
    

October 1994 LIDS-P-2212

Published in Operations Research Letters

GENERIC RANK-ONE CORRECTIONS FOR VALUE ITERATION1

IN MARKOVIAN DECISION PROBLEMS

by
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Abstract

Given a linear iteration of the form x := F (x), we consider modified versions of the form

x := F (x + γd), where d is a fixed direction, and γ is chosen to minimize the norm of the

residual ‖x + γd − F (x + γd)‖. We propose ways to choose d so that the convergence rate

of the modified iteration is governed by the subdominant eigenvalue of the original. In the

special case where F relates to a Markovian decision problem, we obtain a new extrapolation

method for value iteration. In particular, our method accelerates the Gauss-Seidel version of

the value iteration method for discounted problems in the same way that MacQueen’s error

bounds accelerate the standard version. Furthermore, our method applies equally well to Markov

Renewal and undiscounted problems.
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1. Introduction

1. INTRODUCTION

Consider a linear iteration of the form x := F (x), where

F (x) = h + Qx, (1)

Q is a given n× n matrix with eigenvalues strictly within the unit circle, and h is a given vector

in �n. Let x∗ be the unique fixed point of F . We focus on modified iterations of the form

x := F (x + γ̃d) = F (x) + γ̃z,

where d is some vector in �n,

z = Qd, (2)

and γ̃ is obtained by minimizing over γ

∥∥x + γd− (F (x) + γz)
∥∥.

(In our notation, ‖·‖ is the standard norm in the n-dimensional Euclidean space �n. Furthermore,

all vectors in this paper are viewed as column vectors, and prime denotes transposition. In

addition, all eigenvectors referred to are meant to be right eigenvectors.) It is straightforward to

show that

γ̃ =
(d− z)′

(
F (x) − x

)
‖d− z‖2

. (3)

We write the iteration x := F (x + γ̃d) as

x := M(x),

where

M(x) = F (x) + γ̃z, (4)

and we note that it requires only slightly more computation than the regular iteration x := F (x),

since the vector z is computed once and the computation of γ̃ is simple. Note that x∗ is a fixed

point of M(·). However, the iteration x := M(x) need not converge to x∗ when the direction d

is chosen arbitrarily.

Extrapolation methods of the form x := M(x) have been considered in the context of

Markovian decision problems, where all the elements of Q are nonnegative, starting with the

work of MacQueen [McQ66] for discounted problems, and followed by many others; see the

surveys [Por81a], [Put90], and the textbook presentation [Ber87]. (A Markovian decision problem
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is referred to as discounted in this paper if all the row sums of Q are strictly less than one;

otherwise it is referred to as undiscounted.) In particular, when Q = αP where α ∈ (0, 1) is a

discount factor, P is a stochastic matrix, and d is the unit vector e = (1, 1, . . . , 1), it is known

[Mor71] that the iteration xk+1 = M(xk) converges geometrically at a rate governed by the

subdominant eigenvalue of Q. (By this we mean that for every s that is larger than the second

largest eigenvalue modulus of Q, there is a c > 0 such that ‖xk − x∗‖ ≤ csk for all k.) This

method is often much more effective than the ordinary value iteration method xk+1 = F (xk) that

converges geometrically at a rate governed by α, the dominant eigenvalue of Q.

Additional rank-one and higher-rank extrapolation methods have been considered by Por-

teus and by Totten [Por75], [Por81b], [PoT78], [Tot71], in connection with other types of value

iteration methods for problems involving a matrix Q �= αP (such as Gauss-Seidel with and with-

out row reordering). Of the methods in these works, the ones that are closest to ours are based

on L2 norm extrapolation [PoT78], and use a correction of F (x) along the unit vector e (at every

iteration), or along the subspace spanned by e and F (x) − x (every two iterations), or along the

subspace spanned by e, and
(
F 2(x)−F (x)

)
−
(
F (x)− x

)
(every three iterations), supplemented

with an overrelaxation factor. No theoretical convergence or rate of convergence result was pro-

vided, but in tests with some randomly generated problems these methods required relatively

few iterations [PoT78].

Note here that in the context of Markovian decision problems, the mapping F is not re-

ally linear, but rather it is constructed as the “minimum” of linear mappings corresponding to

different policies [see Eq. (7) below]. The extrapolation method of MacQueen and subsequent

works are readily adapted to this more general context (see also the following discussion). By

contrast this is not true for more sophisticated acceleration algorithms for linear systems, such

as conjugate gradient methods (e.g. [Axe80]), Lanczos methods (e.g. [CuW86]), or generalized

minimum residual methods [SaS86], and this is probably the reason why these methods have not

seen much use in Markovian decision problem computations.

The purpose of this note is to recommend a new and simple method for choosing d, which

guarantees convergence, and achieves comparable acceleration to that provided by MacQueen’s

bounds for discounted problems. Our method applies to a broad class of problems, including

discounted problems with equal and unequal row sums, Markov Renewal problems, and undis-

counted problems. For the latter problems, no effective rank-one acceleration method with guar-

anteed convergence is currently available. We also describe a multiple-rank generalization of our

single-rank method, which, however, we have not tested numerically.

Our main observation is that if d is chosen to be an eigenvector of Q, then extrapolation
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along d nullifies the effect of the corresponding eigenvalue in the convergence rate of the iteration

x := M(x) (Prop. 1 in the next section). In particular, if d is an eigenvector corresponding to a

dominant simple eigenvalue of Q, then this iteration converges at a rate governed by the subdom-

inant eigenvalue. Our result holds for any matrix Q that has a real eigenvector corresponding to

a dominant eigenvalue with modulus less than one. We thus propose using such an eigenvector

as the vector d in the extrapolation scheme x := F (x) + γ̃Qd [cf. Eqs. (1)-(4)].

A first difficulty with our approach is that it assumes the existence of a real eigenvector

that corresponds to a maximal modulus eigenvalue. For Markovian decision problems where the

matrix Q has nonnegative elements, this is not an issue in view of the Perron-Frobenius theorem.

A second difficulty with our approach is that it requires finding the eigenvector d. This can be

done approximately, however, by using the power method, that is, by applying F a sufficiently

large number of times k to some vector x to obtain F k(x), and estimating d as the normalized

residual

d ≈ F k(x) − F k−1(x)

‖F k(x) − F k−1(x)‖ . (5)

In particular, let λ1, . . . , λn be the eigenvalues of Q, and suppose that

|λj | < |λ1| < 1, ∀ j = 2, . . . , n.

The initial error x− x∗ can then be decomposed as

x− x∗ =

n∑
j=1

ξjej ,

where e1 is an eigenvector corresponding to λ1, each ej is a vector in the invariant subspace of

the corresponding eigenvalue λj , and ξ1, . . . , ξn are some scalars. The residual F k(x) − F k−1(x)

can be written as

F k(x)−F k−1(x) = Qk−1
(
F (x)−x

)
= Qk−1

(
F (x)−F (x∗)−(x−x∗)

)
= Qk−1(Q−I)(x−x∗),

so it will be nearly equal to ξ1λ
k−1
1 (λ1 − 1)e1 for large k, implying that the vector d = e1/‖e1‖

can be obtained approximately from Eq. (5). In order to decide whether k has been chosen large

enough, one can test to see if the successive residuals F k(x) − F k−1(x) and F k−1(x) − F k−2(x)

are very close to being aligned; if this is so, the components of F k(x)−F k−1(x) along e2, . . . , en

must also be very small.

We thus suggest a two-phase approach: in the first phase, we apply several times the regular

iteration x := F (x) both to improve our estimate of x and also to obtain an estimate d of an

eigenvector corresponding to a dominant eigenvalue; in the second phase we use the modified

iteration x := M(x) that involves extrapolation along d. It can be shown that the two-phase
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method converges to x∗ provided the error in the estimation of d is small enough, that is, the

absolute value of the cosine of the angle between d and Qd as measured by the ratio∣∣(F k(x) − F k−1(x)
)′(

F k−1(x) − F k−2(x)
)∣∣∥∥F k(x) − F k−1(x)

∥∥ ·
∥∥F k−1(x) − F k−2(x)

∥∥ (6)

is sufficiently close to one. This approach turned out to be practically feasible and often surpris-

ingly effective in our computational experiments, as reported in Section 4.

Note that the computation of the first phase is not wasted since it uses the regular iteration

x := F (x) that we are trying to accelerate. Furthermore, since the second phase involves the

calculation of F (x) at the current iterate x, any error bounds or termination criteria based on

F (x) can be used to terminate the algorithm. As a result, the same finite termination mechanism

can be used for both iterations x := F (x) and x := M(x). Thus our approach can be considered

successful as long as by passing onto the second phase, we end up doing fewer iterations up to

termination than if we were to continue exclusively with the first phase.

We mention, however, that our method is ineffective if there is little or no separation between

the dominant and the subdominant eigenvalue moduli, both because the convergence rate of the

power method for obtaining d is slow, and also because the convergence rate of the modified

iteration x := M(x) is not much faster than the one of the regular iteration x := F (x). Such

problems are not suitable for rank-one correction methods that use a fixed direction d, but it

is possible that they can be dealt with effectively through the multiple-rank correction method

described in Section 3. An alternative possibility is the use of adaptive aggregation methods

that use extrapolation along low-dimensional time-varying subspaces, such as those proposed in

[BeC89].

Another shortcoming of the two-phase method outlined above when applied to Markovian

decision problems is that it assumes a fixed policy. In the case of optimization over several

policies, the mapping F has the form

Fi(x) = min
u∈U(i)


hi(u) +

n∑
j=1

qij(u)xj


 , i = 1, . . . , n, (7)

where U(i) is a finite set of control actions for each state i. One can then use our approach in

two different ways:

(1) Compute iteratively the cost vectors of the policies generated by a policy iteration

scheme (see e.g. [Ber87]). This computation can be exact, or can be approximate

within the context of modified policy iteration (see [PuS78], [Put90]). In the latter

case, the approximate evaluation of a policy should of course include several iterations

of the second phase.
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(2) Guess at an optimal policy within the first phase, switch to the second phase, and

then return to the first phase if the policy changes “substantially” during the second

phase. In particular, in the first phase, the ordinary value iteration x := F (x) is used,

where F is the nonlinear mapping (7), and a switch to the second phase occurs, when

the ratio (6) gets sufficiently close to one. The vector z is taken to be equal to Q∗d,

where d is obtained from Eq. (5), and Q∗ is the matrix whose ith row corresponds

to the minimizing control in Eq. (7) at the time of the switch. The second phase

consists of the iteration x := F (x)+ γ̃z, where γ̃ is given by Eq. (3). To guard against

subsequent changes in policy, which induce corresponding changes in the matrix Q∗,

one should ensure that the method is working properly, for example, by recomputing d

if the policy changes and/or the error ‖F (x)−x‖ is not reduced at a satisfactory rate.

Based on our computational experiments, this method seems to be workable (and

can lead to significant savings) because the value iteration method typically finds an

optimal policy much before it finds the optimal cost vector.

2. MAIN RESULT

The following proposition gives our main result and provides the basis for the two-phase

method described in the preceding section.

Proposition 1: Consider the iteration x := M(x) defined by Eqs. (1)-(4).

(a) M(x) can be written as

M(x) = g + Rx,

where

g = h +
z(d− z)′

‖d− z‖2
h, (8)

and

R = Q +
z(d− z)′(Q− I)

‖d− z‖2
. (9)

Furthermore, Rd = 0.

(b) Let λ1, . . . , λn be the eigenvalues of Q, and assume that d is an eigenvector corre-

sponding to λ1. Then for all k and x we have

Rk = RQk−1, Mk(x) = M
(
F k−1(x)

)
.
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Furthermore, the eigenvalues of R are 0, λ2, . . . , λn.

Proof: (a) By straightforward calculation using Eqs. (1)-(4), we have for any d with d �= z,

M(x) = F (x) + γ̃z

= h + Qx +
(d− z)′(h + Qx− x)

‖d− z‖2
z

= h +
z(d− z)′

‖d− z‖2
h + Qx +

z(d− z)′(Q− I)

‖d− z‖2
x.

This is equivalent to M(x) = g + Rx with g and R given by Eqs. (8) and (9), respectively. The

relation Rd = 0 follows by multiplying the right-hand side of Eq. (9) with d and by using the

definition z = Qd.

(b) Since d is an eigenvector corresponding to λ1, we have z = λ1d. From part (a), we also have

Rd = 0, so that Rz = λ1Rd = 0. We thus obtain using Eq. (9)

R2 = R

(
Q +

z(d− z)′(Q− I)

‖d− z‖2

)
= RQ.

Using this relation, we have

Rk = Rk−2R2 = Rk−2RQ = Rk−3R2Q = Rk−3RQ2 = · · · = RQk−1.

Also for every x we have using the relation Rz = 0 and the definition M(x) = F (x) + γ̃z,

M2(x) = M
(
M(x)

)
= M

(
F (x) + γ̃z)

)
= M

(
F (x)

)
+ γ̃Rz = M

(
F (x)

)
,

from which the desired relation Mk(x) = M
(
F k−1(x)

)
follows.

To complete the proof, we will attempt to derive the Jordan decomposition of R, using the

Jordan decomposition of Q, and the equations Rd = 0 and R2 = RQ. Let

Q = ( d W )

(
λ1 e1

0 Λ

)
( d W )

−1
(10)

be the Jordan decomposition of Q, where W is an n×(n−1) matrix, Λ is a block diagonal matrix

consisting of Jordan blocks, and the (n − 1)-dimensional row vector e1 is either [0, 0, . . . , 0] (if

there is a full set of eigenvectors corresponding to λ1) or [1, 0, . . . , 0]. Equation (10) is written as

Q ( d W ) = ( d W )

(
λ1 e1

0 Λ

)
,

so that

QW = de1 + WΛ.
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Therefore, using the relations R2 = RQ and Rd = 0, we have

R2W = RQW = RWΛ.

It follows that

R ( d RW ) = ( d RW )

(
0 0

0 Λ

)
. (11)

Consider first the case where Q is nonsingular. Since the matrix ( d W ) is nonsingular,

the product Q ( d W ), which is the matrix (λ1d QW ), is also nonsingular, and it follows that

d and the columns of QW are linearly independent. We have, using the formula (9) for R,

RW = QW +
λ1

1 − λ1
dd′(Q− I)W, (12)

and since d and the columns of QW are linearly independent, it also follows that d and the

columns of RW are linearly independent. Therefore, Eq. (11) gives the Jordan decomposition of

R, which implies that the eigenvalues of R are the same as those of Q, except that λ1 is replaced

by 0.

In the case where Q is singular, Eq. (11) does not necessarily give the Jordan decomposition

of R because the matrix ( d RW ) may be singular. To deal with this case, we perturb Q,

replacing it by Q + εI, where I is the identity and ε is a sufficiently small scalar so that Q + εI

is nonsingular. Then d is an eigenvector of Q + εI corresponding to the eigenvalue λ1 + ε. Let

Rε be the matrix corresponding to Q + εI as per Eq. (9). By what has been proved so far, the

eigenvalues of Rε are 0, λ2+ε, . . . , λn+ε. As ε → 0 the eigenvalues of Rε tend to the eigenvalues of

R (since Rε is continuous as a function of ε, and the eigenvalues of a square matrix are continuous

functions of its entries). Therefore, the eigenvalues of R must be 0, λ2, . . . , λn. Q.E.D.

Note that as a byproduct of the preceding proof, we have obtained for the case where Q is

nonsingular, the Jordan decomposition of R, including its eigenvectors, in terms of the Jordan

decomposition of Q.

The main implication of Prop. 1 is that the modified iteration x := M(x) converges to

x∗ at the rate of the subdominant eigenvalue, provided d is a dominant eigenvector of Q. The

proposition also implies that if there is an error in the calculation of d, then the iteration x :=

M(x) still converges to x∗, provided d is sufficiently close to an eigenvector of Q. In particular,

suppose that d is normalized so that ‖d‖ = 1, and that for a dominant eigenvector e of Q we

have ‖e‖ = 1 and

‖d− e‖ = ε,
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where ε is a positive scalar. Let Rd and Re be the matrices corresponding to d and e, respectively,

according to Eq. (9). Then it can be seen that

Rd = Re + O(ε),

where O(ε) is a matrix with limε→0 ‖O(ε)‖/ε ≤ c for some constant c. By Prop. 1(b), the

eigenvalues of Re are the same as the eigenvalues of Q except that the dominant eigenvalue

corresponding to e is replaced by 0. Therefore, for sufficiently small ε, the eigenvalues of Rd

are strictly within the unit circle, and the iteration x := M(x) converges to x∗. The rate of

convergence approaches that implied by the subdominant eigenvalue of Q as ε → 0.

An interesting implication of the relation Mk(x) = M
(
F k−1(x)

)
, shown in Prop. 1(b), is

that it does not matter how often we use the modified iteration x := M(x) in place of the original

x := F (x), as long as we use it infinitely often. This means that we can switch from phase one

to phase two and back in arbitrary fashion without affecting the convergence rate. The result at

the end of each use of x := M(x) does not depend on the number of preceding substitutions of F

by M . This, however, depends on d being an exact eigenvector of Q. If d is only an approximate

eigenvector, the results of the computation will be affected by the manner in which the switch

between phases is implemented.

3. A MULTIDIMENSIONAL GENERALIZATION

Let us provide a multidimensional version of our single-rank correction approach. In par-

ticular, let D be a full-rank n×m matrix, and consider the iteration

x := MD(x) = F (x + Dγ̃),

where γ̃ is the vector in �m that minimizes the residual norm

‖x + Dγ − F (x + Dγ)‖

over all vectors γ ∈ �m. It is easily verified that

γ̃ =
(
(D − Z)′(D − Z)

)−1
(D − Z)′

(
F (x) − x

)
,

where

Z = QD.
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Furthermore, a similar calculation to the one in the proof of Prop. 1(a) shows that MD(x) has

the form

MD(x) = gD + RDx,

where gD is some vector and the n× n matrix RD is given by

RD = Q + Z
(
(D − Z)′(D − Z)

)−1
(D − Z)′(Q− I). (13)

From this formula and the definition Z = QD, it is seen that

RDD = 0.

Suppose now that the range space of D is an invariant subspace of Q, that is, for every

column d of Q, the vector Qd is a linear combination of columns of Q; this is true for example if

the columns of D are eigenvectors of Q. Then the columns of Z are linear combinations of the

columns of D, which combined with RDD = 0 implies that

RDZ = 0.

It follows from Eq. (13) that R2
D = RDQ, and more generally that

Rk
D = RDQk−1,

from which we also obtain Mk
D(x) = MD

(
F k−1(x)

)
for all k and x. Similar to part (b) of Prop.

1, it follows that the iteration x := MD(x) converges to x∗ and the convergence rate is governed

by the eigenvalues of Q other the ones corresponding to the range space of D.

The multidimensional result may be useful when Q has multiple (possibly complex) dom-

inant or nearly dominant eigenvalues, provided a suitable matrix D can be identified. One

possibility is to choose D so that its range nearly contains the dominant and nearly dominant

eigenspaces of Q. By this we mean that the columns of D span a subspace spanned by a number

of successive residuals F k(x) − F k−1(x), after a number of iterations k that is sufficiently large.

To obtain such a D, we can fix an integer m ≥ 2 and do a linear independence test on blocks

of m successive residuals by checking for k = 2, . . . ,m whether the kth residual in the block is

(almost) linearly independent on the preceding k− 1 residuals in the block. This can be done by

progressively orthogonalizing the residuals in the block through a Gram-Schmidt procedure, as

in the Arnoldi process [Arn51], which is also used in connection with the GMRES (generalized

minimum residual) method [SaS86]. If this test is successful, say at the kth residual, a suitable

matrix D can be constructed from the first k−1 residuals in the block; if not, the test is repeated

with the next block of m successive residuals. Here, the integer m must be greater than the sum
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of the dimensions of the invariant subspaces corresponding to the dominant and the nearly dom-

inant eigenvalues, since otherwise the linear independence test may never be successful. Once,

however, the matrix D is obtained, multidimensional extrapolation using D as above will nullify

the effect of all these eigenvalues. The resulting method becomes somewhat similar to the GM-

RES method, but there is a difference: in GMRES the Arnoldi process is terminated when the

residual of x+Dγ̃ is guaranteed to be small, while in our case it is terminated upon satisfaction

of a criterion that guarantees a good convergence rate of the iteration x := MD(x). Furthermore,

once an appropriate matrix D is obtained in our method, it is used in many subsequent iterations,

while in GMRES D is used only once and it is then recalculated if necessary.

Note that the essential properties for the preceding development are RDD = 0 and R2
D =

RDQ. These two properties hold for other choices of RD in addition to the choice (13). In

particular, it can be seen that if RD is of the form

RD = Q−QD(D′V D)−1D′V,

where V is an invertible matrix, then we have RDD = 0, and if in addition the range of D is

an invariant subspace of Q, we also have R2
D = RDQ. When V is a symmetric, positive definite

matrix, RD corresponds to an extrapolation along the range of D that minimizes an appropriate

l2 norm of the residual. The case V = (I − Q)′(I − Q), corresponds to the standard Euclidean

norm and yields Eq. (13).

The multidimensional approach just described applies to any matrix Q such that Q− I is

invertible. With proper implementation, it may be competitive with other iterative methods for

linear systems, particularly in the context of Markovian decision problems involving minimization

over multiple policies. However, testing this hypothesis requires extensive experimentation, which

is beyond the scope of the present paper.

4. COMPUTATIONAL RESULTS FOR STOCHASTIC SHORTEST PATHS

To assess the potential of our two-phase method, we have tested it with a variety of Marko-

vian decision problems. In this section we will present some computational results for stochastic

shortest path problems (also known as first passage problems). These are undiscounted prob-

lems, originally introduced in [EaZ62], and investigated in several subsequent works [Ber87],

[BeT89], [BeT91], [Der70], [Kus71], [Pal67]. For these problems, there has been no proposal

to date of a simple and effective method to accelerate the convergence of value iteration. We
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have also obtained similar results for discounted problems, but for such problems we have found

that our method is not much better than the regular value iteration method, supplemented with

MacQueen-like error bounds.

In summary, we have verified that for stochastic shortest path problems the acceleration

potential of the method depends on the problem’ s structure, and particularly on the separation

between dominant and subdominant eigenvalues. When this separation is substantial, and we

will see that this happens in some fairly “normal” randomly generated problems, the resulting

acceleration is spectacular.

Let us denote by qij , i, j = 1, . . . , n the elements of Q. In the context of the stochastic

shortest path problem, the elements qij are nonnegative and all the row sums
∑n

j=1 qij are less

or equal to one. We may view qij as the probability of a system moving from state i to state

j, and we may view 1 −
∑n

j=1 qij as the probability of the system moving from i to a cost-free

and absorbing termination state. If the ith component of the vector h is the expected cost

when moving from state i, then the components of x∗ are the expected costs starting from the

corresponding states up to reaching the termination state.

We have tested two versions of the two-phase method, called Jacobi and Gauss-Seidel . The

Jacobi version corresponds to the mapping F with components

Fi(x) = hi +

n∑
j=1

qijxj , i = 1, . . . , n. (14)

The Gauss-Seidel version corresponds to the mapping F with components

Fi(x) = hi +

i−1∑
j=1

qijFj(x) +

n∑
j=i

qijxj , i = 1, . . . , n. (15)

In all tests the switch to phase two (the rank-one correction iteration) was made when the cosine

of the angle between successive residuals, as measured by the ratio (6), was within 10−4 of unity.

The iterations were terminated when the residual norm ‖F (x) − x‖ became less than 10−7.

In all our problems the components of the cost vector h were chosen according to a uniform

distribution from the interval [0, 100]. We used three types of randomly generated problems, the

first two of which involve a fixed policy:

(1) Random Transition Graphs: Here each transition probability qij is specified to be 0 or

positive according to a given probability r, called the sparsity factor . Each of the escape

probabilities, that is, the probabilities 1 −
∑n

j=1 qij of transition from i to the termination

state is selected to be either a fixed positive number p < 1, or 0 with probabilities r and

1 − r, respectively. The positive qij are then selected according to a uniform distribution,
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and they are appropriately normalized, taking into account the escape probabilities specified

earlier.

(2) Linear Transition Graphs: Here for each state i �= 1, n there are two possible transitions,

the left transition to a fixed state randomly chosen from the set {1, . . . , i−1}, and the right

transition to a fixed state randomly chosen from the set {i+1, . . . , n}. The left and the right

transition probabilities are randomly chosen from the interval [0, 1] and then are normalized

to add to one. From the state 1, there is a fixed probability p, called the escape probability ,

of moving to the termination state, and a probability 1− p of moving to state 2. Similarly,

from the state n, there is a given probability p, called the escape probability , of moving to

the termination state, and a probability 1 − p of moving to state n− 1.

(3) Two-Action Linear Transition Graphs: Here the states and the possible transitions

at each state are as in the preceding class of problems. However, at each state there are

two possible actions: when the first action is chosen the state evolves probabilistically as in

the preceding class of problems; when the second action is chosen at a state i �= 1, n, the

left and the right transitions occur with equal probability 1/2. We implemented a heuristic

mechanism whereby a switch from the first to the second phase and reversely can be done,

depending on the progress of the algorithm. In particular, a switch from the second to the

first phase was done when the second phase could not maintain a “substantial” reduction

factor in the normed residual ‖F (x)−x‖. Furthermore, a switch to the first phase was also

done after the first five iterations of the second phase. The motivation for this latter switch

was that frequently, following the initial switch to the second phase, the policy produced

by value iteration changed significantly, in which case it is sensible to recalculate the vector

d by switching back to the first phase.

In Tables 1-3, we give the number of iterations required by four methods. The first two

are called Jacobi-Acc and Jacobi , and are based on the Jacobi iteration [cf. Eq. (14)]; the former

uses the rank-one correction in the two-phase scheme described above, while the latter uses no

corrections, that is, it consists of just phase one. The Gauss-Seidel versions [cf. Eq. (15)] of these

two Jacobi methods are called Gauss-Seidel-Acc and Gauss-Seidel , respectively. Some of the

larger problems were not solved with the regular Jacobi and Gauss-Seidel methods in view of the

excessive number of iterations required.

The results of these tables show that the two-phase scheme is extremely effective, dramat-

ically reducing the number of iterations of the regular Jacobi and Gauss-Seidel value iteration

methods. This is not surprising, since similarly dramatic savings are known to be possible for

13



    

4. Computational Results

discounted problems under comparable circumstances.

We also solved some of the problems of Tables 1-3 with the rank-one correction method that

uses the unit vector e = (1, 1, . . . , 1) as the direction d, instead of using a dominant eigenvector.

This method does not offer convergence guarantees, but nonetheless it accelerated considerably

the regular value iteration method for the problems of Tables 1 and 2. However, the number of

iterations required was much larger than the number of iterations for our method, frequently by

a factor of three or four. For the two-action-per-state problems of Table 3, we were not able to

implement a properly working rank-one correction method with d = e, because of difficulties due

to nonmonotonic changes in ‖F (x) − x‖.

Finally, it is worth repeating our earlier warning that the two-phase scheme (with one-

dimensional extrapolation) is not effective when there is little or no separation between the

dominant and the subdominant eigenvalue moduli. As an example consider the linear transition

graph problem with two states. The matrix Q is given by

Q =

(
0 1 − p

1 − p 0

)

and its two eigenvalues are (1 − p) and −(1 − p). When the two-phase Jacobi method is applied

to this problem, the switch to phase two typically never occurs because the power method cannot

identify a dominant eigenvector.

n Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

100 0.1 109 57 3954 2024

200 0.1 173 97 5235 2767

300 0.1 210 86 6765 3545

400 0.1 131 67 7036 3617

500 0.1 238 82 8311 4185

Table 2: Experiments with linear transition graph problems. Each entry gives the number of iterations averaged

over 5 randomly generated problems.
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n Sparsity Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

75 1.0 0.01 12 14 2339 1221

150 1.0 0.01 11 15 2450 1245

225 1.0 0.01 11 16 2503 1274

300 1.0 0.01 10 16 2545 1314

75 0.1 0.01 395 52 22209 11631

150 0.1 0.01 129 21 21565 14318

225 0.1 0.01 146 17

300 0.1 0.01 90 18

Table 1: Experiments with random transition graph problems. Each entry gives the number of iterations averaged

over 5 randomly generated problems. For such problems the subdominant eigenvalue modulus is small, particularly

for dense problems. This explains the dramatic savings achieved by our rank-one correction method.

n Esc. Prob. Jac.-Acc G.-Seidel-Acc Jac. G.-Seidel

100 0.1 105 59 2691 1308

200 0.1 124 72 2687 1296

300 0.1 125 71 3148 1565

400 0.1 117 69 4704 2278

500 0.1 129 73 4443 2126

Table 3: Experiments with two-action linear transition graph problems. Each entry gives the number of iterations

averaged over 5 randomly generated problems.
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