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Abstract

We consider optimization problems with equality, inequality, and abstract set constraints,

and we explore various characteristics of the constraint set that imply the existence of Lagrange

multipliers. We prove a generalized version of the Fritz-John theorem, and we introduce new

and general conditions that extend and unify the major constraint qualifications. Among these

conditions, a new property, pseudonormality, provides the connecting link between the classical

constraint qualifications and the use of exact penalty functions.

1. INTRODUCTION

We consider finite-dimensional optimization problems of the form

minimize f(x)

subject to x ∈ C,
(1.1)

where the constraint set C consists of equality and inequality constraints as well as an additional

abstract set constraint x ∈ X :

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
. (1.2)

We assume throughout the paper that f , hi, gj are continuously differentiable functions from <n

to <, and X is a nonempty closed set. In our notation, all vectors are viewed as column vectors,

and a prime denotes transposition.

Necessary conditions for the above problem can be expressed in terms of tangent cones,

normal cones, and their polars. In our terminology, a vector y is a tangent of a set S ⊂ <n at a
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vector x ∈ S if either y = 0 or there exists a sequence {xk} ⊂ S such that xk 6= x for all k and

xk → x,
xk − x

‖xk − x‖
→

y

‖y‖
.

An equivalent definition often found in the literature (e.g., [BSS93], [RoW98]) is that there exists a

sequence {xk} ⊂ S with xk → x, and a positive sequence {αk} such that αk → 0 and (xk−x)/αk →

y. The set of all tangents of S at x is denoted by TS(x) and is also referred to as the tangent cone

of S at x. The polar cone of any cone T is defined by

T⊥ =
{
z | z′y ≤ 0, y ∈ T

}
.

For a nonempty cone T , we will use the well-known relation T ⊂
(
T⊥

)⊥
, which holds with equality

if T is closed and convex.

For a closed set X and a point x ∈ X, we will also use the normal cone of X at x, denoted

NX(x), which is obtained from the polar cone TX(x)⊥ by means of a closure operation. In partic-

ular, we have z ∈ NX (x) if there exist sequences {xk} ⊂ X and {zk} such that xk → x, zk → z,

and zk ∈ TX(xk)⊥ for all k. Equivalently, the graph of NX(·), viewed as a point-to-set mapping,
{
(x, z) | z ∈ NX(x)

}
, is the closure of the graph of TX (·)⊥. The normal cone, introduced by Mor-

dukhovich [Mor76], has been studied by several authors, and is of central importance in nonsmooth

analysis (see the books by Aubin and Frankowska [AuF90], Rockafellar and Wets [RoW98], and

Borwein and Lewis [BoL00]). In general, we have TX(x)⊥ ⊂ NX(x) for any x ∈ X . In the case

where TX(x)⊥ = NX (x), we will say that X is regular at x. The term “regular at x in the sense of

Clarke” is also used in the literature (see, [RoW98], p. 199). Two properties of regularity that are

important for our purposes are that (1) if X is convex, then it is regular at each x ∈ X , and (2) if

X is regular at an x ∈ X , then TX(x) is convex ([RoW98], pp. 203 and 221).

A classical necessary condition for a vector x∗ ∈ C to be a local minimum of f over C is

∇f (x∗)′y ≥ 0, ∀ y ∈ TC(x∗), (1.3)

where TC(x∗) is the tangent cone of C at x∗ (see e.g., [BSS93], [Ber99], p. 335, [Hes75], [Roc93],

[RoW98]). Necessary conditions that involve Lagrange multipliers relate to the specific represen-

tation of the constraint set C in terms of the constraint functions hi and gj . In particular, we say

that the constraint set C of Eq. (1.2) admits Lagrange multipliers at a point x∗ ∈ C if for every

continuously differentiable cost function f for which x∗ is a local minimum of problem (1.1) there

exist vectors λ∗ = (λ∗1, . . . , λ
∗
m) and µ∗ = (µ∗1, . . . , µ

∗
r) that satisfy the following conditions:


∇f(x∗) +

m∑

i=1

λ∗i∇hi(x∗) +
r∑

j=1

µ∗j∇gj(x∗)



′

y ≥ 0, ∀ y ∈ TX(x∗), (1.4)



µ∗j ≥ 0, ∀ j = 1, . . . , r, (1.5)

µ∗j = 0, ∀ j /∈ A(x∗), (1.6)

where A(x∗) =
{
j | gj(x∗) = 0

}
is the index set of inequality constraints that are active at x∗. We

refer to such a pair (λ∗, µ∗) as a Lagrange multiplier vector or simply a Lagrange multiplier .

Conditions that guarantee the admittance of Lagrange multipliers are called constraint qual-

ifications , and have been investigated extensively in the literature. Some of the most useful ones

are the following:

CQ1: X = <n and x∗ is a regular point in the sense that the equality constraint gradients ∇hi(x∗),

i = 1, . . . , m, and the active inequality constraint gradients ∇gj(x∗), j ∈ A(x∗), are linearly

independent.

CQ2: X = <n, the equality constraint gradients ∇hi(x∗), i = 1, . . . , m, are linearly independent,

and there exists a y ∈ <n such that

∇hi(x∗)′y = 0, i = 1, . . . ,m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

For the case where there are no equality constraints, this is known as the Arrow-Hurwitz-

Uzawa constraint qualification, introduced in [AHU61]. In the more general case where there

are equality constraints, it is known as the Mangasarian-Fromovitz constraint qualification,

introduced in [MaF67].

CQ3: X = <n, the functions hi are linear and the functions gj are concave.

It is well-known that all of the above constraint qualifications imply that the constraint set

admits Lagrange multipliers (see e.g., [Ber99] or [BSS93]). It is also well-known that constraint

qualifications and Lagrange multipliers are related to exact penalty functions. In particular, let

us say that the constraint set C admits an exact penalty at the feasible point x∗ if for every

continuously differentiable function f for which x∗ is a strict local minimum of f over C, there is

a scalar c > 0 such that x∗ is also a local minimum of the function

Fc(x) = f(x) + c




m∑

i=1

|hi(x)|+
r∑

j=1

g+
j (x)




over x ∈ X , where we denote

g+
j (x) = max

{
0, gj(x)

}
.



We have the following:

(a) If X is convex and the constraint set admits an exact penalty at x∗ it also admits Lagrange

multipliers at x∗ (this follows from Prop. 3.112 of Bonnans and Shapiro [BoS00]; see also the

subsequent Prop. 5).

(b) Each of the above constraint qualifications CQ1-CQ3 implies that C admits an exact penalty

(the case of CQ1 was treated by Pietrzykowski [Pie69]; the case of CQ2 was treated by

Zangwill [Zan67], Han and Mangasarian [HaM79], and Bazaraa and Goode [BaG82]; the case

of CQ3 will be dealt with in the present paper – see the subsequent Props. 2 and 4).

In this paper, we establish the connections between constraint qualifications, Lagrange mul-

tipliers, and exact penalty functions. Much of our analysis is motivated by an enhanced set of

Fritz John necessary conditions which are introduced in the next section. These conditions were

proved in a somewhat weaker form for the case where X = <n in a largely overlooked analysis by

Hestenes [Hes75] (see the discussion in Section 2). They were generalized for the case where X is

a general closed convex set in the first author’s recent textbook [Ber99] (Prop. 3.3.11), and they

will be further generalized in Section 2 for the case where X is a closed but not necessarily convex

set.

In Section 3, we introduce the new notion of constraint pseudonormality , and we discuss its

connection with classical results relating constraint qualifications and the admittance of Lagrange

multipliers. We also give a new and natural extension of the Mangasarian-Fromovitz constraint

qualification that applies to the case where X 6= <n. Finally, in Section 4, we make the connection

between pseudonormality and exact penalty functions. In particular, we show that pseudonor-

mality implies the admittance of an exact penalty, while being implied by the major constraint

qualifications. In the process we prove in a unified way that the constraint set admits an exact

penalty for a much larger variety of constraint qualifications than has been known hitherto.

2. ENHANCED FRITZ JOHN CONDITIONS

The Fritz John necessary optimality conditions [Joh48] are often used as the starting point for

the analysis of Lagrange multipliers. Unfortunately, these conditions in their classical form are

insufficient to derive the existence of Lagrange multipliers under some of the standard constraint

qualifications, such as linearity of the constraint functions h and g. Recently, the classical Fritz

John conditions have been strengthened through the addition of an extra necessary condition, and



their effectiveness has been significantly enhanced (see [Hes75] for the case X = <n, and [Ber99] for

the case where X is a closed convex set). A further extension is given by the following proposition.

Proposition 1: Let x∗ be a local minimum of problem (1.1)-(1.2). Then there exist scalars µ∗0,

λ∗1, . . . , λ
∗
m, and µ∗1, . . . , µ

∗
r , satisfying the following conditions:

(i) −
(
µ∗0∇f(x∗) +

∑m
i=1 λ∗i∇hi(x∗) +

∑r
j=1 µ∗j∇gj(x∗)

)
∈ NX(x∗).

(ii) µ∗j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗0, λ
∗
1, . . . , λ

∗
m, µ∗1, . . . , µ

∗
r are not all equal to 0.

(iv) If the set I ∩ J is nonempty, where I = {i | λ∗i 6= 0} and J = {j | µ∗j > 0}, then given any

neighborhood B of x∗ and any ε > 0, there is an x ∈ B ∩X such that

f(x) < f(x∗), λ∗i hi(x) > 0, ∀ i ∈ I, gj(x) > 0, ∀ j ∈ J, (2.1)

|hi(x)| ≤ εm(x), ∀ i /∈ I, gj(x) ≤ εm(x), ∀ j /∈ J, (2.2)

where

m(x) = min
{
min{|hi(x)| | i ∈ I},min{gj(x) | j ∈ J}

}
. (2.3)

Proof: We use a quadratic penalty function approach. For each k = 1, 2, . . ., consider the

“penalized” problem

minimize F k(x) ≡ f(x) +
k

2

m∑

i=1

(
hi(x)

)2
+

k

2

r∑

j=1

(
g+

j (x)
)2

+
1

2
||x− x∗||2

subject to x ∈ X ∩ S,

where S = {x | ||x − x∗|| ≤ ε}, and ε > 0 is such that f(x∗) ≤ f(x) for all feasible x with x ∈ S.

Since X ∩S is compact, by Weierstrass’ theorem, we can select an optimal solution xk of the above

problem. We have for all k

f(xk) +
k

2

m∑

i=1

(
hi(xk)

)2
+

k

2

r∑

j=1

(
g+

j (xk)
)2

+
1

2
||xk − x∗||2 = F k(xk) ≤ F k(x∗) = f(x∗) (2.4)

and since f(xk) is bounded over X ∩ S, we obtain

lim
k→∞

||hi(xk)|| = 0, i = 1, . . . ,m, lim
k→∞

||g+
j (xk)|| = 0, j = 1, . . . , r;



otherwise the left-hand side of Eq. (2.4) would become unbounded from above as k →∞. Therefore,

every limit point x of {xk} is feasible, i.e., x ∈ C. Furthermore, Eq. (2.4) yields f(xk)+(1/2)||xk−

x∗||2 ≤ f(x∗) for all k, so by taking the limit as k →∞, we obtain

f(x) +
1

2
||x− x∗||2 ≤ f(x∗).

Since x ∈ S and x is feasible, we have f(x∗) ≤ f(x), which when combined with the preceding

inequality yields ||x − x∗|| = 0 so that x = x∗. Thus the sequence {xk} converges to x∗, and it

follows that xk is an interior point of the closed sphere S for all k greater than some k.

For k ≥ k, we have by the necessary condition (1.3), ∇F k(xk)′y ≥ 0 for all y ∈ TX(xk), or

equivalently −∇F k(xk) ∈ TX (xk)⊥, which is written as

−


∇f (xk) +

m∑

i=1

ξk
i ∇hi(xk) +

r∑

j=1

ζk
j ∇gj(xk) + (xk − x∗)


 ∈ TX(xk)⊥, (2.5)

where

ξk
i = khi(xk), ζk

j = kg+
j (xk). (2.6)

Denote,

δk =

√√√√1 +

m∑

i=1

(ξk
i )2 +

r∑

j=1

(ζk
j )2, (2.7)

µk
0 =

1

δk
, λk

i =
ξk
i

δk
, i = 1, . . . , m, µk

j =
ζk
j

δk
, j = 1, . . . , r. (2.8)

Then by dividing Eq. (2.5) with δk, we obtain

−


µk

0∇f(xk) +
m∑

i=1

λk
i∇hi(xk) +

r∑

j=1

µk
j∇gj(xk) +

1

δk
(xk − x∗)


 ∈ TX(xk)⊥. (2.9)

Since by construction we have

(µk
0)

2 +

m∑

i=1

(λk
i )2 +

r∑

j=1

(µk
j )2 = 1, (2.10)

the sequence {µk
0 , λk

1 , . . . , λk
m, µk

1, . . . , µ
k
r} is bounded and must contain a subsequence that con-

verges to some limit {µ∗0, λ∗1, . . . , λ∗m, µ∗1, . . . , µ
∗
r}.

From Eq. (2.9) and the definition of the normal cone NX(x∗), we see that µ∗0, λ∗i , and µ∗j must

satisfy condition (i). From Eqs. (2.6) and (2.8), µ∗0, λ∗i , and µ∗j must satisfy condition (ii), and

from Eq. (2.10), they must satisfy condition (iii). Finally, to show that condition (iv) is satisfied,



assume that I ∪ J is nonempty (otherwise we are done), and note that for all sufficiently large k

within the index set K of the convergent subsequence, we must have λ∗i λ
k
i > 0 for all i ∈ I and

µ∗jµ
k
j > 0 for all j ∈ J . Therefore, for these k, from Eqs. (2.6) and (2.8), we must have λ∗i hi(xk) > 0

for all i ∈ I and µ∗jgj(xk) > 0 for all j ∈ J , while from Eq. (2.4), we have f(xk) < f(x∗) for k

sufficiently large (the case where xk = x∗ for infinitely many k is excluded by the assumption that

I ∪ J is nonempty). Furthermore, the conditions |hi(xk)| ≤ εm(xk) for i /∈ I and gj(xk) ≤ εm(xk)

for j /∈ J are equivalent to

|λk
i | ≤ εmin

{
min{|λk

i | | i ∈ I},min{µk
j | j ∈ J}

}
, ∀ i /∈ I,

and

µk
j ≤ εmin

{
min{|λk

i | | i ∈ I}, min{µk
j | j ∈ J}

}
, ∀ j /∈ J,

respectively, so they evidently hold for all sufficiently large k in K. Since every neighborhood of

x∗ must contain all xk with sufficiently large k in K, this proves condition (iv). Q.E.D.

Note that if X is regular at x∗, i.e., NX (x∗) = TX(x∗)⊥, condition (i) of Prop. 1 becomes

−
(
µ∗0∇f(x∗) +

∑m
i=1 λ∗i∇hi(x∗) +

∑r
j=1 µ∗j∇gj(x∗)

)
∈ TX (x∗)⊥ or equivalently


µ∗0∇f (x∗) +

m∑

i=1

λ∗i∇hi(x∗) +
r∑

j=1

µ∗j∇gj(x∗)



′

y ≥ 0, ∀ y ∈ TX(x∗).

If in addition, the scalar µ∗0 can be shown to be strictly positive, then by normalization we can

choose µ∗0 = 1, and condition (i) of Prop. 1 becomes equivalent to the Lagrangian stationarity

condition (1.4). Thus, if X is regular at x∗ and we can guarantee that µ∗0 = 1, the vector (λ∗, µ∗) =

{λ∗1, . . . , λ∗m, µ∗1, . . . , µ
∗
r} is a Lagrange multiplier vector that satisfies condition (iv) of Prop. 1. A

key fact is that this condition is stronger than the complementary slackness condition (1.6) [if

µ∗j > 0, then according to condition (iv), the corresponding jth inequality constraint must be

violated arbitrarily close to x∗ [cf. Eq. (2.1)], implying that gj(x∗) = 0]. The strengthening of the

complementary slackness condition will turn out to be of crucial significance in the next section.

Condition (iv) of Prop. 1 also has another important implication. It asserts that the multiplier

vector (λ∗, µ∗) has a special sensitivity-like property: through the signs of the λ∗i and µ∗j , it

identifies the constraints that if violated, permit the reduction of the cost function. We call such

a Lagrange multiplier informative , and in a separate, more extensive report on the subject of

this paper, we show an interesting new result: if TX (x∗) is convex and there exists at least one



Lagrange multiplier vector at a local minimum x∗ of problem (1.1)-(1.2), then there exists at least

one Lagrange multiplier vector that is informative [convexity of TX(x∗), which is guaranteed if X

is regular at x∗, is an essential property for this result to hold].

To place Prop. 1 in perspective, we note that its line of proof, based on the quadratic penalty

function, is due to McShane [McS73]. Hestenes [Hes75] observed that McShane’s proof can be

used to strengthen the complementary slackness condition to assert the existence, within any

neighborhood B of x∗, of an x ∈ B ∩X such that

λ∗i hi(x) > 0, ∀ i ∈ I, gj(x) > 0, ∀ j ∈ J, (2.11)

which is slightly weaker than condition (iv) of Prop. 1 [there is no requirement that x simultaneously

satisfies f(x) < f(x∗) and Eq. (2.2)]. McShane and Hestenes considered only the case where

X = <n. The case where X is a closed convex set was considered in Bertsekas [Ber99], where a

generalized version of the Mangasarian-Fromovitz constraint qualification was also proved. The

extension to the case where X is a general closed set and the strengthened version of condition

(iv) are presented in the present paper for the first time.

3. PSEUDONORMALITY AND CONSTRAINT QUALIFICATIONS

Proposition 1 leads to the introduction of a general constraint qualification under which the scalar

µ∗0 in Prop. 1 cannot be zero. In particular, let us say that a feasible vector x∗ of problem (1.1)-(1.2)

is pseudonormal if there are no scalars λ1, . . . , λm, µ1, . . . , µr, such that:

(i) −
(∑m

i=1 λi∇hi(x∗) +
∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all j /∈ A(x∗).

(iii) In every neighborhood B of x∗ there is an x ∈ B ∩X such that

m∑

i=1

λihi(x) +

r∑

j=1

µjgj(x) > 0. (3.1)

It can be seen that if x∗ is a pseudonormal local minimum, the Fritz John conditions of Prop.

1 cannot be satisfied with µ∗0 = 0, so that µ∗0 can be taken equal to 1. Then, if X is regular at x∗,

the vector (λ∗, µ∗) = (λ∗1, . . . , λ
∗
m, µ∗1, . . . , µ

∗
r) is an informative Lagrange multiplier.

Let us also mention another interesting property of the constraint set, called quasinormality ,

which is based on the condition (2.11). Quasinormality was introduced, for the case X = <n,



by Hestenes [Hes75], who showed how it can be used to unify various constraint qualifications.

Pseudonormality implies quasinormality, and is thus intermediate between the constraint qualifi-

cations of this paper and quasinormality. As we will show in Section 4, pseudonormality is more

naturally suited for showing results relating to the existence of exact penalties. Let us also note

that in a separate report we generalize the notion of quasinormality to the case where X 6= <n,

and we discuss its relation to a slightly weaker version of pseudonormality where the vector x in

Eq. (3.1) is additionally required to satisfy λihi(x) ≥ 0 for all i and µjgj(x) ≥ 0 for all j.

We now give some additional constraint qualifications, which together with CQ1-CQ3, given

in Section 1, will be seen to imply pseudonormality of a feasible vector x∗.

CQ4: X = <n and for some integer r < r, the following superset C of the constraint set C ,

C =
{
x | hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = r + 1, . . . , r

}
,

is pseudonormal at x∗. Furthermore, there exists a y ∈ <n such that

∇hi(x∗)′y = 0, i = 1, . . . ,m, ∇gj(x∗)′y ≤ 0, ∀ j ∈ A(x∗),

∇gj(x∗)′y < 0, ∀ j ∈ {1, . . . , r} ∩A(x∗).

Since CQ1-CQ3 imply pseudonormality, a fact to be shown in the subsequent Prop. 2, we see

that CQ4 generalizes all the constraint qualifications CQ1-CQ3.

CQ5:

(a) The equality constraints with index above some m ≤ m:

hi(x) = 0, i = m + 1, . . . ,m,

are linear.

(b) There does not exist a vector λ = (λ1, . . . , λm) such that

m∑

i=1

λi∇hi(x∗) ∈ NX (x∗) (3.2)

and at least one of the scalars λ1, . . . , λm is nonzero.

(c) The subspace

VL(x∗) =
{
y | ∇hi(x∗)′y = 0, i = m + 1, . . . , m

}



has a nonempty intersection with the interior of NX(x∗)⊥.

(d) There exists a y ∈ NX(x∗)⊥ such that

∇hi(x∗)′y = 0, i = 1, . . . ,m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

We refer to CQ5 as the generalized Mangasarian-Fromovitz constraint qualification, since it

reduces to CQ2 when X = <n and none of the equality constraints is assumed to be linear. This

constraint qualification has several special cases, which we list below.

CQ5a:

(a) There does not exist a nonzero vector λ = (λ1, . . . , λm) such that

m∑

i=1

λi∇hi(x∗) ∈ NX (x∗).

(b) There exists a y ∈ NX(x∗)⊥ such that

∇hi(x∗)′y = 0, i = 1, . . . ,m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

CQ5b: There are no inequality constraints, the gradients ∇hi(x∗), i = 1, . . . , m, are linearly inde-

pendent, and the subspace

V (x∗) =
{
y | ∇hi(x∗)′y = 0, i = 1, . . . , m

}

contains a point in the interior of NX (x∗)⊥.

CQ5c: X is convex, there are no inequality constraints, the functions hi, i = 1, . . . , m, are linear,

and the linear manifold
{
y | hi(x) = 0, i = 1, . . . ,m

}

contains a point in the interior of X .

CQ5d: X is convex, the functions gj are convex, there are no equality constraints, and there exists

a feasible vector x satisfying

gj(x) < 0, ∀ j ∈ A(x∗).



CQ5a is the special case of CQ5 where all equality constraints are assumed nonlinear. CQ5b is

a special case of CQ5 (where there are no inequality constraints and no linear equality constraints)

based on the fact that if ∇hi(x∗), i = 1, . . . ,m, are linearly independent and the subspace V (x∗)

contains a point in the interior of NX(x∗)⊥, then it can be shown that assumption (b) of CQ5

is satisfied. Finally, the convexity assumptions in CQ5c and CQ5d can be used to establish the

corresponding assumption (c) and (d) of CQ5, respectively. Note that CQ5d is the well-known

Slater constraint qualification, introduced in [Sla50].

Let us also mention the following constraint qualification.

CQ6: There are no scalars λ1, . . . , λm, µ1, . . . , µr such that conditions (i) and (ii) of the definition

of pseudonormality are satisfied.

CQ6 is the constraint qualification introduced by Rockafellar [Roc93], who used McShane’s

line of proof to derive the Fritz John conditions in the classical form where complementary slackness

replaces condition (iv) in Prop. 1. Clearly CQ6 is a more restrictive condition than pseudonormal-

ity, since it does not require condition (iii) of the definition of pseudonormality. It can be shown

that CQ6 together with regularity of X at x∗, is equivalent to CQ5a. This is proved by Rockafellar

and Wets [RoW98] in the case where X = <n, and can be verified in the more general case where

X 6= <n by using their analysis given in p. 226 of [RoW98]. However, CQ3, CQ4, and CQ5 do not

imply CQ6. Thus CQ6 is not as effective in unifying various existing constraint qualifications as

pseudonormality, which is implied by all the constraint qualifications CQ1-CQ6, as shown in the

following proposition.

Proposition 2: A feasible point x∗ of problem (1.1)-(1.2) is pseudonormal if any one of the

constraint qualifications CQ1-CQ6 is satisfied.

Proof: We will not consider CQ2 since it is a special case of CQ5. It is also evident that CQ6

implies pseudonormality. Thus we will prove the result for the cases CQ1, CQ3, CQ4, and CQ5

in that order. In all cases, the method of proof is by contradiction, i.e., we assume that there are

scalars λi, i = 1, . . . , m, and µj, j = 1, . . . , r, which satisfy conditions (i)-(iii) of the definition of

pseudonormality. We then assume that each of the constraint qualifications CQ1, CQ3, CQ4, and

CQ5 is in turn also satisfied, and we arrive at a contradiction.

CQ1 : Since X = <n, implying that NX (x∗) = {0}, and we have µj = 0 for all j /∈ A(x∗) by



condition (ii), we can write condition (i) as

m∑

i=1

λi∇hi(x∗) +
∑

j∈A(x∗)

µj∇gj(x∗) = 0.

Linear independence of ∇hi(x∗), i = 1, . . . ,m, and ∇gj(x∗), j ∈ A(x∗), implies that λi = 0 for all

i and µj = 0 for all j ∈ A(x∗). This, together with the condition µj = 0 for all j /∈ A(x∗), violates

condition (iii).

CQ3 : By the linearity of hi and the concavity of gj , we have for all x ∈ <n,

hi(x) = hi(x∗) +∇hi(x∗)′(x− x∗), i = 1, . . . ,m,

gj(x) ≤ gj(x∗) +∇gj(x∗)′(x− x∗), j = 1, . . . , r.

By multiplying these two relations with λi and µj , and by adding over i and j, respectively, we

obtain
m∑

i=1

λihi(x) +

r∑

j=1

µjgj(x) ≤
m∑

i=1

λihi(x∗) +

r∑

j=1

µjgj(x∗)

+




m∑

i=1

λi∇hi(x∗) +

r∑

j=1

µj∇gj(x∗)



′

(x− x∗)

= 0,

(3.3)

where the last equality holds because we have λihi(x∗) = 0 for all i and µjgj(x∗) = 0 for all j [by

condition (ii)], and
m∑

i=1

λi∇hi(x∗) +

r∑

j=1

µj∇gj(x∗) = 0

[by condition (i)]. On the other hand, by condition (iii), there is an x satisfying
∑m

i=1 λihi(x) +
∑r

j=1 µjgj(x) > 0, contradicting Eq. (3.3).

CQ4 : It is not possible that µj = 0 for all j ∈ {1, . . . , r}, since if this were so, the pseudonormality

assumption for C would be violated. Thus we have µj > 0 for some j ∈ {1, . . . , r} ∩ A(x∗). It

follows that for the vector y appearing in the statement of CQ4, we have
∑r

j=1 µj∇gj(x∗)′y < 0,

so that
m∑

i=1

λi∇hi(x∗)′y +

r∑

j=1

µj∇gj(x∗)′y < 0.

This contradicts the equation

m∑

i=1

λi∇hi(x∗) +

r∑

j=1

µj∇gj(x∗) = 0,



[cf. condition (i)].

CQ5 : We first show by contradiction that at least one of the λ1, . . . , λm and µj, j ∈ A(x∗) must

be nonzero. If this were not so, then by using a translation argument we may assume that x∗ is

the origin, and the linear constraints have the form a′ix = 0, i = m + 1, . . . ,m. Using condition (i)

we have

−
m∑

i=m+1

λiai ∈ NX(x∗). (3.4)

Let y be the interior point of NX(x∗)⊥ that satisfies a′iy = 0 for all i = m + 1, . . . , m, and let S be

an open sphere centered at the origin such that y + d ∈ NX(x∗)⊥ for all d ∈ S. We have from Eq.

(3.4),
m∑

i=m+1

λia′id ≥ 0, ∀ d ∈ S,

from which we obtain
∑m

i=m+1 λiai = 0. This contradicts condition (iii), which requires that there

exists some x ∈ S ∩X such that
∑m

i=m+1 λia′ix > 0.

Next we show by contradiction that we cannot have µj = 0 for all j. If this were so, by

condition (i) there must exist a nonzero vector λ = (λ1, . . . , λm) such that

−
m∑

i=1

λi∇hi(x∗) ∈ NX (x∗). (3.5)

By what has been proved above, the multipliers λ1, . . . , λm of the nonlinear constraints cannot be

all zero, so Eq. (3.5) contradicts assumption (b) of CQ5.

Hence we must have µj > 0 for at least one j, and since µj ≥ 0 for all j with µj = 0 for

j /∈ A(x∗), we obtain
m∑

i=1

λi∇hi(x∗)′y +

r∑

j=1

µj∇gj(x∗)′y < 0,

for the vector y of NX (x∗)⊥ that appears in assumption (d) of CQ5. Thus,

−




m∑

i=1

λi∇hi(x∗) +

r∑

j=1

µj∇gj(x∗)


 /∈

(
NX (x∗)⊥

)⊥
.

Since NX(x∗) ⊂
(
NX (x∗)⊥

)⊥
, this contradicts condition (i). Q.E.D.

A consequence of Prop. 2 is that each of the constraint qualifications CQ1-CQ6 implies that

x∗ is pseudonormal, so if X is regular at x∗, by Prop. 1, the constraint set C admits informa-

tive Lagrange multipliers at x∗. In the next two sections, we will also show similar implications

regarding the admittance of an exact penalty at x∗.



4. PSEUDONORMALITY AND EXISTENCE OF EXACT PENALTY FUNCTIONS

We will show that pseudonormality implies that the constraint admits an exact penalty, which

in turn, together with regularity of X at x∗, implies that the constraint set admits Lagrange

multipliers. We first use the generalized Mangasarian-Fromovitz constraint qualification CQ5 to

obtain a necessary condition for a local minimum of the exact penalty function.

Proposition 3: Let x∗ be a local minimum of

Fc(x) = f(x) + c




m∑

i=1

|hi(x)|+
r∑

j=1

g+
j (x)




over X . Then there exist λ∗1, . . . , λ
∗
m and µ∗1, . . . , µ

∗
r such that

−


∇f(x∗) + c




m∑

i=1

λ∗i∇hi(x∗) +

r∑

j=1

µ∗j∇gj(x∗)





 ∈ NX(x∗),

λ∗i = 1 if hi(x∗) > 0, λ∗i = −1 if hi(x∗) < 0, λ∗i ∈ [−1, 1] if hi(x∗) = 0,

µ∗j = 1 if gj(x∗) > 0, µ∗j = 0 if gj(x∗) < 0, µ∗j ∈ [0, 1] if gj(x∗) = 0.

Proof: The problem of minimizing Fc(x) over x ∈ X can be converted to the problem

minimize f(x) + c




m∑

i=1

wi +
r∑

j=1

vj




subject to x ∈ X, hi(x) ≤ wi, −hi(x) ≤ wi, i = 1, . . . ,m, gj(x) ≤ vj , 0 ≤ vj , j = 1, . . . , r,

which involves the auxiliary variables wi and vj. It can be seen that at the local minimum of this

problem that corresponds to x∗ the constraint qualification CQ5 is satisfied. Thus, by Prop. 2,

there exist multipliers satisfying the conditions of Prop. 1, which with straightforward calculation,

yield scalars λ∗1, . . . , λ
∗
m and µ∗1, . . . , µ

∗
r , satisfying the desired conditions. Q.E.D.

Proposition 4: If x∗ is a feasible vector of problem (1.1)-(1.2), which is pseudonormal, the

constraint set admits an exact penalty at x∗.

Proof: Assume the contrary, i.e., that there exists a continuously differentiable f such that x∗ is

a strict local minimum of f over the constraint set C, while x∗ is not a local minimum over x ∈ X

of the function

Fk(x) = f(x) + k




m∑

i=1

|hi(x)|+
r∑

j=1

g+
j (x)






for all k = 1, 2, . . . Let ε > 0 be such that

f(x∗) < f(x), ∀ x ∈ C with x 6= x∗ and ‖x− x∗‖ ≤ ε. (4.1)

Suppose that xk minimizes Fk(x) over the (compact) set of all x ∈ X satisfying ‖x − x∗‖ ≤ ε.

Then, since x∗ is not a local minimum of Fk over X, we must have that xk 6= x∗, and that xk is

infeasible for problem (1.2), i.e.,

m∑

i=1

|hi(xk)|+
r∑

j=1

g+
j (xk) > 0. (4.2)

We have

Fk(xk) = f (xk) + k




m∑

i=1

|hi(xk)|+
r∑

j=1

g+
j (xk)


 ≤ f(x∗), (4.3)

so it follows that hi(xk) → 0 for all i and g+
j (xk) → 0 for all j. The sequence {xk} is bounded and

if x is any of its limit points, we have that x is feasible. From Eqs. (4.1) and (4.3) it then follows

that x = x∗. Thus {xk} converges to x∗ and we have ‖xk − x∗‖ < ε for all sufficiently large k.

This implies the following necessary condition for optimality of xk (cf. Prop. 3):

−


1

k
∇f(xk) +

m∑

i=1

λk
i∇hi(xk) +

r∑

j=1

µk
j∇gj(xk)


 ∈ NX (xk), (4.4)

where

λk
i = 1 if hi(xk) > 0, λk

i = −1 if hi(xk) < 0, λk
i ∈ [−1, 1] if hi(xk) = 0,

µk
j = 1 if gj(xk) > 0, µk

j = 0 if gj(xk) < 0, µk
j ∈ [0, 1] if gj(xk) = 0.

In view of Eq. (4.2), we can find a subsequence {λk, µk}k∈K such that for some equality constraint

index i we have |λk
i | = 1 and hi(xk) 6= 0 for all k ∈ K or for some inequality constraint index j we

have µk
j = 1 and gj(xk) > 0 for all k ∈ K. Let (λ, µ) be a limit point of this subsequence. We then

have (λ, µ) 6= (0, 0), µ ≥ 0. Using the closure of the mapping x 7→ NX (x), Eq. (4.4) yields

−




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)


 ∈ NX(x∗). (4.5)

Finally, for all k ∈ K, we have λk
i hi(xk) ≥ 0 for all i, µk

j gj(xk) ≥ 0 for all j, so that, for all k ∈ K,

λihi(xk) ≥ 0 for all i, µjgj(xk) ≥ 0 for all j. Since by construction of the subsequence {λk, µk}k∈K,



we have for some i and all k ∈ K, |λk
i | = 1 and hi(xk) 6= 0, or for some j and all k ∈ K, µk

j = 1

and gj(xk) > 0, it follows that for all k ∈ K,

m∑

i=1

λihi(xk) +

r∑

j=1

µjgj(xk) > 0. (4.6)

Thus, Eqs. (4.5) and (4.6) violate the hypothesis that x∗ is pseudonormal. Q.E.D.

Proposition 5: Let x∗ be a feasible vector of problem (1.1)-(1.2), and let X be regular at x∗.

If the constraint set admits an exact penalty at x∗, it admits Lagrange multipliers at x∗.

Proof: Suppose that a given continuously differentiable function f(x) has a local minimum at

x∗. Then the function f(x)+ ‖x−x∗‖2 has a strict local minimum at x∗. Since C admits an exact

penalty at x∗, there exist λ∗i and µ∗j satisfying the conditions of Prop. 3 (the term ‖x−x∗‖2 in the

cost function is inconsequential, since its gradient at x∗ is 0). In view of the regularity of X at x∗,

the λ∗i and µ∗j are Lagrange multipliers. Q.E.D.
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