled with the extraction of features per-

tinent to the problem. We describe the chosen features and architectures in

more detail later in this paper.

In an initial set of experiments, we analyzed only a very simple retailer

inventory system. This system consisted of one warehouse and one store, and

the underlying stochastic control problem involved only three state variables.

A multilayer perceptron architecture, using the raw state variables as in-

put features, was coupled with the neuro-dynamic programming algorithms

to solve the problem. Unfortunately, the neuro-dynamic programming al-

gorithms led to control strategies that performed far worse than an optimized

s{type policy.

Extensive experimentation and a study of where the neuro-dynamic pro-

gramming algorithms were failing on this simple problem led to a modi�cation

in the on-line temporal-di�erence algorithm. This involved adding an element

of active exploration to the workings of the algorithm, the details of which will

be described in a later section. The resulting algorithm generated approxim-

ations using the multilayer perceptron architecture that yielded performance

essentially equivalent to the heuristic approach.

It is not surprising that the heuristic and the neuro-dynamic programming

approach delivered similar levels of performance on the �rst problem. In

particular, since the problemwas so simple, bothmethods were probably near-

3

optimal. A second set of experiments was performed on a more complex case

study. This new problem involved a central warehouse and ten stores with

substantial transportation delays. The underlying stochastic control problem

this time involved 33 state variables. A set of 24 features was selected based

on the given problem, and a feature-based linear architecture was tried with

the on-line temporal-di�erence algorithm. This combination was successful,

generating policies that reduced costs by about ten percent over the cost of

an optimized heuristic policy.

To see if this result could be further improved, we tried two variations of

the approach. First, we replaced the feature-based linear architecture with

a feature-based multilayer perceptron architecture (using the same features).

However, this did not lead to performance superior to the linear case. A

second variation involved increasing the degree of exploration in the on-line

temporal di�erence method. Again, this did not improve performance.

We tested the neuro-dynamic programming approach on an additional

problem of even greater complexity. This time, the underlying stochastic

control problem involved 46 state variables. Again, the combination of a

feature-based linear architecture and the on-line temporal di�erence method

(with active exploration) led to costs about ten percent lower than the heur-

istic.

In the �nal analysis, neuro-dynamic programming proved to be successful

in solving two complex retailer inventory management problems. To sum-

marize the results obtained, we reiterate some key points:

1. The straightforward approximate policy iteration algorithms that were

employed in the initial stages of this research do not work in their initial

simple form.

2. The on-line temporal di�erence method with active exploration, coupled

with a feature{based linear architecture, consistently cut costs by about

ten percent (over a well{accepted heuristic approach) on two di�erent

complex retailer inventory management problems.

3. Given the chosen features, using a multilayer perceptron instead of the

linear architecture did not lead to improved performance.

4. Increasing the degree of exploration in the temporal-di�erence algorithm

did not lead to improved performance (just a small amount of explora-

tion seemed to be required to make the huge di�erence in performance

over having no exploration at all).

4

warehouse

stores

customer
demandsmanufactured

goods

special deliveries

Figure 1: Schematic diagram of a retailer inventory system.

3 A Model of Retailer Inventory Systems

In this section, we describe the model of retailer inventory systems used in

this study. The characteristics of this model are largely motivated by the

studies of (Nahmias and Smith, 1993) and (Nahmias and Smith, 1994). The

general structure is illustrated in Figure 1 and involves several stages:

1. Transportation of products from manufacturers

2. Packaging and storage of products at a central warehouse

3. Delivery of products from the warehouse to stores

4. Ful�llment of customer demands using either store or warehouse invent-

ory

Demands materialize at each store during each time period. Each unit of

demand can be viewed as a customer request for the product. If inventory is

available at the store, it is used to meet ongoing demands. In the event of a

shortage, the customer will, with a certain probability, be willing to wait for

a special delivery from the warehouse. If the customer is in fact willing to

wait, the demand is �lled by inventory from the warehouse (if it is available).

At the end of each day, the warehouse orders additional units of inventory

from the manufacturers, and the stores place orders to the warehouse. The

warehouse manager �lls store orders as much as possible given current levels

of inventory. As materials travel from manufacturers to the warehouse and

from the warehouse to the stores, they are delayed by transportation times.

5

warehouse

stores

customer
demands

manufactured
goods

Figure 2: An illustration of the bu�ers in the retailer inventory system.

Coupled with the uncertainty of future demands, these delays create the need

for storage of inventory at stores.

The di�ering impact of inventory at the warehouse on costs and service

performance makes it desirable to also maintain stock there. For example,

inventory stored at the warehouse provides a greater degree of
exibility

than that maintained at a single store. In particular, inventory stored at

the warehouse can be used to �ll special orders made by customers at any

store (for individual customers who are willing to wait), and can also be

sent to any store in the advent of a shortage of goods. On the other hand, a

surplus of inventory at one store cannot be used to compensate for a shortage

at another. Furthermore, storage costs at stores are often higher than at the

warehouse.

In the remainder of this section, we present some technical details con-

cerning aspects of the model we have described. In particular, we further

discuss the dynamics of inventory
ow, the nature of the stochastic demand

process, and the cost structure.

3.1 Dynamics of Inventory Flow

As illustrated in Figure 1, inventory is stored at two stages. The warehouse

holds reserves in anticipation of special orders and shipments to stores, which

make up the second stage of inventory storage. There are delays in the trans-

portation of stock from one stage to the next, and to simplify our discussion,

we consider the delays to be multiples of a �xed unit of time which we will

take to be a day. Hence, the model involves a dynamic system that evolves

in discrete time.

The delays in the inventory system are illustrated in Figure 2. Each square

represents a bu�er where goods may be located at a particular point in time.

6

The movement of goods between bu�ers is synchronized by a single clock that

\ticks" once per day. Goods enter and exit bu�ers only at the clock ticks. The

row of bu�ers to the left of the warehouse bu�er are associated with delays in

the transportation of goods from a manufacturer to the warehouse. At each

clock tick, goods located in any one of these bu�ers moves one bu�er to the

right. Similarly, the row of bu�ers to the left of each store bu�er is associated

with delays in transporting goods from the warehouse to the store. Again,

at each clock tick, goods proceed one bu�er to the right, as transportation

progresses.

The entrance of goods into the system and the movement of goods from

the warehouse to transportation bu�ers are controlled by decisions of the

inventory manager, which are made just prior to each tick. At each tick, a

speci�ed quantity of goods (the warehouse order) enters the system at the

leftmost bu�er. This quantity is limited by a production capacity as well as

the warehouse capacity. The amount ordered at any one time cannot exceed

the production capacity, and the total quantity of goods currently at and

on-route to the warehouse cannot exceed the warehouse capacity.

Also at each tick, a speci�ed quantity of goods are transferred from the

warehouse to the leftmost transportationbu�ers of speci�ed stores. Of course,

the total quantity of goods transfered here must be less than the amount

available at the warehouse prior to the tick. Furthermore, at any time, the

total quantity of goods currently at and on-route to any particular store can

be no greater than the store capacity.

Goods exit the system upon customer demand. At each tick, such de-

mands arise at each of the stores. If the amount demanded at a particular

store is less than or equal to the quantity of inventory available just prior

to the tick, the store's inventory level is reduced by the demanded quantity.

Otherwise, the store's inventory is completely depleted, and each unsatis�ed

customer is allowed the option to request a special delivery from the ware-

house. In our model, each individual customer makes such a request with a

given probability. If a customer whose demand has not been satis�ed by the

store does make such a request, and a unit of inventory is available, then the

warehouse inventory is decremented by one.

To be completely precise, we must specify the ordering of events that

occur at each clock tick. First, goods ordered by the warehouse enter into the

system. Second, goods are transferred from the warehouse to the appropriate

transportation bu�ers. Then, demands are �lled as needed. Finally, goods in

transportation bu�ers progress towards the right.

7

3.2 Demand Process

In the model, stochasticity arises from the uncertainty of future demands.

In this research, the demands were modeled as random variables that are

independent and identically distributed through time and among di�erent

stores. Each sample was generated as follows:

1. sample from a normal distribution with a given mean and a given stand-

ard deviation;

2. round o� this value to the closest integer;

3. take the maximum of zero and the resulting value.

3.3 Cost Structure

At each clock tick, a cost of operation is incurred by the retailer inventory

system. The objective of the �rm is to minimize these costs, on average. The

cost can be broken down into three categories: storage cost, shortage cost,

and transportation cost. In this section, we describe how each of these costs

are computed.

Storage costs are incurred at both the warehouse and the stores. At each

clock tick, the total quantity of inventory at stores is multiplied by a store

cost of storage, and the quantity of inventory at the warehouse is multiplied

by a warehouse cost of storage. The sum of these two products is the storage

cost for that day.

Shortage costs are costs associated with unful�lled demands. A customer's

demand may be satis�ed by inventory either at the store where the customer

is located or the warehouse (if the customer opts for a special delivery). Any

customer whose demands are not �lled by either of these two places incurs a

shortage cost to the system.

Transportation costs in our model are associated only with special de-

liveries. In particular, each special delivery made to a customer incurs a

particular cost. Note that for special deliveries to be pro�table, the cost of

an unful�lled unit of demand (i.e., shortage cost) must be greater than that

of a special delivery.

3.4 Model Parameters

Now that we have described the dynamics of the model in detail, it may be

useful to enumerate the model parameters. Values must be assigned to these

8

parameters in order to make the model behavior commensurate with that of

a speci�c manifestation of a retailer inventory system. The list follows:

1. Number of stores

2. Delay to stores

3. Delay to warehouse

4. Production capacity

5. Warehouse capacity

6. Store capacity

7. Probability of customer waiting

8. Cost of special delivery

9. Warehouse storage cost

10. Store storage cost

11. Mean demand

12. Demand standard deviation

13. Shortage cost

4 Heuristic Policies

A heuristic policy for controlling the retailer inventory system was imple-

mented and used as a baseline for comparison against neuro-dynamic pro-

gramming approaches. The type of heuristic used is known as an s-type, or

\order-up-to," policy and is accepted as a reasonable approach to problem

formulations that have independent identically distributed demands, like the

one we have proposed. Examples of research where such policies are the focus

of study are discussed in (Nahmias and Smith, 1993) and include (Nahmias

and Smith, 1994).

The s{type policy we implemented is parameterized by two values: a

warehouse order-up-to level and a store order-up-to level. Essentially, at

each time step the inventory manager tries to order inventory such that all

9

inventory at and expected to arrive at the warehouse is equal to the ware-

house order-up-to level and all the inventory at or expected to arrive at any

particular store is equal to the store order-up-to level.

Although the main idea is simple, the details of how store orders are gener-

ated by the heuristic policy are tedious. First, a \desired order" equal to the

di�erence between the store order-up-to level and the total of inventory cur-

rently at the store and inventory currently on-route to the store is computed

for each store. If all desired orders can be �lled by the inventory currently

available at the warehouse, then they are. Otherwise, all inventory at the

warehouse is sent to stores, and the preference among stores is decided in a

way that always maximizes the minimum among stores of the total of current

inventory and inventory on-route to a store.

Once the store orders have been computed, we compute the total of invent-

ory currently at the warehouse and all inventory on-route to the warehouse,

less the total of store orders. If the di�erence between this quantity and the

warehouse order-up-to level is less than the production capacity, then the

warehouse order is set equal to this di�erence. Otherwise, the warehouse

order is equal to the production capacity.

Note that we have discussed only how the heuristic policy works given

speci�ed order-up-to levels, but not how the order-up-to levels are to be

determined. In this research, the best order-up-to levels were determined

by an exhaustive search, where the average cost associated with each pair

of order-up-to levels was assessed in a lengthy simulation. Note that an

exhaustive search of this type would be computationally prohibitive if we

allowed the stores to have di�erent order-up-to levels, which would be called

for if the stores had independent attributes (e.g., di�erent transportation

delays).

5 Dynamic Programming

Dynamic programming (DP) o�ers a very general framework for stochastic

control problems (Bertsekas, 1995). In this section, we present a DP frame-

work that is a bit di�erent from the standard. In particular, our setting is

somewhat specialized to the retailer inventory problem and leads to more

e�cient computational approaches in the context of neuro-dynamic program-

ming (NDP). We also present in detail the way in which we formulated the

retailer inventory management problem in terms of this DP framework. To

make the exposition of DP both brief and precise, we only discuss the case

10

involving systems that evolve over �nite state spaces and in discrete time.

Let S be the state space of a system of interest (each element corresponds

to a particular combination of inventory levels). We associate two states

xt; yt 2 S to any nonnegative integer time t. We refer to xt as the \pre-

decision state" and yt as the \post-decision state." Furthermore, a decision

ut that in
uences the system is selected from a �nite set U at each time step.

The state evolves according to two di�erence equations: xt+1 = f1(yt; wt)

and yt = f2(xt; ut), where f1 and f2 are some functions describing the system

dynamics and wt is a random noise term taken from a �xed distribution,

independent from all information available up to time t. There is a cost

g(yt; wt) associated with the system a�ected by a noise term wt while the

post-decision state is yt.

A policy is a mapping � : S 7! U that determines a decision as a function

of pre-decision state, i.e., ut = �(xt). The goal in stochastic control is to select

an optimal policy (i.e., one that minimizes long-term costs). We express the

long-term cost to be minimized as the expectation of a discounted in�nite

sum of future costs, as a function of an initial post-decision state, i.e.,

J�(y) = E

"
1X
t=0

�tg(yt; wt)jy0 = y; �

#
:

Here, � 2 (0; 1) is a discount factor and J�(y) denotes the expected long-term

cost given that the system starts in post-decision state y and is controlled by

a policy �. An optimal policy �� is one that minimizes J� simultaneously

for all initial post-decision states, and the function J�
�

, known as the value

function, is denoted by J�.

A well known result in dynamic programming is that the value function

satis�es Bellman's equation, which in our formulation, takes on the form

J�(y) = Ew

�
g(y; w)+ � �J(f1(y; w))

�
;

where �J is given by
�J(x) = min

u2U
J�(f2(x; u)):

Furthermore, a policy �� is optimal if and only if it satis�es

��(x) = argmin
u2U

J�(f2(x; u)):

Note that, using this expression, we can generate an optimal policy based on

a value function J� that is de�ned only over the post{decision states. If this

11

function is available, there is no need for the function �J , which de�nes values

for pre{decision states.

In principle, an optimal policy can be found by �rst numerically solving

Bellman's equation and then computing the optimal policy using the resulting

value function. However, this requires computation and storage of J�(y) for

each post-decision state, which is generally infeasible given the enormity of

state spaces for practical problems.

We now describe how the retailer inventory management problem was

formulated in terms of the DP framework we have described. First of all, the

state of the retailer system is described by a vector in which each component

corresponds to a bu�er (see Figure 2). At any time, each state variable takes

a value equal to the quantity of goods currently located at the corresponding

bu�er. Hence, the number of state variables (components of the state vector)

is equal to one plus the warehouse transportation delay plus the number of

stores times one plus the store transportation delay. Note that the size of the

state space here grows exponentially with the number of state variables, and

therefore quickly becomes intractable.

Each decision ut corresponds to a vector of store and warehouse orders

during the tth time step. The decision ut must be made on the basis of the

pre-decision state xt. Given the pre-decision state xt and the decision ut,

the post-decision state yt is generated deterministically. This involves the

entrance of goods ordered by the warehouse into the leftmost bu�er and the

transition of goods ordered by stores from the warehouse bu�er to appropriate

transportation bu�ers.

The post decision state yt is transformed as customer demands are ful�lled

and transportation progresses. The result of these transformations is the

next pre{decision state xt+1. Note that the transition from yt to xt+1 is

in
uenced by stochastic demands. In the context of our DP formulation,

demands correspond to the random noise term wt. The dynamics of the

state transitions can be inferred from the description of our retailer inventory

system model, provided in Section 3. Nevertheless, to enhance clarity, we

present formal state equations in the appendix.

Costs g(yt; wt) are computed in a fairly straightforward manner as de-

scribed in Section 3. The discount factor used in our formulation was 0.99.

The reason is that policies will be evaluated in terms of average costs and set-

ting the discount factor close to one makes the discounted problem resemble

the average cost problem.

12

FeatureState

Feature
Vector

Parameter
Vector

Cost-To-Go
Extractor

Function
Approximator

Figure 3: A feature{based approximation architecture.

6 Neuro-Dynamic Programming

Dynamic programming o�ers a suite of algorithms for generating optimal con-

trol strategies. However, the overwhelming computational requirements asso-

ciated with these algorithms render them inapplicable in practical situations.

Due to a lack of other systematic approaches for dealing with such problems,

simpli�ed problem-speci�c analyses and heuristics have become the norm.

Such analyses and heuristics often ignore much information that is import-

ant to e�ective decision-making, leading to control policies that are far from

optimal. The recent emergence of neuro-dynamic programming puts forth an

exciting new possibility. New and highly promising approaches to address-

ing complex stochastic control problems have been developed in this �eld.

These approaches focus on approximating solutions that would be generated

by dynamic programming, except in a computationally feasible manner.

The main idea in neuro-dynamic programming is to approximate the map-

ping J� : S 7! < using an approximation architecture. An approximation ar-

chitecture can be thought of as a function ~J : S �<
k
7! <. NDP algorithms

try to �nd a parameter vector r 2 <
k such that the function ~J(�; r) closely

approximates J�.

In general, choosing an appropriate approximation architecture is a prob-

lem dependent task. In this research, we designed approximation architec-

tures involving two stages: a feature extractor and a function approximator

(see Figure 3). The feature extractor uses the post-decision state yt to com-

pute a feature vector zt. The components of zt are values that we thought

were natural for capturing key information concerning states of the retailer

inventory management problem. This feature vector was used as input to a

second stage, which involved a generic function approximator parameterized

13

by a vector r. Two types of function approximators were employed in this

research: linear approximators and the multilayer perceptron neural network

with a linear output node. In the case of the linear approximator, all but

one component of the parameter vector r correspond to coe�cients that are

multiplied by individual components of the feature vector. The remaining

component is a scalar o�set term. In the case of the multilayer perceptron,

the parameter vector r stores the weights of the network connections.

In the remainder of this section, we describe the NDP algorithms that were

used to tune parameters of our approximation architectures. The features we

used are described in Section 7. The function approximators (linear and

multilayer perceptron) are well known, and we omit any detailed discussion

about them.

6.1 Approximate Policy Iteration

Approximate policy iteration is a generalization of policy iteration, a classical

algorithm in dynamic programming. The policy iteration algorithm generates

a sequence �i of improving policies. The initial policy �0 is usually chosen

to be some reasonable heuristic, and the cost function J�0 associated with

the policy is computed (one value is computed for each state). Then, a new

policy �1 is generated according to the equation

�1(x) = argmin
u2U

J�0(f2(x; u)):

The same procedure is iterated to generate subsequent policies. It is well-

known that for problems with a �nite number of policies, �i is equal to ��

and J�i is equal to J� for su�ciently large i.

In approximate policy iteration, instead of computing the cost function J�i

exactly at each iteration, the function is approximated by some architecture
~J(�; ri), where ri is a parameter vector chosen to make ~J(�; ri) close to J�i .

The subsequent policy is then generated via

�i+1(x) = argmin
u2U

~J(f2(x; u); ri):

There have been many methods used for approximating J�i in each ith

policy iteration. A comprehensive survey is provided in (Bertsekas and Tsit-

siklis, 1996). In this research, we chose to use the on-line TD(1) method,

which at each iteration, e�ectively computes the parameter vector ri that

minimizes X
x2S

�i(x)
�
J�i(x)� ~J(x; ri)

�
2

;

14

where �i(x) stands for the relative frequency of occurrence of state x when

the system is controlled by policy �i. We refer the reader to (Bertsekas and

Tsitsiklis, 1996) for a detailed discussion of this method.

6.2 An On-Line Temporal-Di�erence Method

Variants of the temporal-di�erence algorithm (Sutton, 1988; Tsitsiklis and

Van Roy, 1996) have been applied successfully to several large scale applic-

ations of NDP. Examples include a Backgammon player (Tesauro, 1992),

an elevator dispatcher (Crites and Barto, 1996), and a job shop scheduling

method (Zhang and Dietterich, 1996). The variants used in these applica-

tions bear signi�cant di�erences, and in this research project, we tried to

use a simple algorithm that possessed what we felt were the most import-

ant properties. In this section, we present the algorithm in its initial form.

This algorithmmay be viewed as an extreme form of \optimistic approximate

policy iteration," as discussed in (Bertsekas and Tsitsiklis, 1996). As men-

tioned in Section 2, this algorithm was not successful until we added active

exploration, which is discussed in the next section.

The algorithm updates the parameter vector of an approximation archi-

tecture during each step of a single endless simulation. In particular, we start

with an arbitrary parameter vector r0 and generate a sequence rt using the

following procedure:

1. Given the initial pre{decision state x0 of the simulator, generate a con-

trol u0 by letting

u0 = argmin
u2U

~J(f2(x0; u); r0);

2. Run the simulator using control u0 to obtain the �rst post-decision state

y0 = f2(x0; u0);

3. More generally, at time t, run the simulator using control ut to obtain

the next pre-decision state

xt+1 = f1(yt; wt);

and the cost g(yt; wt);

4. Generate a control ut+1 by letting

ut+1 = argmin
u2U

~J(f2(xt+1; u); rt);

15

5. Run the simulator using control ut+1 to obtain the post-decision state

yt+1 = f2(xt+1; ut+1);

6. Update the parameter vector via

rt+1 = rt +
t

�
g(yt; wt) + ~J(yt+1; rt)� ~J(yt; rt)

�
rr

~J(yt; rt);

where
t is a small step size parameter;

7. Return to step (3).

6.3 Active Exploration

As we mentioned in the introduction, it was only after we added active ex-

ploration to the workings of the temporal-di�erence method that it performed

well. Note that the algorithm described in the previous section always up-

dates the parameter vector to tune the approximate values ~J(x; r) at states x

visited by the current policy, which in turn are determined by the parameter

vector r. In some sense, the exploration here is passive, i.e., only states that

naturally occur on the basis of the current approximation to the value func-

tion are visited. By active exploration, we refer to a mechanism that brings

about some tendency to visit a larger range of states.

Except for the steps involving generation of control decisions, the temporal-

di�erence algorithm that we used with active exploration follows the same

routine as that without active exploration. In particular, the algorithm can

be described by the steps enumerated in the previous section, except with the

equations of Steps (1) and (4) replaced by

u0 = n0 + argmin
u2U

~J(f2(x0; u); r0);

and

ut+1 = nt + argmin
u2U

~J(f2(xt+1; u); rt);

respectively, where each nt is a noise term. Note that the only di�erence is

the addition of a noise term. The structure of the noise term is described on

a case-by-case basis in the next section.

16

7 Results With the NDP Approach

In this section, we present the results obtained from applying the NDP ap-

proaches we developed to the retailer inventorymanagementproblem. Through

our development, much of which occurred in the process of experimentation,

we arrived at an approach that was successful relative to the heuristic s-type

policies. To the extent of our experimentation, the method also proved to be

robust to changes in problem-speci�cs.

In this section, we present a relatively detailed account of our experi-

mental results. Experiments were conducted using three di�erent problems

as test beds, each described in the following subsections with its associated

experiments.

7.1 Initial Experiments With a Simple Problem

The �rst set of experiments involved optimization of a very simple retailer in-

ventory system. The purpose of these experiments was to debug the software

packages developed in the initial stages of research and also to ensure that

the NDP methodologies worked reasonably well on a simple problem, before

moving to complex situations.

The system included only one store in addition to the warehouse. There

was no delay for goods ordered by the warehouse, and there was a delay of

only one time unit between the warehouse and the store. There were there-

fore only three state variables involved (each corresponding to the quantity

of goods within a bu�er). The list of parameter settings for this problem

are provided in the table below. Note that we also have provided the true

mean and standard deviation of demands (recall from Section 3 that the mean

and standard deviation parameters do not correspond to the true mean and

standard deviations of the resulting stochastic demands).

17

number of stores 1

delay to stores 1

delay to warehouse 0

production capacity 10

warehouse capacity 50

store capacity 50

probability of customer waiting 1

cost of special delivery 10

warehouse storage cost 1

store storage cost 2

mean demand (true mean) 5 (6.2)

demand stdev (true stdev) 8 (6.2)

shortage cost 50

As a baseline for comparison, we developed an s-type policy, optimizing

the order-up-to levels associated with the warehouse and store. Figure 4 illus-

trates how varying the order-up-to levels a�ects the average cost of the policy.

Each point on the graph is computed by averaging costs over a lengthy simu-

lation. The optimal order-up-to levels turned out to be 10 for the warehouse

and 16 for the store. The corresponding average cost was 51.7.

Several NDP algorithms were tried with a single approximation architec-

ture. The architecture consisted of a multilayer perceptron with ten hidden

nodes in a single hidden layer. Three features were used as input to the net-

work, each a normalized version of one of the state variables. In particular,

if the bu�er levels at a given point in time were bi, i = 1; 2; 3, then the ith

input feature was given by

ci =
bi � �bi

�i
:

The �bi's and �i's were computed prior to execution of the NDP algorithm

as follows. A large collection of (post-decision) states sampled while simu-

lating the heuristic policy (with the optimal order-up-to levels) was collected.

From this data, each �bi was set equal to the sample mean of the ith state

variable, and each �i was set equal to the sample standard deviation of the

ith state variable.

The approximate policy iteration algorithm, in the form described in Sec-

tion 6, was tried on the problem. The s{type policy (with optimized order-up-

to levels) was used as the initial policy. This algorithm consistently generated

a second policy that was far worse than the initial one.

18

0
10

20
30

40
50

0

10

20

30

40

50

50

100

150

200

250

300

350

store level

warehouse level

av
er

ag
e

co
st

Figure 4: Performance of the heuristic as a function of order-up-to levels. The

optimum levels was 10 for the warehouse and 16 for the store. With these

levels, the average cost was 51.7.

Upon failure of the approximate policy iteration algorithm, experiments

were conducted using the on-line temporal-di�erence method. Again, only

policies that were far worse than the heuristic were generated.

Next, we tried adding a small degree of exploration to the on-line temporal

di�erence method. In particular, each time a decision was generated using

the approximation architecture ~J , a noise term was added to the decision.

Recall that there are two decision variables: the warehouse order and the

store order. The noise term was generated by adding a unit normal random

variable to each decision variable, rounding o� to the closest integer in each

case, and then making sure the decision variables stayed within their limits.

That is, if the noise term made a variable negative, the variable was set to

zero, and if the noise term made a variable too large (e.g., having a warehouse

order greater than the production capacity), then the variable was set to its

maximum allowable value.

With the extra exploration term, the on-line temporal-di�erence method

essentially matched the performance of the heuristic. Figure 5 displays the

evolution of average cost as the algorithm progresses in tuning the parameters

of the multilayer perceptron, in experiments performed both with and without

active exploration. In both cases, a step size
t = 0:01 was used for the �rst

2� 107 time steps, and a step size
t = 0:001 was used for the next 2� 107

19

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

50

55

60

65

70

75

80

85

90

95

100

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 1

00
00

 s
te

ps

Figure 5: A demonstration of the importance of exploration. The two

plots show the evolution of average cost using the on-line temporal-di�erence

method with (lower plot) and without (higher plot) exploration. Each point

represents cost averaged over ten thousand consecutive time steps during the

execution of an algorithm.

time steps.

Note that in the graph of Figure 5 associated with the exploratory version

of the algorithm, the average cost is computed during the execution of the al-

gorithm, and is thus a�ected by the active exploration. In particular, a policy

based on the �nal approximate value function without any exploratory term

should perform better than the policy with active exploration (the exploration

is there to improve the \learning and discovery" process that the algorithm

goes through, rather than to improve performance of a policy at any given

time). Indeed, a simulation employing a non-exploratory policy based on the

�nal approximate value function generated an average cost of 52.6, which was

slightly better than average costs sampled during execution of the exploratory

on-line algorithm.

7.2 Case Study 1

With the success of the on-line temporal-di�erence method on a simple prob-

lem, a subsequent set of experiments was conducted on a more complex test

bed. The parameters used for the retailer inventory management problem of

20

this case study are given in the table below.

number of stores 10

delay to stores 2

delay to warehouse 2

production capacity 100

warehouse capacity 1000

store capacity 100

probability of customer waiting 0.8

cost of special delivery 0

warehouse storage cost 3

store storage cost 3

mean demand (true mean) 5 (8.6)

demand stdev (true stdev) 14 (9.8)

shortage cost 60

Once again, an s{type heuristic policy was developed by optimizing over

order-up-to levels. Since the properties of all stores were identical, we as-

sumed that the order up-to-levels of all stores should be the same, and there

were again only two variables to optimize: a warehouse order-up-to level and

a store order-up-to level. Figure 6 shows how the average cost of the sys-

tem varies with these two variables. Each value in the graph was computed

from a lengthy simulation. The optimal order-up-to levels were 330 for the

warehouse and 23 for each store. The corresponding average cost was 1302.

In the simple problem of the previous section, there were only two invent-

ory sites for which orders had to be placed. In the more complex problem of

this section, on the other hand, there are eleven inventory sites, and exhaust-

ing all possible combinations of orders that can be made for these eleven sites

would take too long. In particular, the minimizations carried out in steps

(1) and (4) of the on-line temporal-di�erence method would be essentially

impossible to carry out. Because of this, we constrained the decision space

to a more manageable subset.

First of all, we represented decisions in terms of two variables: a ware-

house order and a store order-up-to level. Given particular values for the two

variables, the individual store orders would be set to exactly what the s{type

policy described in Section 4 would set them to given the store order-up-to

level. Note, however, that unlike the case of the heuristic s{type policy, the

store order-up-to-level here is chosen at each time step, rather than taken to

be a �xed constant.

21

0
10

20
30

40

0

200

400

600

1000

2000

3000

4000

5000

6000

store level

warehouse level

av
er

ag
e

co
st

Figure 6: Performance of the heuristic as a function of order-up-to levels.

The optimum levels were 330 for the warehouse and 23 for each of the stores.

With these levels, the average cost was 1302.

To further accelerate execution of the on-line temporal-di�erence method,

we limited the space of decisions considered at each time step to the set

involving warehouse orders ranging from 50 to 100 in increments of 10 and

store order-up-to levels ranging from 0 to 40 in increments of 5. There were

therefore a total of 60 possible decisions considered at each time step. The

minimization in Step (4) of the temporal-di�erence algorithm was carried out

by exhaustive enumeration of these 60 possible decisions.

The approximation architectures employed in this case study involved the

use of the following 22 features:

(1) total inventory at stores

(2) total inventory to arrive at stores in one time step

(3) total inventory to arrive at stores in two time steps

(4) inventory at warehouse

(5) inventory to arrive at warehouse in one time step

(6) inventory to arrive at warehouse in two time steps

(7) inventory to arrive at warehouse in three time steps

(8)-(14) the squares of (1)-(7)

(15) variance among stores of inventory levels

22

(16) variance among stores of inventory levels plus inventory to arrive in one

time step

(17) variance among stores of inventory levels plus inventory to arrive within

two time steps

(18) the product of (1) and (4)

(19) the product of (4) and the sum of (1) through (3)

(20) the sum of (4) through (7) times the sum of (1) through (3)

(21) the sum of (4) through (6) times the sum of (1) through (3)

(22) the product of (3), (4), and (7)

By variance among stores (as in features (15) through (17)), we mean

the average among stores of the square of the di�erence between quantities

associated with each store and the average of such quantities over the stores.

The feature values were normalized using an approach analogous to that

used in the context of the simple problem from the previous section. In

particular, a data set was collected from simulations using the s-type policy,

and this data was used to compute means and standard deviations associated

with each feature. These mean and standard deviation values were then used

as normalization parameters just as in the previous section.

For active exploration, noise terms were added to the decisions generated

using the approximate value function at each step of the temporal-di�erence

algorithm. The way noise terms were added is completely analogous to the

method employed in the previous section, except that this time the noise term

added to the warehouse order involved a normal random variable with a mean

of zero and a standard deviation of �ve. Furthermore, the noise terms added

to the store orders were independent from one another.

We began by using a feature-based linear architecture with the features

described. We experimented with di�erent step sizes to better understand

how the temporal-di�erence method was working with this problem. We

found that the performance tended to diverge with larger step sizes, and

improved at an extremely slow rate when the step sizes were reduced enough

to prevent divergence. Upon investigation of feature values, it was found

that feature (17) was taking on values far larger than those that appeared

when the system was controlled by the s-type policy. Hence, we increased the

standard deviation parameter associated with this feature to scale its values

down signi�cantly. Once this was done, performance improved at a much

faster rate upon execution of the temporal-di�erence algorithm.

Two variations on the initial architecture/algorithm were explored. One

involved replacing the linear function approximator with a multilayer per-

23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

1000

1200

1400

1600

1800

2000

2200

2400

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 5

00
0

st
ep

s

Figure 7: Evolution of average cost using the on-line temporal-di�erence

method with a linear architecture and a small degree of exploration, a single

hidden layer, 10 hidden node, multilayer perceptron and a small degree of

exploration, and a linear architecture with a greater degree of exploration

(all three cases generated very similar plots). Each point represents cost

averaged over �ve thousand consecutive time steps during the execution of an

algorithm. The �nal average costs associated with the three approximation

schemes after this training were 1179, 1209, and 1181, respectively (versus

1302 for the heuristic).

ceptron with a single hidden layer of ten nodes. The other variation used

the original linear architecture, but with an increased degree of exploration.

Here the random noise term added to the warehouse order involved a nor-

mal random variable with a standard deviation of ten, and that added to the

store orders involved a normal random variable with a standard deviation of

two. Figure 7 charts the evolution of average cost during the execution of

the temporal-di�erence algorithm in all three of these cases. In the two cases

involving linear architectures, the step size was maintained at
t = 0:0001,

while with the multilayer perceptron-based architecture, the step size was

t = 0:0001 during the �rst 1.5 million steps and
t = 0:00001 thereafter.

These step size schedules were chosen after some trial and error.

All three variants of on-line temporal-di�erencemethods generated policies

superior to the heuristic. In particular, the linear architectures generated

policies with average costs of 1179 (less active exploration) and 1181 (more

24

0 0.5 1 1.5 2 2.5

x 10
6

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of steps

va
lu

es
 o

f c
oe

ffi
ci

en
ts

Figure 8: Evolution of coe�cient values during training using the on{line

temporal {di�erence method with a linear architecture and a small degree of

exploration.

active exploration), while the multilayer perceptron architecture led to an

average cost of 1209. Hence, the best policy cut costs by about ten percent

relative to the heuristic. Figure 8 charts the evolution of parameter values

in the linear feature-based architecture as they were tuned by the on-line

temporal di�erence method with the lesser degree of exploration.

7.3 Case Study 2

We tested the on{line temporal di�erence algorithm on an additional problem

of even greater complexity than the previous one. The parameters for this

new problem are given in the table below.

25

0
20

40
60

80
100

0

200

400

600

800

1000

1000

2000

3000

4000

5000

store level

warehouse level

av
er

ag
e

co
st

Figure 9: Performance of the heuristic as a function of order-up-to levels.

The optimum levels were 460 for the warehouse and 22 for each of the store.

With these levels, the average cost was 1449.

number of stores 10

delay to stores 3

delay to warehouse 5

production capacity 100

warehouse capacity 1000

store capacity 100

probability of customer waiting 0.8

cost of special delivery 0

warehouse storage cost 3

store storage cost 3

mean demand (true mean) 0 (8.0)

demand stdev (true stdev) 20 (11.6)

shortage cost 60

Once again, an s{type heuristic policy was developed by optimizing over

order-up-to levels. Figure 9 shows how the average cost of the system varies

with the two order-up-to levels. Each value in the graph was computed from a

lengthy simulation. The optimal order-up-to levels were 460 for the warehouse

and 22 for each store. The corresponding average cost was 1449.

26

As in the previous section, decisions were represented in terms of two

variables: a warehouse order and a store order-up-to level. This time, the

decision space was limited to warehouse orders ranging from 50 to 100 in in-

crements of 10 and store order-up-to levels ranging from 0 to 50 in increments

of 5, for a total of 72 possible decisions considered at each time step.

The approximation architectures employed in this case study involved the

use of the following 29 features:

(1) total inventory at stores

(2) total inventory to arrive at stores in one time step

(3) total inventory to arrive at stores in two time steps

(4) total inventory to arrive at stores in three time steps

(5) inventory at warehouse

(6) inventory to arrive at warehouse in one time step

(7) inventory to arrive at warehouse in two time steps

(8) inventory to arrive at warehouse in three time steps

(9) inventory to arrive at warehouse in four time steps

(10) inventory to arrive at warehouse in �ve time steps

(11)-(20) the squares of (1)-(10)

(21) variance among stores of inventory levels

(22) variance among stores of inventory levels plus inventory to arrive in one

time step

(23) variance among stores of inventory levels plus inventory to arrive within

two time steps

(24) variance among stores of inventory levels plus inventory to arrive within

three time steps

(25) the product of (1) and (5)

(26) the product of (5) and the sum of (1) through (4)

(27) the sum of (5) through (10) times the sum of (1) through (4)

(28) the sum of (5) through (8) times the sum of (1) through (4)

(29) the product of (4), (5), and (10)

The feature values were normalized using the same approach as in the

previous case study, except that this time, the scaling parameter associated

with feature (4) was the one that needed to be increased.

Noise terms were once again added to the orders during execution of the

temporal-di�erence algorithm. The noise terms used here were exactly the

same as the smaller noise terms of the two tried in the previous section.

27

0 0.5 1 1.5 2 2.5

x 10
6

1200

1300

1400

1500

1600

1700

1800

1900

number of steps

av
er

ag
e

co
st

 o
ve

r
pr

ev
io

us
 5

00
0

st
ep

s

Figure 10: Evolution of average cost using the on-line temporal-di�erence

method with a linear architecture and a small degree of exploration. Each

point represents cost averaged over �ve thousand consecutive time steps dur-

ing the execution of an algorithm. The �nal average cost associated with

the approximation scheme after this training (without exploration) was 1318

(versus 1449 for the heuristic).

We used a feature-based linear architecture with the features we have

described. Figure 10 charts the evolution of average cost during the execution

of the temporal-di�erence algorithm. The step size was
t = 0:0001 during

the �rst million steps and
t = 0:00001 thereafter.

Once again, the on-line temporal-di�erence method generated a policy

superior to the heuristic. The average cost was 1318, a savings of almost ten

percent relative to the heuristic's average cost of 1449.

8 Conclusions

Through this study, we have demonstrated that NDP can provide a viable

approach to advancing the state-of-the-art in retailer inventory management.

The method we have developed outperformed a well-accepted heuristic ap-

proach in two case studies.

Though the problems we solved in this research were truly complex from

a technical standpoint, not much e�ort was directed at ensuring that the

models re
ected all the practical issues inherent in real-world retailer invent-

28

ory systems. Further research is required to translate the methods we have

developed into those that could be truly bene�cial in a real-world application.

Finally, it may be possible to improve the results obtained in this research.

Alternative choices of architectures and algorithms may lead to further re-

ductions in inventory costs. Also, since performance is measured in terms

of average cost, formulating the problem in terms of average{cost (rather

than discounted cost) dynamic programming and employing NDP algorithms

that directly address such formulations may enhance performance. Such al-

gorithms are discussed in (Bertsekas and Tsitsiklis, 1996) and analyzed in

(Abounadi et al., 1996) and (Tsitsiklis and Van Roy, 1996).

Acknowledgments

We would like to thank colleagues at Unica and the Laboratory for Inform-

ation and Decision Systems for useful discussions, feedback, proof{reading,

and help with various other matters. In particular, special thanks go to Ruby

Kennedy, Bob Crites, and Steve Patek.

A State Equations

In this appendix, we formalize the retailer inventory system model by provid-

ing explicit state equations. The purpose here is to make our description

precise using mathematical notation. We do not intend to generate a bet-

ter intuitive understanding of the model dynamics, which have already been

discussed at length in Section 3.

Recall that, for each time t, there are associated pre{decision and post{

decision states, denoted by xt and yt, respectively. Each post{decision state

is given by yt = f2(xt; ut), for some function f2, where ut is a decision

representing orders placed at time t. On the other hand, each pre{decision

state is given by xt+1 = f1(yt; wt), for some function f2, where wt is a random

variable representing demands that arise at time t. To formally de�ne the

dynamics of the model, we will describe the structure of the state vectors xt
and yt, the decisions ut, the random variables wt, and the system functions

f1 and f2.

A.1 State Vectors

Both pre{decision and post{decision states represent quantities of inventory

contained in bu�ers of the system (see Figure 2). Suppose we have K stores

29

indexed by i = 1; : : : ; K. Let q0;T be the quantity of inventory that is currently

being transported and will arrive at the warehouse in T days. Similarly, let

qi;T be the quantity to arrive at the ith store in T days. We use q0;0 and

q1;0; : : : ; qK;0 here to represent the current levels of inventory at the warehouse

and the stores. Let Dw and Ds be the delays for transportation of goods to

the warehouse and from the warehouse to the stores. Then, a vector

x =
�
q0;0; : : : ; q0;Dw

; q1;0; : : : ; q1;Ds
; : : : ; qK;0; qK;Ds

�
captures all relevant information concerning current inventory levels. The

vectors xt and yt take on this general structure.

A.2 Decisions

We represent decisions by vectors of the form

ut =
�
a0; a1; : : : ; aK

�
;

where a0 denotes a warehouse order and a1; : : : ; ak denote the store orders. In

order to enforce that orders and inventory levels are positive and that storage

and production capacities are not exceeded, several constraints are placed on

the decision space. Given a current pre{decision state

xt =
�
q0;0; : : : ; q0;Dw

; q1;0; : : : ; q1;Ds
; : : : ; qK;0; qK;Ds

�
;

the constraints on ut are captured by the following inequalities:

ai � 0; 8i 2 f0; : : : ; Kg;

a0 � Cp;

KX
i=1

ai � q0;0;

a0 � Cw �

DwX
T=0

q0;T +
KX
i=1

ai;

ai � Cs �

DsX
T=0

qi;T ; 8i 2 f1; : : : ; Kg;

whereCp denotes the production capacity,Cw denotes the warehouse capacity,

and Cs denotes the store capacity.

30

A.3 Random Variables

The vectors wt re
ect all random factors that can in
uence the system during

the given time period. This includes the demands that arise at each store as

well as the willingness of each customer to place a special order in the event

of a shortage. We employ a representation of the form

w =
�
d1; : : : ; dK; b

�
;

where each di is the demand that arises at the ith store on a given day and

b is a scalar in [0; 1) that we will interpret as a string of bits by taking the

binary representation. Each di is generated according to

di =

�
zi �

1

2

�
+

;

where each zi is independently sampled and normally distributed with

zi � N(�; �);

where � and � are the mean and standard deviation parameters used in

de�ning the model.

The bit string b = (b1; b2; : : :) provides information about the willingness

of individual customers to wait for special deliveries. Each bit bj is an in-

dependent Bernoulli sample that is equal to 1 with probability Pw , where

Pw is the probability that a customer is willing to wait. We denote by H a

hashing function that associates to each of the
PK

i=1
di units of demand an

index H(i; j), where i is the index of a particular store and j is the index

of a customer arriving at that store on the given day. We associate with

bH(i;j) = 1 the fact that the customer would be willing to wait for a special

delivery. We do not elaborate the details of this hashing function since they

are inconsequential so long as the function is one{to{one (i.e., each customer

gets mapped to a di�erent index).

A.4 System Functions

To complete our model description, we must de�ne the two system functions

f1 and f2. Let us start by de�ning the transformation yt = f2(xt; ut) from

pre{decision to post{decision states. Suppose that a vector xt is given by

xt =
�
q0;0; : : : ; q0;Dw

; q1;0; : : : ; q1;Ds
; : : : ; qK;0; qK;Ds

�
:

31

In terms of the bu�er inventory levels, the decisions bear immediate con-

sequences upon the the quantities q0;Dw
, q0;0, and q1;Ds

; : : : ; qK;Ds
. In partic-

ular, given a decision

ut =
�
a0; a1; : : : ; aK

�
;

the new quantities are given by

�q0;Dw
= q0;Dw

+ a0;

�q0;0 = q0;0 �

KX
i=1

ai;

�qi;Ds
= qi;Ds

+ ai; 8i 2 f1; : : : ; Kg;

where the post{decision state is

yt =
�
�q0;0; : : : ; �q0;Dw

; �q1;0; : : : ; �q1;Ds
; : : : ; �qK;0; �qK;Ds

�
:

Now let

yt =
�
q0;0; : : : ; q0;Dw

; q1;0; : : : ; q1;Ds
; : : : ; qK;0; qK;Ds

�
;

wt =
�
d1; : : : ; dK; b

�
;

xt+1 =
�
�q0;0; : : : ; �q0;Dw

; �q1;0; : : : ; �q1;Ds
; : : : ; �qK;0; �qK;Ds

�
:

In order to simplify the equations involved, we break our de�nition of the

transformation xt+1 = f1(yt; wt) into three steps, using q̂i;0; i 2 f0; : : : ; Kg;

as intermediate variables. First, demands are �lled by stores according to

q̂i;0 = [qi;0 � di]
+; 8i 2 f1; : : : ; Kg:

Second, special orders are �lled by the warehouse according to

q̂0;0 =

2
4qi;0 � KX

i=1

[di�qi;0]
+X

j=1

bH(i;j)

3
5
+

:

Finally, transportation of goods progresses according to

�q0;0 = q̂0;0 + q0;1;

�q0;T = q0;T+1; 8T 2 f1; : : : ; Dw � 1g;

�q0;Dw
= 0;

�qi;0 = q̂i;0 + qi;1; 8i 2 f1; : : : ; Kg;

�qi;T = qi;T+1; 8i 2 f1; : : : ; Kg; T 2 f1; : : : ; Ds � 1g;

�qi;Ds
= 0:

32

References

Abounadi, J., Bertsekas, D.P., and Borkar, V.S. (1996) \ODE Analysis for

Q{Learning Algorithms," Lab for Information and Decision Systems

Draft Report, Massachusetts Institute of Technology, Cambridge, MA.

Bertsekas, D. P. (1995)Dynamic Programming and Optimal Control, Athena

Scienti�c, Bellmont, MA.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996) Neuro-Dynamic Programming,

Athena Scienti�c, Bellmont, MA.

Crites, R. H., and Barto, A. G (1996) \Improving Elevator Performance

Using Reinforcement Learning," Advances in Neural Information Pro-

cessing Systems 8, Touretzky, D. S., Mozer, M. C., and Hasselmo, M.

E., eds., MIT Press, Cambridge, MA.

Lee, H. L., and Billington, C. (1993) \Material Management in Decentral-

ized Supply Chains," Operations Research, vol. 41, no. 5, pp. 835-847.

Nahmias, S., and Smith, S. A. (1993) \Mathematical Models of Inventory

Retailer Systems: A Review," Perspectives on Operations Management,

Essays in Honor of Elwood S. Bu�a, Sarin, R., editor, Kluwer Academic

Publishers, Boston, MA, pp. 249-278.

Nahmias, S., and Smith, S. A. (1994) \Optimizing Inventory Levels in a

Two Echelon Retailer System with Partial Lost Sales," Management

Science, Vol. 40, pp. 582-596.

Sutton, R. S. (1988) \Learning to Predict by the Methods of Temporal

Di�erences," Machine Learning, vol. 3.

Tesauro, G. J. (1992) \Practical Issues in Temporal{Di�erence Learning,"

Machine Learning, vol. 8.

Tsitsiklis, J. N., and Van Roy, B. (1996) \An Analysis of Temporal{Di�erence

Learning with Function Approximation," to appear in IEEE Transac-

tions on Automatic Control.

Tsitsiklis, J. N., and Van Roy, B. (1996) \AverageCost Temporal{Di�erence

Learning," working paper.

Zhang, W., and Dietterich, T. G. (1995) \A Reinforcement Learning Ap-

proach to Job Shop Scheduling," Proceedings of the IJCAI.

33

