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1. Introduction. For a given n× n matrix A and vector b ∈�n, let x∗ and x̄ be solutions of the two linear
fixed point equations,

x=Ax+ b� x=��Ax+ b�� (1)

respectively, where � denotes projection on a k-dimensional subspace S with respect to certain weighted
Euclidean norm 	·	� , where � ∈�n is a vector of positive components. We assume that x∗ and x̄ exist, and that
the matrix I−�A is invertible, so x̄ is unique.
Our objective in solving the projected equation x=��Ax+ b� is to approximate the solution of the original

equation x = Ax+ b using k-dimensional computations and storage. Implicit here is the assumption that n is
very large, so n-dimensional vector-matrix operations are practically impossible, while k� n. This approach is
common in approximate dynamic programming (DP) for Markov decision processes (MDP) and has been central
in much of the recent research on the subject (see, e.g., Sutton [14], Tsitsiklis and Van Roy [17], Bertsekas and
Tsitsiklis [3], Sutton and Barto [15], Bertsekas [2]). Let us give the background of two important applications in
this context. For policy iteration algorithms, the evaluation of the cost vector of a fixed policy requires solution
of the equation x = Ax + b, where A is a stochastic or substochastic matrix. Simulation-based approximate
policy evaluation methods, based on temporal differences (TD), such as TD(�), LSTD(�), and LSPE(�), have
been successfully used to approximate the policy cost vector by solving a projected equation x =��Ax+ b�
with low-order computation and storage (see, e.g., Sutton [14], Tsitsiklis and Van Roy [17], Bertsekas and
Tsitsiklis [3], Sutton and Barto [15], Bertsekas [2]). More specifically, in this context, x∗ is the cost vector of
the policy to be evaluated; the original equation x = Ax + b is the Bellman equation (� = 0) or a multistep
Bellman equation (� ∈ �0�1); the weight vector � in the projection norm often corresponds to an invariant
distribution of the Markov chain associated with that policy; and the subspace S is determined indirectly by
certain numerical features characterizing the states of the Markov chain, without the need to store n-dimensional
basis vectors. Another important application of the approximation approach in Equation (1), in the context of
MDP, is in policy gradient methods of the actor-critic type (see e.g., Konda and Tsitsiklis [10], Konda [9]).
There, one evaluates parametrized policies, and the original equation again corresponds to the Bellman equation
or its multistep version. To estimate the gradient of the cost of a policy, the projected equation is solved and the
solution x̄ is used to approximate �x∗, the projection of some solution of the original equation. The smaller the
deviation of x̄ from �x∗, the smaller is the bias in the gradient estimation.
For the preceding MDP applications, often the model of the MDP that determines the values of A and b

is either unavailable or too large to be represented explicitly, and only trajectories of the Markov chain that
carry noisy information about the problem are observed or generated using a simulator. Then the projected
equation approach is applied together with simulation and stochastic approximation techniques, which enable
one to construct and solve the low-dimensional projected equation in a model-free manner. Applicability under
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an unknown model is another computational advantage of the projected equation approach and substantially
expands its range of practical MDP applications.
For another important context, we note that the projected equation approach of Equation (1) belongs to the

class of Galerkin methods and finds broad application in the approximate solution of linear operator equations;
see, e.g., Krasnose’skii et al. [11]. For example, important finite element and other methods for solving partial
differential equations belong to the Galerkin class. In our recent paper (Bertsekas and Yu [4]), we have extended
TD-type methods to the case where A is an arbitrary matrix, subject only to the restriction that I − �A is
invertible, using the Monte Carlo simulation ideas that are central in approximate DP. While our work in
Bertsekas and Yu [4] and the present work have been primarily motivated by the MDP context, they might find
substantial application within the Galerkin approximation context.
The focus of the present paper is on analyzing the approximation error of the projected equation approach.

The distance/error between x∗ and x̄ comprises two components (by the Pythagorean theorem):

	x∗ − x̄	� =
√
	x∗ −�x∗	2� +	�x∗ − x̄	2�� (2)

The first component 	x∗−�x∗	� , which is the distance between x∗ and �x∗, the best approximation of x∗ on the
approximation subspace S with respect to 	·	� , is the minimum error possible with any approximation methods
given S. Our focus will be on bounding the second component 	�x∗ − x̄	� , which is the bias in x̄ relative to the
best approximation �x∗, due to solving the projected equation. In the two aforementioned application contexts,
what adds to the complexity of error analysis is the need for bounds that can be practically evaluated when the
dimension n is very large, as well as when the model (A and b) is only indirectly available through simulation.
This is also an important characteristic that differentiates the analysis of the present paper from those in the
classic framework of Galerkin methods.
In the MDP context, for the case where �A is a contraction, there are two commonly used error bounds that

compare the norms of x∗ − x̄ and x∗ −�x∗. The first bound (see, e.g., Bertsekas and Tsitsiklis [3], Tsitsiklis
and Van Roy [17]) holds if 	�A	 = �< 1 with respect to some norm 	 · 	 and has the form

	x∗ − x̄	 ≤ 1
1−�

	x∗ −�x∗	� (3)

The second bound (see, e.g., Tsitsiklis and Van Roy [18], Bertsekas [2]) holds in the case where �A is a
contraction with respect to the Euclidean norm 	 ·	� , with � being the invariant distribution of the Markov chain
underlying the problem, i.e., 	�A	� = � < 1. It is derived using the Pythagorean theorem (2), and it is much
sharper than the first bound:

	x∗ − x̄	� ≤
1√

1−�2
	x∗ −�x∗	�� (4)

The bounds (3), (4) are determined by the modulus of contraction �. In the MDP context, � is known or can
be upper bounded by a known number, based on two parameters in the definition of �A, the discount factor of
the MDP and the value of � used in the TD algorithms. For example, for a discounted problem with discount
factor 0�99 and TD(0), � can be bounded by 0�99, and an application of (4) yields 	x∗ − x̄	� ≤ 7�1	x∗ −�x∗	� ;
similarly, with the discount factor being 0�999, 	x∗ − x̄	� ≤ 22�4	x∗ −�x∗	� . Although easy to compute, these
bounds tend to be conservative, particularly when the modulus of contraction of �A approaches 1 and the
bounds correspondingly tend to infinity. These bounds provide a qualitative guarantee of the approximation
quality of x̄ for those approximation subspaces that are close to the set of solutions x∗. But because they do not
use problem-dependent information, such as the relation between the subspace S and the matrix A, they do not
fully reflect the nature of the error/bias of the projected equation approach (as also indicated by their reliance on
the contraction property), and they cannot explain the causes of a large bias when the subspace S is reasonably
good, or of a small bias when S is far away from the set of solutions x∗.
The case where �A is not a contraction mapping is relevant not only for approximating solutions of general

linear equations, but also for MDP applications. For example, when evaluating a policy, it is often desirable
to occasionally deviate from that policy, and to explore states and controls that do not frequently occur under
that policy. Such exploration mechanisms result in a projected equation in which the weights in the projection
norm no longer correspond to the invariant distribution of the Markov chain associated with the policy to be
evaluated. As a result, �A need not be a contraction mapping.
The preceding contexts motivate us to develop error bounds of the general form

	x∗ − x̄	� ≤��A���S�	x∗ −�x∗	�� (5)
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Cone specified by error bound
�(A, �, S )

Approximation x
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–

Figure 1. The relation between the error bound and x̄: x̄ lies in the intersection of S and a cone that originates from x∗ and whose angle
is specified by the error bound ��A���S� as cos−1�1/���A���S���.
Notes. The smaller ��A���S� is, the sharper the cone is. The smallest bound ��A���S�= 1 implies x̄=�x∗.

where ��A���S� is a constant that depends on A, �, and S (but not on b), in contrast to the fixed error bounds
(3), (4). The general error bounds (5) not only can be sharper than the standard bounds for the case, where �A is
a contraction, but also apply when �A is not a contraction. Like the bounds (3), (4), we may view 	x∗ −�x∗	�
as the baseline error, i.e., the minimum error in estimating x∗ by a vector in the approximation subspace S.
We may view ��A���S� or equivalently

√
��A���S�2 − 1 as an upper bound to the amplification ratio or the

“bias-to-distance” ratio, 	x∗ − x̄	�
	x∗ −�x∗	�

�
	x̄−�x∗	�
	x∗ −�x∗	�

�

respectively. We note that these two ratios can be large and can be a significant cause for concern, as illustrated
by examples given in Bertsekas [1] (see also Bertsekas and Tsitsiklis [3, Example 6.5, pp. 288–289]). Figure 1
illustrates the relation between the bound (5), x∗ and x̄.
We derive mathematical expressions for ��A���S� that involve the spectral radii of small-size matrices,

which can be computed with low-dimensional operations, and simulation in the above application contexts, thus
providing a “data/problem-dependent” error analysis, in contrast to the error bounds (3), (4). These expressions
are derived by using the same line of analysis but with different degrees of concern for the ease of evaluating the
expressions in practice. All our bounds are independent of the parametrization of the subspace S. In particular,
we will derive two bounds:

��A���S�=
√
1+��G1�	�A	2� and ��A���S�=√

1+��G2��

where G1, G2 are k× k matrices and ��·� denotes the spectral radius of a matrix; see Theorems 2.1 and 2.2.
The matrix in the first bound is easy to compute for all TD-type methods, and in fact it can be readily com-
puted as a by-product of least-squares-based TD algorithms (e.g., Bradtke and Barto [6], Boyan [5], Nedić and
Bertsekas [13], Bertsekas and Yu [4]). The second bound is sharper than the first. It is, in fact, tight for a worst-
case choice of b; see Proposition 2.1 and Remark 2.3. Computing the matrix in the bound using simulation
involves more complex schemes, which we will demonstrate for applications involving TD(0)-type methods. We
will derive two additional bounds, one for characterizing the effect of a component of x∗ −�x∗ on the bias in x̄,
and the other for bounding a component of the approximation error x∗ − x̄; see Propositions 3.1 and 3.2. We will
also use a similar approach to derive a bound of the form (5) for an alternative regression-based approximation
method, the minimization of the equation error

min
x∈S

	x−Ax− b	2� � (6)

under the additional assumption that I−A is invertible; see Proposition 3.3. This bound also involves small-size
matrices that can be computed by simulation.
In connection with the Galerkin methodology, let us note that the approximation based on equation projection

[cf. Equation (1)] is known as the Bubnov-Galerkin method, while the regression-based least-squares-error
minimization [cf. Equation (6)] is a special case of the Petrov-Galerkin method; see, e.g., Krasnose’skii et al. [11].
Error analysis in the classic framework of Galerkin methods focuses on the asymptotic convergence and rate
of convergence of x̄ to x∗ as the approximation subspace expands and x∗ −�x∗ diminishes. For this purpose,
error bounds with analytical expressions suffice. Our error analysis departs from the classical analysis in that
a fixed approximation subspace is considered, and instead of bounds with analytical expressions, bounds with
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practically computable or partially computable expressions are sought. To our knowledge, the form of our error
bounds and the computational approach based on Monte Carlo simulation are new in the context of Galerkin
methods.
We note also that the type of error bounds we develop in this paper are a priori error estimates, in the sense

that they do not involve the equation error at x̄ and can be obtained before solving the approximating problems
for x̄. A useful a posteriori error bound involving the equation error is

	x̄− x∗	� ≤ 	�I−A�−1	�	x̄−Ax̄− b	��
which holds for any vector x̄, assuming the invertibility of I− A, as can be seen from the relation x̄ − x∗ =
�x̄−Ax̄−b�+ �Ax̄+b�− �Ax∗ +b�, which implies x̄−x∗ = �I−A�−1�x̄−Ax̄−b�. Note that this error bound
makes use of the value of b and therefore can be sharper than ours, which hold for all values of b. However, in
practice one must often solve a problem for a fixed A and a priori unknown multiple values of b, in which case
a posteriori bounds that depend on b are less useful. Furthermore, while the equation error 	x̄−Ax̄− b	� can
be estimated from simulation data after x̄ is computed, it is generally difficult to compute or bound 	�I−A�−1	�
using simulation data. In the case where 	A	� ≤ �< 1, i.e., A is a contraction mapping with respect to 	·	� , one
can bound 	�I−A�−1	� by 1/�1−��. But this leads to an overly conservative error estimate, like the bound (3),
unless the equation error is rather small. It is still unclear whether one can use an approach similar to that
of the present paper to sharpen the bound in this case. On the other hand, not using the a posteriori equation
error and/or the vector b is a limitation of our a priori error estimates, which makes them at best tight in some
worst-case sense. Combining them with a posteriori error estimates to obtain more powerful bounds is a subject
for future research.
We present our main results in the next section and additional related results in §3. In §4, we address the

application of the new error bounds to approximate policy evaluation in MDP and to the general problem of
approximate solution of large systems of linear equations. In §5, we address methods for the estimation of the
matrices in the bounds.

2. Main results. We first introduce the main theorems and explain the underlying ideas and then give the
proofs in §2.1 and compare the bounds in §2.2. Throughout the paper, x∗ denotes some solution of the equation
x=Ax+b; we implicitly assume that such a solution exists. When reference is made to x̄, we implicitly assume
that I −�A is invertible, and that x̄ is the unique solution of the equation x=��Ax+ b�.
The starting point for our bounding approach is the following equality, which relates the error/bias with the

baseline error, and holds without contraction assumptions:

x∗ − x̄= �I−�A�−1�x∗ −�x∗�� (7)

This can be seen by subtracting x̄=��Ax̄+ b� from �x∗ =��Ax∗ + b� to obtain

�x∗ − x̄=�A�x∗ − x̄� ⇒ ��x∗ − x∗�+ �x∗ − x̄�=�A�x∗ − x̄� ⇒ (7)�

We express �I−�A�−1 in the form �I−�A�−1 = I + �I−�A�−1�A� and correspondingly, the error as

x∗ − x̄= �x∗ −�x∗�+ �I−�A�−1�A�x∗ −�x∗�� (8)

We aim at bounding the second term �I−�A�−1�A�x∗−�x∗� directly; this term is the bias in x̄ relative to �x∗:

�x∗ − x̄= �I−�A�−1�A�x∗ −�x∗�� (9)

In doing so, we will obtain bounds that not only can be much sharper than the bounds (3) and (4) for the
contraction case but also apply to the noncontraction case.
Let � be an n×k matrix whose columns form a basis of S. Let � be a diagonal matrix with the components

of � on the diagonal. Define k× k matrices B, M , and F by

B=�′��� M =�′�A�� F = �I−B−1M�−1� (10)

We will show later that the inverse in the definition of F exists (Lemma 2.1). Notice that the projection matrix
� can be expressed as

�=���′���−1�′�=�B−1�′��

For a square matrix L, let ��L� denote the spectral radius of L.
We note that alternative matrix expressions in the subsequent bounds could be obtained by using a result of

Horn and Johnson [8, Theorem 1.3.20], which states that ��U1U2� = ��U2U1� for any n×m matrix U1 and
m× n matrix U2.
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Theorem 2.1. The approximation error x∗ − x̄ satisfies

	x∗ − x̄	� ≤
√
1+��G1�	�A	2� 	x∗ −�x∗	�� (11)

where G1 is the k× k matrix

G1 = B−1F ′BF � (12)

Furthermore, ��G1� = 	�I − �A�−1�	2� , so the bound (11) is invariant with respect to the choice of basis
vectors of S (i.e., �).

The idea of the proof of Theorem 2.1 is to combine Equation (8) with the bound

	�I−�A�−1�A�x∗ −�x∗�	� ≤ 	�I−�A�−1�	�	�A	�	x∗ −�x∗	�
and to show that 	�I−�A�−1�	2� = ��G1�. An important fact is that G1 can be obtained by simulation, using
low-dimensional calculations: The matrices B and M define the solution x̄, and estimating them is indeed the
basic procedure in several least-squares-based TD algorithms for computing x̄ (e.g., Bradtke and Barto [6],
Boyan [5], Nedić and Bertsekas [13], Bertsekas and Yu [4]), so with these algorithms, the bound can be obtained
together with the approximate solution x̄ without extra computation overhead.
While the bound of Theorem 2.1 can be conveniently computed, it is less sharp than the bound of the

subsequent Theorem 2.2, and under certain circumstances less sharp than the contraction-based bound (4). In
Theorem 2.1, 	�A	� is needed. It can be bounded by 	A	� , which in turn can be bounded by 1 when A is
nonexpansive and by a known number for certain MDP applications involving noncontraction mappings (see §4).
Generally, however, in the noncontraction case it might be hard to compute or estimate 	A	� . In Theorem 2.2,
	A	� is no longer needed; A is absorbed into the matrix to be estimated. Furthermore, Theorem 2.2 takes into
account that x∗ −�x∗ is perpendicular to the subspace S; this considerably sharpens the bound. On the other
hand, the sharpened bound of Theorem 2.2 involves a k× k matrix R (defined below) in addition to B and M ,
which might not be straightforward to estimate in some cases, as will be commented later.

Theorem 2.2. The approximation error x∗ − x̄ satisfies

	x∗ − x̄	� ≤
√
1+��G2�	x∗ −�x∗	�� (13)

where G2 is the k× k matrix

G2 = B−1F ′BFB−1�R−MB−1M ′�� (14)

and R is the k×k matrix R=�′�A�−1A′��� Furthermore, ��G2�= 	�I−�A�−1�A�I−��	2� , so the bound
(13) is invariant with respect to the choice of basis vectors of S (i.e., �).

The idea in deriving Theorem 2.2 is to combine Equation (8) with the bound

	�I−�A�−1�A�x∗ −�x∗�	� = 	�I−�A�−1�A�I−���x∗ −�x∗�	�
≤ 	�I−�A�−1�A�I−��	�	x∗ −�x∗	��

and to show that 	�I−�A�−1�A�I−��	2� = ��G2�. Incorporating the matrix I−� in the definition of G2 is
crucial for improving the bound of Theorem 2.1. Indeed, the bound of Theorem 2.2 can be shown to be tight in
the sense that for any A and S, there exists a worst-case choice of b for which the bound holds with equality
(Proposition 2.1 and Remark 2.3 in §2.2).
Estimating the matrix R, although not always as straightforward as estimating B and M , is still possible in a

number of applications. A primary exception is when A itself is an infinite sum of powers of matrices, which is
the case of the multistep projected Bellman equations solved by TD(�) with �> 0. We will address these issues
in §5.
Thus, Theorem 2.2 supersedes Theorem 2.1 in terms of sharpness of bounds, but the ease of evaluating the

bound makes Theorem 2.1 still useful in practice. In §2.2 we will compare the bounds and discuss weaknesses
in the bound of Theorem 2.1 as well as ways to improve it. The proofs given next contain the line of analysis
that will also be useful in deriving additional bounds in §3.
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2.1. Proofs of theorems. We shall need two technical lemmas. The first lemma introduces an expression of
the matrix �I−�A�−1 that will be used to derive our error bounds. The second lemma establishes the relation
between the norm of an n×n matrix that is a product of n× k and k×n matrices, and the spectral radius of a
certain product of k× k matrices.
Recall that � is an n× k matrix whose columns form a basis of S. As a linear mapping, � defines a one-to-

one correspondence between �k and S. Its inverse mapping is the unique linear transformation from S to �k,
denoted �−1, which has the property �−1��r�= r for all r ∈�k. (The inverse mapping �−1 has a representation
as a k×n matrix, and because by the definition (10) of B, we have �B−1�′����r�= r for all r ∈�k, a matrix
representation of �−1 is B−1�′�.)

Lemma 2.1. The matrix I−�A is invertible if and only if the inverse �I−B−1M�−1 defining F exists. When
I−�A is invertible, �I−�A�−1 maps S onto S, and furthermore,

�I−�A�−1 = I + �I−�A�−1�A= I +�FB−1�′�A� (15)

Proof. For a mapping T whose domain contains S, let T �S denote T restricted to S. We have that I−�A
maps S into S. The matrix I−�A is invertible if and only if there exists no z ∈�n, z �= 0 with �Az= z. Since
such vectors z, when they exist, lie necessarily in S, we see that I−�A is invertible if only if (i) holds, where
(i): I−�A restricted to S is invertible, so �I−�A��S defines a one-to-one mapping from S to S.

The statement in (i) is in turn equivalent to
(ii): The three-mapping composition

H =�−1 · �I−�A��S ·� (16)

defines a one-to-one mapping from �k to �k, so H−1 exists.
Hence I−�A is invertible if and only if H−1 exists. Using Equation (16) and �=�B−1�′�, we have

H =�−1 · �I−�A��S ·�= I−�−1 ·�A ·�= I−B−1�′�A�= I−B−1M� (17)

This shows that I−�A is invertible if and only if the inverse H−1 = �I−B−1M�−1 defining F exists.
When �I −�A�−1 exists, based on (i) above, �I −�A�−1 restricted to S coincides with the inverse of the

mapping �I−�A��S , therefore �I−�A�−1 maps S onto S, and furthermore, by Equation (16) and the existence
of H−1,

�I−�A�−1�S = ��I−�A�
∣∣
S
�−1 =� ·H−1 ·�−1� (18)

Equation (15) then follows from �I−�A�−1 = I + �I−�A�−1�A and Equations (18), (17) because

�I −�A�−1�A= �I−�A�−1
∣∣
S
·�A=� ·H−1 ·�−1 ·�A=�FB−1�′�A�

This completes the proof. �

Remark 2.1. The conclusion of the preceding lemma and its proof have analogous versions for general
linear mappings of projection onto S, i.e., linear mappings � with �2 = � whose range is S. For example
� = �D where D� = I. This is because the proof does not rely on which type of projection � is, so an
analogous expression of �I−�A�−1 for a general projection mapping can be derived similarly by substituting
the matrix expression of � in the proof. We also note that as mentioned earlier, B and M can be estimated by
simulation and low-order calculations (see e.g., Bradtke and Barto [6], Boyan [5], Nedić and Bertsekas [13],
Bertsekas and Yu [4]). Therefore, using the first part of Lemma 2.1, the existence of the inverse of I−�A can
also be verified using low-order calculations and simulation.

Lemma 2.2. Let H and D be an n × k and k × n matrix, respectively. Let 	·	 denote the standard
(unweighted) Euclidean norm. Then,

	HD	2� = 	�1/2HD�−1/2	2 = ���H ′�H��D�−1D′��� (19)

Proof. By the definition of 	·	� , for any x ∈�n, 	x	� = 	�1/2x	, where 	·	 is the standard Euclidean norm.
The first equality in Equation (19) then follows from the definition of the norms: for any n× n matrix E,

	E	� = sup
	x	�=1

	Ex	� = sup
	�1/2x	=1

	�1/2Ex	 = sup
	z	=1

	�1/2E�−1/2z	 = 	�1/2E�−1/2	�

where a change of variable z=�1/2x is applied to derive the third equality.
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For an n×n matrix E, we have 	E	 =√
��E ′E�. We proceed to prove the second equality in Equation (19)

by studying the spectral radius of the symmetric positive semidefinite matrix E ′E, where E = �1/2HD�−1/2.
Define W =H ′�H to simplify notation. We have

E ′E =�−1/2D′H ′�1/2 ·�1/2HD�−1/2 =�−1/2D′WD�−1/2�

The second equality in Equation (19) is equivalent to the relation ��E ′E�= ��W�D�−1D′��. The latter follows
from Horn and Johnson [8, Theorem 1.3.20], but for completeness, we give a short direct proof. Let � be a
nonzero (necessarily real) eigenvalue of E ′E, and let x be a nonzero corresponding eigenvector. We have

�−1/2D′WD�−1/2x= �x� (20)

so x is in col��−1/2D′�, the column space of �−1/2D′ and can be expressed as

x=�−1/2D′ r̄

for some vector r̄ ∈�k. Define r by

r = 1

�
WD�−1/2x= 1

�
WD�−1D′ r̄ �

Then, by Equation (20),

�−1/2D′r = �

�
x=�−1/2D′ r̄ ⇒ D′r =D′ r̄ �

so that

�r =WD�−1D′ r̄ =WD�−1D′r� (21)

This implies that � and r form an eigenvalue-eigenvector pair of the matrix W�D�−1D′�. Conversely, it is easy
to see that if � and r form an eigenvalue-eigenvector pair of the matrix W�D�−1D′�, then � and �−1/2D′r form
an eigenvalue-eigenvector pair of the matrix E ′E. Therefore,

��E ′E�= ��W�D�−1D′��= ���H ′�H��D�−1D′���

proving the second equality in Equation (19). �

We now proceed to prove Theorem 2.1.
Proof of Theorem 2.1. To simplify notation, let us denote y = x∗ −�x∗ and C = FB−1. By Equation (8)

and the Pythagorean theorem,

	x∗ − x̄	2� = 	y	2� +	�I−�A�−1�Ay	2�� (22)

It can be easily seen from the proof of Lemma 2.1 that �I−�A�−1�=�C�′�� Applying Lemma 2.2 to the
matrix �C�′� on the right-hand side with H =�C and D=�′�, we obtain

	�I−�A�−1�	2� = 	HD	2� = ��G�� where G= �H ′�H��D�−1D′��

Using this relation and the fact �=� ·�, we can bound the second term on the right-hand side of Equation (22)
by

	�I−�A�−1�Ay	2� = 	�I−�A�−1� ·�Ay	2� ≤ ��G�	�A	2�	y	2�� (23)

We also have

G= �H ′�H��D�−1D′�= �C ′�′��C���′��−1���= �FB−1�′B�FB−1�B= B−1F ′BF �

so G is the matrix G1 given in the statement of the theorem. The bound (11) then follows by combining Equa-
tions (22) and (23). Finally, because ��G1� is equal to 	�I−�A�−1�	2� , the bound depends on the approximation
subspace S and � and not the choice of �. �
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We now prove Theorem 2.2.
Proof of Theorem 2.2. Let us denote y = x∗ −�x∗ and C = FB−1. By Equation (8) and the Pythagorean

theorem, we have
	x∗ − x̄	2� = 	y	2� +	�I−�A�−1�Ay	2�� (24)

Similarly to the proof of Theorem 2.1, we proceed to bound the second term. Because

�I−���x∗ −�x∗�= x∗ −�x∗�

i.e., �I−��y = y, we have

	�I−�A�−1�Ay	� = 	�I−�A�−1�A�I−��y	� ≤ 	�I−�A�−1�A�I−��	�	y	�� (25)

By Lemma 2.1,
�I−�A�−1�A�I−��=�C�′�A�I−���

Applying Lemma 2.2 to the matrix �C�′�A�I−�� on the right-hand side with H =�C and D=�′�A�I−��,
we obtain

	�I−�A�−1�A�I−��	2� = 	HD	2� = ��G�� where G= �H ′�H��D�−1D′�� (26)

If we can establish that G is the matrix G2 given in the statement of the theorem, then the bound (13) will
follow by combining Equations (24), (25), and (26), and the invariance of the bound with respect to the choice
of � will follow from Equation (26).
Indeed, we have

D�−1D′ =�′�A�I−���−1�I−��′A′���

Using the definition B=�′��, we obtain ��−1 =���′���−1�′��−1 =�B−1�′� and it follows that

�I−���−1�I−��′ = �−1 −��−1 −�−1�′ +��−1�′

= �−1 − 2�B−1�′ +�B−1�′��B−1�′

= �−1 −�B−1�′�

Combining the preceding two equations, we see that the matrix D�−1D′ is

�′�A�I−���−1�I−��′A′�� = �′�A��−1 −�B−1�′�A′��

= �′�A�−1A′��−�′�A�B−1�′A′��

= R−MB−1M ′�

with R=�′�A�−1A′��� We also have

H ′�H =C ′�′��C =C ′BC�

so the matrix

G= �H ′�H��D�−1D′�=C ′BC�D�−1D′�= �FB−1�′B�FB−1��R−MB−1M ′�

is the matrix G2 given in the statement of the theorem. This completes the proof. �

Remark 2.2. Lemmas 2.1 and 2.2 are useful for deriving other bounds besides Theorems 2.1 and 2.2.
Several such bounds will be given in §3. In addition, we mention here that if the projection norm is 	·	� while
the approximation error is measured with respect to a different norm 	·	 �� , we can bound the error similarly,
with the bounds expressed in terms of small-size matrices, as follows. Starting with the equality (8), we apply
the triangle inequality instead of the Pythagorean theorem to obtain

	x∗ − x̄	 �� ≤ 	x∗ −�x∗	 �� +	�I−�A�−1�A�x∗ −�x∗�	 ���

and then bound the second term on the right-hand side using Lemmas 2.1 and 2.2. This argument can also be
applied to the case where � is a general linear mapping of projection onto S (cf. Remark 2.1).
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2.2. Comparison of error bounds. The error bounds of Theorems 2.1 and 2.2 apply to the general case
where �A is not necessarily a contraction mapping, while the contraction-based error bounds (3) and (4) apply
only when �A is a contraction. We will thus compare them for the contraction case. Nevertheless, our discussion
will illuminate the strengths and weaknesses of the new bounds for both contraction and noncontraction cases.
While the bounds (3), (4) can be derived in various equivalent ways, we will view them as relaxed versions

of Equation (7),
x∗ − x̄= �I−�A�−1�x∗ −�x∗��

In this way, we will place all the bounding approaches on an equal footing and be able to qualitatively compare
them. In particular, we can obtain the bound (3), which is 	x∗ − x̄	 ≤ 1/�1−��	x∗ −�x∗	 with �= 	�A	, by
writing

�I−�A�−1 = I +�A+ · · · �
and by upper-bounding each term in the expansion separately: 	��A�n	 ≤ �n. We can obtain the bound (4),
which is 	x∗ − x̄	� ≤ �1/

√
1−�2�	x∗ −�x∗	� with �= 	�A	� , by first writing

�I−�A�−1 = I +�A�I−�A�−1� (27)

then by using the Pythagorean theorem and Equation (7) to obtain

	x∗ − x̄	2� = 	x∗ −�x∗	2� +	�A�I−�A�−1�x∗ −�x∗�	2� = 	x∗ −�x∗	2� +	�A�x∗ − x̄�	2��
and finally by using the contraction property of �A to obtain

	x∗ − x̄	2� ≤ 	x∗ −�x∗	2� +�2	x∗ − x̄	2�
and rearranging terms. So equivalently, we can view the bound (4) as being derived by bounding the squared norm
of the bias�A�I−�A�−1�x∗−�x∗� by �2	x∗− x̄	2� , and relaxing the bound further to ��2/�1−�2��	x∗−�x∗	2,
using the fact that �A is a contraction with modulus �. By contrast, the bounds of Theorems 2.1 and 2.2 are
derived by bounding the norm of the equivalent expression �I −�A�−1�A�x∗ −�x∗� of the bias directly, as
shown earlier.

2.2.1. On the error bound of Theorem 2.2. We now show that the error bound of Theorem 2.2 is always
sharper than the bound (4), and furthermore, for both contraction and noncontraction cases, the error bound of
Theorem 2.2 is always the sharpest among all the bounds on 	x∗ − x̄	� that do not depend on the vector b
(Remark 2.3).

Proposition 2.1. Let �= 	�A	� and assume that �< 1. Then, the error bound of Theorem 2.2 is always
no worse than the error bound (4), i.e.,

1+��G2�≤
1

1−�2
�

where G2 is given by Equation (14).

Proof. Let ( = √
��G2�. If ( = 0, the statement is true. Consider now the case ( > 0. Because ( =√

��G2�= 	�I−�A�−1�A�I−��	� by Theorem 2.2, we need to show that

(2 = 	�I−�A�−1�A�I−��	2� ≤
1

1−�2
− 1= �2

1−�2
�

Consider a vector y �= 0 such that

	�I−�A�−1�A�I−��y	� = 	�I−�A�−1�A�I−��	� · 	y	� = (	y	�� (28)

Then we must have �I − ��y = y, i.e., �y = 0. (Otherwise, because ( > 0 and y �= 0 implies y �= �y by
Equation (28), by redefining y to be y−�y �= 0, we can decrease 	y	� while keeping the value of the left-hand
side of (28) unchanged, which would contradict the definition of matrix norm.) Consider the following two
equations in x,

x= �y−Ay�+Ax� x=��y−Ay�+�Ax=�Ax−�Ay� (29)
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where the second equation is a projected equation corresponding to the first. Then, a solution of the first equation
is x∗ = y. Denote the solution of the second equation by x̄. We have

�y− x̄=−x̄= �I−�A�−1�Ay = �I−�A�−1�A�I−��y� (30)

and by Equation (28),
	�y− x̄	� = (	y	� = (	y−�y	�� (31)

On the other hand, the error bound (4) for this case is equivalent to

	�y− x̄	2� ≤
(

1
1−�2

− 1
)
	y−�y	2� =

�2

1−�2
	y−�y	2��

Together with Equation (31), this implies (2 ≤ �2/�1−�2�. �

Remark 2.3. The proof shows that regardless of whether �A is a contraction, the bound of Theorem 2.2 is
tight, in the sense that for any A and S, there exists a worst-case choice of b for which the bound of Equation (13)
in Theorem 2.2 holds with equality. This is the vector b = y−Ay where y is any nonzero vector that satisfies
Equation (28), as can be seen from the proof arguments in Equations (28)–(31).

2.2.2. On the error bound of Theorem 2.1. We now compare the error bound of Theorem 2.1 with the
bounds (3) and (4). Because Theorem 2.1 is effectively equivalent to

	�I−�A�−1�A�x∗ −�x∗�	� ≤ 	�I−�A�−1�	�	�A	�	x∗ −�x∗	��
we see that the bound of Theorem 2.1 is never worse than the bound (3), because we have bounded the norm
of the matrix �I−�A�−1� as a whole, instead of bounding each term in its expansion separately, as in the case
of the bound (3).
However, the bound of Theorem 2.1 can be degraded by an over-relaxation: the residual vector x∗ −�x∗ is

special in that it satisfies ��x∗ −�x∗�= 0, but the bound does not use this fact, unlike Theorem 2.2. This over-
relaxation can have a significant effect when A has a dominant real eigenvalue ) ∈ �0�1� with an eigenvector z
that lies in the approximation subspace S. In such a case,

	�I−�A�−1�z	� = 	�I−�A�−1z	� =
1

1−)
	z	�� (32)

so we have
	�I−�A�−1�	� ≥

1
1−)

�

resulting in a large value of the bound if ) is close to 1. By contrast, the residual vector x∗ −�x∗ cannot both
be contained in S and be nonzero. Moreover, it can be shown that the bias in x̄ is small if the residual vector
is close to some eigenvector of A corresponding to a real eigenvalue, and in particular, there is no bias in x̄ if
the residual vector is such an eigenvector. 1 By contrast, as indicated by the discussion following Equation (32),
the over-relaxation in the bounding procedure can have a pronounced effect when the approximation subspace
S nearly contains the direction of an eigenvector of A associated with a real or complex eigenvalue close to 1,
(where the relation of S with a complex eigenvector is considered in the complex vector space �n with S being
a subspace in the latter).

1 When x∗−�x∗ lies in the eigenspace of A corresponding to some real eigenvalue ), using the equation �A�x∗−�x∗�= )��x∗−�x∗�= 0,
we have

�x∗ =��Ax∗ + b�=�A�x∗ −�x∗�+�A�x∗ +�b=�A�x∗ +�b�

which shows that �x∗ satisfies the projected equation, so x̄ =�x∗. Similarly, when x∗ −�x∗ is close to such an eigenspace of A, x̄ and
�x∗ are also close to each other. This can be seen as follows. Using ��x∗ −�x∗�= 0, we have for any scalar ),

�A�x∗ −�x∗�=��A−)I��x∗ −�x∗��

Therefore, using Equation (9), the bias in x̄ can be bounded by

	x̄−�x∗	� ≤ 	�I−�A�−1�	�g�x∗ −�x∗�� where g�z�=min
)∈�

	�A−)I�z	� �
The function g is continuous and vanishes at eigenvectors of A corresponding to real eigenvalues, which shows that if x∗ −�x∗ is close to
such an eigenvector of A, then the bias in x̄ is close to zero.
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Approximation x

Cone specified by �(A, �, V + W )

Cone specified by �(A, �, W )

x* – ∏V x*

∏V x*

∏V + W x* W

∏W x*

V
V + W

x*

ˆ

Figure 2. Illustration of Proposition 2.2 on transferring error bounds from one approximation subspace to another.
Notes. The subspaces V and W are such that V ⊥ W and �V x

∗ is known. The error bounds of Theorems 2.1 and 2.2 associated with
the approximation subspace W can be transfered to V +W by solving the projected form of an equation satisfied by x∗ −�V x

∗ with the
approximation subspace being W , adding to this solution �V x

∗, and then taking the combined solution as the approximation x̂. In particular,
x̂=�V x

∗ + x̄w , where x̄w is the solution of x=�WAx+�W b̃ with b̃= b+A�V x
∗ −�V x

∗.

We thus consider ways of applying Theorem 2.1 that can be useful for obtaining sharper bounds under such
circumstances. We describe one approach here, and a second one in the next section (Proposition 3.2). The idea is
to approximate the projection of x∗ on a smaller subspace excluding the troublesome eigenspace and to transfer
the corresponding error bound, hopefully a better bound, to the original subspace. This can be applied with
Theorem 2.2 as well. We give a formal statement in the following proposition; see Figure 2 for an illustration.
In what follows, for a subspace V of �n, let �V denote the projection on V with respect to 	 · 	� . The inner

product in �n is taken to be �x� y�� = x′�y for any x� y ∈�n, and orthogonality between vectors and subspaces
of �n is accordingly defined with respect to �·� ·�� .

Proposition 2.2. Let V andW be two orthogonal subspaces of �n. Assume that �Vx
∗ is known and I−�WA

is invertible. Let ��A���W� correspond to either the error bound of Theorem 2.1 or that of Theorem 2.2 with
S =W . Then

	x∗ − x̂	� ≤��A���W�	x∗ −�V+Wx
∗	��

where x̂=�Vx
∗ + x̄w and x̄w is the solution of

x=�WAx+�W b̃� (33)

with b̃= b+A�V x
∗ −�Vx

∗.

Proof. First, notice that for any linear equation x=Ax+b, the error bounds of Theorems 2.1 and 2.2 do not
depend on the vector b. Because x∗−�Vx

∗ satisfies the linear equation x=Ax+ b̃ with b̃= b+A�V x
∗−�Vx

∗,
and x̄w is the solution of the corresponding projected equation, we have

	�x∗ −�Vx
∗�− x̄w	� ≤��A���W�	�x∗ −�Vx

∗�−�W�x
∗ −�Vx

∗�	��
Because W ⊥ V , �Wx

∗ = �W�x
∗ −�Vx

∗� and �V+Wx
∗ = �Vx

∗ +�Wx
∗. Therefore, the above inequality is

equivalent to
	x∗ − x̂	� ≤��A���W�	x∗ −�V+Wx

∗	��
with x̂=�Vx

∗ + x̄w. �

Remark 2.4. We discuss implications of the proposition when V is an eigenspace of A, or more generally,
an invariant subspace of A, namely, A�V � ⊂ V . In such a case, A�V x

∗ ∈ V , so �W b̃ = �Wb by the mutual
orthogonality of V and W , and �Vx

∗ is not needed in the projected Equation (33) for x̄w. Then, we might not
need to compute �Vx

∗. An example is policy evaluation in MDP where V is the span of the constant vector
of all ones, and correspondingly, �Vx

∗ is constant over all states and therefore an unimportant component of
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the cost vector x∗, which can be neglected in the process of policy iteration. When V is an eigenspace or
invariant subspace of A, there is a simple relation between x̂ and the solution x̄ of the projected equation
x=�V+Wb+�V+WAx. We have

�W x̄=�Wb+�WA��W x̄+�V x̄�=�Wb+�WA��W x̄��

so �W x̄ =�W x̂ = x̄w. Furthermore, because �V x̂ =�Vx
∗, the bias in x̂ is alway no greater than the bias in x̄

relative to �V+Wx
∗. (If V is not an invariant subspace of A, these no longer hold, which seems to imply that

the bias in x̄ might happen to be smaller than that in x̂, although in computing x̄ we do not use the knowledge
of �Vx

∗.)
Remark 2.5. Proposition 2.2 also holds with �Vx

∗ replaced by any vector v ∈ V . In particular, we have

	x∗ − x̂	� ≤��A���W�	x∗ − �v+�Wx
∗�	��

where x̂= v+ x̄w and x̄w is the solution of the projected equation x=�WAx+�W b̃ with b̃= b+Av− v. This
implication can be useful when �Vx

∗ is unknown: we may substitute v as a guess of �Vx
∗.

We now mention another over-relaxation in the bound of Theorem 2.1. It has a less-pronounced effect than
the first over-relaxation we just discussed but can degrade the bound in practice if �A is zero or near zero.
When Theorem 2.1 is applied in practice, typically 	�A	� is unknown, and we substitute this term in the bound
with some upper bound of it,2 for instance, 	A	� if the latter is known. Then, the bound we apply would be
equivalent to

	�I−�A�−1�A�x∗ −�x∗�	� ≤ 	�I−�A�−1�	�	A	�	x∗ −�x∗	��
From the expression

�I−�A�−1�A=�A+�A�I−�A�−1�A� (34)

we can see that when �A= 0 and A �= 0, the above matrix is zero but the bound

	�I−�A�−1�	�	A	� = 	�+�A�I−�A�−1�	�	A	� =
√
��G1�	A	�

is not, as ��G1�= 	�	2� = 1. Similarly, over-relaxation occurs when �A is not zero but is near zero, because
the matrices � and A are split in the bounding procedure.
The two shortcomings of the bound of Theorem 2.1 arise in the MDP applications that we will discuss,

as well as in more general contexts with noncontraction mappings. On the other hand, even for contraction
mappings, there are cases where Theorem 2.1 provides sharper bounds than the fixed error bound (4), and cases
where Theorem 2.1 gives computable bounds while the bound (4) provides no quantitative information—for
example, when �A is a contraction but with the modulus of contraction being unknown, as is the case with
policy evaluation in MDP under the average cost criterion (see §4).

3. Related results. In this section, we first give two error bounds (Propositions 3.1 and 3.2) for projected
equations that are in decomposition forms. The first bound is expressed in terms of components of the residual
vector x∗ −�x∗ in mutually orthogonal subspaces, and the second bound is a bound on a component of the
approximation error x∗ − x̄ in some subspace of interest. We then derive an analogous computable error bound
(Proposition 3.3) for an alternative approximation approach, namely, the equation error minimization method.
Our line of analysis is similar to the one in §2. In particular, Propositions 3.1, 3.2, and 3.3 require applications
of Lemma 2.2 with different matrices, just like Theorems 2.1 and 2.2.

3.1. Error bounds in decomposition forms for projected equations. We first investigate how the compo-
nent of the residual vector x∗ −�x∗ in some subspace could affect the bias x̄−�x∗. The following proposition
provides a decomposition of error bound. Each term in the bound can be estimated easily (even for projected
equations corresponding to TD(�) with � > 0), as in Theorem 2.1, while the analysis takes into account that
x∗ −�x∗ is orthogonal to S, like in Theorem 2.2. Because of the latter, the bound is not susceptible to the
over-relaxation issues in the bound of Theorem 2.1 as discussed in §2.2.2.

2 We note a subtlety here relating to the computation of the bound of Theorem 2.1 in practice. As an application of Lemma 2.2, the term
	�A	� can be expressed in terms of the spectral radius of a small-size matrix, which can be estimated using simulation for certain cases.
However, such calculation involves the same procedure as estimating the matrix R in the calculation of the bound of Theorem 2.2, while
Theorem 2.2 supersedes Theorem 2.1. Hence, if we can carry out such calculation, we should use Theorem 2.2 instead of Theorem 2.1.
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Proposition 3.1. Let �Si� i= 1� / / / �m, be m mutually orthogonal subspaces of �n such that

x∗ −�x∗ ∈ �S1 + �S2 + · · ·+ �Sm�
Let 0i be an n× k̂i matrix whose columns form a basis of �Si, i= 1� / / / �m, respectively. Then

	x̄−�x∗	� ≤
m∑
i=1

√
�� �Gi�	��i�x

∗ −�x∗�	�� (35)

where ��i is the mapping of projection on �Si with respect to 	·	� , and �Gi is the k̂i × k̂i matrix

�Gi = �B−1
i

�C ′
iB �Ci�

with
�Ci = FB−1�Ei�1 −MB−1Ei�2��

and
�Bi =0 ′

i �0i� Ei�1 =�′�A0i� Ei�2 =�′�0i�

Furthermore, �� �Gi�= 	�I−�A�−1�A�I−�� ��i	2�� so the bound (35) is invariant with respect to the choice
of basis vectors of �Si� i= 1� / / / �m, and S (i.e., 0i� i= 1� / / / �m� and �).

Proof. Our line of analysis is the same as the one for Theorem 2.2. Let us denote y = x∗ − �x∗ and
C = FB−1. The assumption implies that y =∑m

i=1 ��iy. Together with Equation (9), this shows

�x∗ − x̄= �I−�A�−1�A�I−��y =
m∑
i=1

�I−�A�−1�A�I−�� ��iy� (36)

By Lemma 2.1 and the definition of ��i,

�I−�A�−1�A�I−�� ��i =�C�′�A�I−��0i
�B−1
i 0 ′

i �� (37)

Applying Lemma 2.2 to the matrix on the right-hand side with

H =�C�′�A�I−��0i
�B−1
i � D=0 ′

i ��

we have
	�I−�A�−1�A�I−�� ��i	� =

√
��G�� (38)

where G= �H ′�H��D�−1D′�, and therefore,

	�I−�A�−1�A�I−�� ��iy	� = 	�I−�A�−1�A�I−�� ��i · ��iy	� ≤
√
��G�	 ��iy	�� (39)

We now verify that G is the matrix �Gi given in the statement. We have

H =�C�′�A�I−��0i
�B−1
i =�C�Ei�1 −MB−1Ei�2� �B−1

i =� �Ci
�B−1
i �

so with D�−1D′ = �Bi, we have

G= �H ′�H��D�−1D′�= �B−1
i

�C ′
iB �Ci = �Gi�

Combining Equations (36), (39), and the triangle inequality, we obtain the bound (35) and its invariance with
respect to the choice of basis vectors of S and �Si� i= 1� / / / �m. �

In the above bound, for all i, the matrices �Bi and Ei�2 have similar forms to the matrix B, and the matrices
Ei�1 have similar forms to the matrix M . The procedure for estimating B and M can be used directly to estimate
these matrices. In particular, to estimate Ei�1 or Ei�2 we can apply the estimation procedure for M =�′�A� or
B =�′��, respectively, with the second matrix � replaced by 0i; and similarly, to estimate �Bi, we can apply
the procedure for B with � replaced by 0i.
Although it is generally impractical to estimate all terms involved in the above bound, it might be of interest

in special cases to calculate some of the individual terms. For example, suppose the subspace S is close to x∗,
so the residual x∗ −�x∗ is small. Then, if some term �� �Gi� is significantly larger than 1, we might consider
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including the corresponding subspace �Si in the approximation subspace to prevent a potentially large bias in the
approximating solution caused by the residual component ��i�x

∗ −�x∗� in the worst case.
A special choice of S often used in practice is the one resulting from a hard aggregation scheme: we partition

11�2� / / / � n2 into k subsets and let S be the set of vectors that are constant over each subset. Then, �Si can
naturally be chosen to correspond to a finer partition of some subset.
We now bound a component of the approximation error, �Ŝ�x

∗ − x̄�, in some subspace Ŝ, where �Ŝ denotes
projection on Ŝ with respect to 	·	� . This type of bound can be useful when we are interested in the approx-
imation error in a small subset of entries of x̄; in the MDP context, these entries correspond to a subset of
states.
We observe from Equation (8) that

�Ŝ�x
∗ − x̄�=�Ŝ�x

∗ −�Sx
∗�+�Ŝ�I−�SA�

−1�SA�x
∗ −�Sx

∗�� (40)

Similarly to the derivation of Theorem 2.1, we can bound the first term by

	�Ŝ�x
∗ −�Sx

∗�	� = 	�Ŝ�I−�S��x
∗ −�Sx

∗�	� ≤ 	�Ŝ�I−�S�	�	x∗ −�Sx
∗	��

and bound the second term by

	�Ŝ�I−�SA�
−1�SA�x

∗ −�Sx
∗�	� ≤ 	�Ŝ�I−�SA�

−1�S	�	�SA	�	x∗ −�Sx
∗	��

We then apply Lemmas 2.1 and 2.2 to express the matrix norms 	�Ŝ�I−�S�	� , 	�Ŝ�I−�SA�
−1�S	� in the

above bounds as the spectral radii of small-size matrices. Applying the triangle inequality with Equation (40)
then gives us a bound on 	�Ŝ�x

∗ − x̄�	� .
Alternatively, we can derive another bound on 	�Ŝ�x

∗ − x̄�	� similarly to the derivation of Theorem 2.2 as
follows. We start with the equality relation

�Ŝ�x
∗ − x̄�=�Ŝ�I−�SA�

−1�x∗ −�Sx
∗��

which follows from Equation (7) and is equivalent to Equation (40). We then bound 	�Ŝ�x
∗ − x̄�	� using the

fact that

	�Ŝ�I−�SA�
−1�x∗ −�Sx

∗�	� = 	�Ŝ�I−�SA�
−1�I−�S��x

∗ −�Sx
∗�	�

≤ 	�Ŝ�I−�SA�
−1�I−�S�	�	x∗ −�Sx

∗	��
and we apply Lemma 2.1 to obtain the expression �I − �SA�

−1�I − �S� = I + �FB−1�′��A − I�, and we
subsequently apply Lemma 2.2 to express the matrix norm 	�Ŝ�I−�SA�

−1�I−�S�	� as the spectral radius of
a small-size matrix.
We state in the following proposition the two bounds on 	�Ŝ�x

∗ − x̄�	� that we just discussed, omitting the
algebraic details of the proof.

Proposition 3.2. Let Ŝ be a subspace of �n and 0 be an n× k̂ matrix whose columns form a basis of Ŝ.
Let

�B=0 ′�0� �E =�′�0� �M =�′�A0� �C = �E ′FB−1�

Then
	�Ŝ�x

∗ − x̄�	� ≤
(√

�� �G1�+
√
�� �G2�	�SA	�

)
	x∗ −�Sx

∗	�� (41)

where �G1 and �G2 are k̂× k̂ matrices given by

�G1 = I− �B−1 �E ′B−1 �E� �G2 = �B−1 �CF ′ �E�
Also,

	�Ŝ�x
∗ − x̄�	� ≤

√
�� �G3�	x∗ −�Sx

∗	�� (42)

where �G3 is a k̂× k̂ matrix given by

�G3 = I + �G2 + �B−1�W +W ′�+ �B−1 �C�R−M −M ′� �C ′�
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with
W = �C� �M − �E��

and R as given in Theorem 2.2. Furthermore,

�� �G1�= 	�Ŝ�I−�S�	2�� �� �G2�= 	�Ŝ�I−�SA�
−1�S	2�� �� �G3�= 	�Ŝ�I−�SA�

−1�I−�S�	2��
so the bounds (41), (42) are invariant with respect to the choice of basis vectors of Ŝ and S (i.e., 0 and �).

In the preceding proposition, the matrices �B and �E have similar forms to the matrix B, while the matrix �M
has a similar form to the matrix M . Therefore, they can be estimated using respective procedures for estimating
B and M with simulation, as explained earlier after the proof of Proposition 3.1. Estimating the bound (41)
is thus straightforward for all TD-type methods, while estimating the bound (42) is less so because it involves
the matrix R given in Theorem 2.2. When the approximation subspace S nearly contains the direction of some
eigenvector of A associated with an eigenvalue close to 1, but the subspace Ŝ of interest does not, the bound (41)
may be used as an alternative way besides Proposition 2.2 to bypass the eigenspace-related over-relaxation issue
in the bound of Theorem 2.1 as discussed in §2.2.2.

3.2. Error bound for an alternative approximation method. Our line of analysis in §2 can also be
applied to obtain analogous data-dependent error bounds on the amplification/bias-to-distance ratio for a different
approximation approach, which uses the solution of

min
x∈S

	x−Ax− b	2� (43)

as an approximation of x∗. We will make the assumption that I−A is invertible, under which both x∗ and the
solution of (43) are unique.

Proposition 3.3. Assume I−A is invertible. Let x̃ be the solution of the minimization problem (43). Then

	x∗ − x̃	� ≤
√
1+�� �G�	x∗ −�x∗	�� (44)

where �G is the k× k matrix
�G= B �E �R �E− I� (45)

with
B=�′��� �E = ��′L′�L��−1� �R=�′L′�L�−1L′�L�� (46)

and L= I−A. Furthermore, the bound (44) is invariant with respect to the choice of basis vectors of S (i.e., �).

Proof. The bound is equivalent to the bound on the bias: 	x̃ −�x∗	� ≤
√
�� �G�	x∗ −�x∗	� . First, we

establish an equality relation analogous to Equations (7) and (9):

x̃−�x∗ =C�x∗ −�x∗�� where C =���′L′�L��−1�′L′�L� (47)

We then apply Lemma 2.2, taking into account that ��x∗ −�x∗�= 0, similarly to the analysis for Theorem 2.2.
The minimization problem (43) can be written as minr∈�k 	L�r − b	2� . The optimality condition is

�′L′��Lx̃− b�= 0�

Because Lx∗ − b= 0, we also have

�′L′��L�x∗ − b�=�′L′�L��x∗ − x∗��

Subtracting the last two equations, we have

�′L′�L�x̃−�x∗�=�′L′�L�x∗ −�x∗��

Because L is invertible and � has full rank, �′L′�L� is invertible. Multiplying both sides of the above equation
by ���′L′�L��−1, and using the fact that x̃−�x∗ =�r ∈ S for some r , we obtain

x̃−�x∗ =���′L′�L��−1�′L′�L�x∗ −�x∗��

which is Equation (47).
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Because ��x∗ −�x∗�= 0, Equation (47) is further equivalent to

x̃−�x∗ =���′L′�L��−1�′L′�L�I−���x∗ −�x∗�� (48)

Therefore,
	x̃−�x∗	� ≤ 	���′L′�L��−1�′L′�L�I−��	�	x∗ −�x∗	��

Applying Lemma 2.2 to the matrix in the right-hand side with

H =�� D= ��′L′�L��−1�′L′�L�I−��= �E�′L′�L�I−���

we have
	x̃−�x∗	� ≤

√
��G�	x∗ −�x∗	��

where G= �H ′�H��D�−1D′�= B�D�−1D′�. Similarly to the calculation in the proof of Theorem 2.2, it can
be shown that

D�−1D′ = �E� �R− �MB−1 �M ′� �E ′�

where
�R=�′L′�L�−1L′�L�� �M =�′L′�L�= �E−1�

Thus,
G= B �E �R �E− I�

which is the matrix �G given in Equation (45).
Finally, we prove that the bound is invariant with respect to the choice of basis vectors of S. To see this, we

write the matrix ���′L′�L��−1�′L′�L�I−�� in Equation (48) equivalently as the product of three matrices:
L−1 · L���′L′�L��−1�′L′� · L�I−��� The first and the third matrices clearly do not depend on the choice
of �, while the second matrix is the projection mapping on the subspace L�S� with respect to 	 · 	� , hence it
also does not depend on the choice of �. Therefore, the bound is invariant with respect to the choice of �. �

Similarly to the argument in the proof of Proposition 2.1 [cf. Remark 2.3], one can show that the bound
of Proposition 3.3 is tight, in the sense that for any A and S, there exists a worst-case choice of b for which
the bound holds with equality. One could also use an argument similar to that for Proposition 3.2 to bound a
component of the approximation error, � �S�x

∗ − x̃�, in some subspace �S of interest.
We also note an alternative expression of the bound of Proposition 3.3 and an alternative way of proof. We

have 1+ �� �G� = �� �G+ I� because the eigenvalues of the matrix �G are all real and nonnegative, as shown
in the proof of Lemma 2.2. We thus obtain

√
1+�� �G�=

√
��B �E �R �E�. As B. Scherrer pointed out to us, one

may prove the bound alternatively as follows. We start with the relation x̃− x∗ = �C− I��x∗ −�x∗�, where the
matrix C is given in Equation (47), exploit the idempotent property of C (i.e., C2 =C) and its implication that
	C − I	� = 	C	� when C is neither the identity nor the zero matrix (see e.g., Szyld [16]), and then proceed
with Lemma 2.2 to obtain the bound.
The matrices �E−1 and �R have similar forms to the matrices B and R, respectively, with the matrix L� in

place of the matrix � in B and R. This shows that the procedures for estimating B and R can be applied with
slight modifications to estimate �E−1 and �R.

4. Applications. We consider two applications of Theorems 2.1 and 2.2. The first one is cost function
approximation in MDP with TD-type methods. This includes single policy evaluation with discounted and
undiscounted cost criteria, as well as optimal cost approximation for optimal stopping problems. The second
application is approximating solutions of large general systems of linear equations. We also illustrate with figures
various issues discussed in §2.2 on the comparison of the bounds.

4.1. Cost function approximation for MDP. We start with the case of policy evaluation in MDP and
consider the case of optimal cost approximation in stopping problems in §4.1.3. For policy evaluation, x∗ is the
cost function of the policy to be evaluated. Let P be the transition matrix of the Markov chain induced by the
policy. For simplicity of discussion, we assume that the Markov chain is irreducible. The original linear equation
that we want to solve is the Bellman equation, or optimality equation, satisfied by x∗. It takes the form

x= g+�Px�
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S

S

e

ˆ

Figure 3. Illustration of Ŝ, the orthogonal complement of Ve in S+Ve with Ve = Span1e2, i.e., Ŝ = �S+Ve�∩V ⊥
e .

where g is the per-stage cost vector, and � ∈ 50�1 is the discount factor: � ∈ 50�1� corresponds to the discounted
cost criterion, while �= 1 corresponds to either the total cost criterion or the average cost criterion (in the latter
case g is the per-stage cost minus the average cost).
With the TD(�) method, we solve a projected form of the multistep Bellman equation parametrized by

� ∈ 50�1 and satisfied by x∗. Let T be the Bellman operator given by T �x�= g+�Px. The multistep Bellman
equation corresponding to � and its projected form solved by TD(�) are given by

x= T ����x�= b+Ax� x=�b+�Ax� (49)

respectively, where the mapping T ���, the matrix A, and the vector b are defined for a pair of values ����� with
� ∈ 50�1 for � ∈ 50�1� and � ∈ 50�1� for �= 1 by

T ����x�= �1−��
�∑

m=0
�mT m+1�x�� � ∈ 50�1�� T �1��x�= lim

�→1
T ����x��

and

A= P����� def= �1−��
�∑

m=0
�m��P�m+1� b=

�∑
m=0

�m��P�mg� (50)

(We omit the case � = 1�� = 1 for simplicity of discussion; it requires additional notation but can be dealt
with similarly.) Notice that when �= 0, we have A= �P and b = g, and TD(0) solves the projected Bellman
equation. On the other hand, when �= 1 and �< 1, A is the zero matrix and b= x∗, (so the projected equation
is vacuous), and TD(1) computes the projection of the solution x∗. In general, when � is between zero and one,
there is a trade-off between the potential bias in the approximating solution x̄ and the variance of the estimators
of x̄ using simulated trajectories of the Markov chain. The increase in the variance as � approaches 1 is in part
due to the increasing variance of estimators of terms involving �m�mPm for large values of m, which appear in
the definitions of A and b. This trade-off is known in practice and widely discussed in the literature (see e.g.,
Konda [9] and references therein).
We note that for the multistep projected Bellman equation solved by TD(�) with � > 0, we do not yet have

an efficient simulation-based method for estimating the bound of Theorem 2.2; we have calculated the bound
using common matrix algebra, and we plot it just for comparison.

4.1.1. Discounted problems. Consider the discounted case: � < 1. First, we compare the bounds for the
case where � is the invariant distribution of the Markov chain. For � ∈ 50�1, the modulus of contraction of
A= P����� with respect to 	·	� is

	P�����	� =
�1−���

1−��
< 1�

For any approximation subspace S, we can upper bound 	�P�����	� by �1 − ���/�1 − ��� in the standard
bounds (3), (4) and the bound of Theorem 2.1 to obtain the bounds as a function of �. This extra upper bounding
step is not needed in applying Theorem 2.2. Figure 4 illustrates the error bounds. It can be observed from
Figure 4(b) and 4(d) that the bound of Theorem 2.2 has consistently performed best, as indicated by the analysis.
Let e denote the constant vector of all ones. The stochastic matrix P has a dominant eigenvalue 1 with e

being an associated eigenvector. Like P , the matrix A = P ����� has e as an eigenvector associated with the
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dominant eigenvalue �1− ���/�1− ���. As discussed in §2.2.2, if the approximation subspace S contains or
nearly contains the direction of the eigenvector e of P�����, the bound of Theorem 2.1 can degrade. In the case
here, it can degrade essentially to the standard error bound (3), because 	P�����	� coincides with the spectral
radius of P�����. To get around this issue, we can consider an alternative way of estimating x∗ and obtaining
sharper bounds, which is an application of Proposition 2.2 and Remark 2.4 in §2.2.2. We give the details in
what follows and discuss in what sense the bounds are comparable to each other.
In particular, let Ve = Span1e2. We can estimate separately the projection of x∗ on Ve and the projection of x

∗

on another subspace Ŝ = �S+Ve�∩V ⊥
e , which is the orthogonal complement of Ve in S+Ve (see Figure 3), and

define the sum of the two estimates to be the approximating solution x̂. More precisely, this is an application of
Proposition 2.2 and Remark 2.4 with V = Ve and W = Ŝ. Let �V for a subspace V denote the projection on V
with respect to 	·	� . We define x̂=�Ve

x∗ + x̄Ŝ , where x̄Ŝ satisfies the projected equation

x=�Ŝ�b+A�Ve
x∗ −�Ve

x∗�+�ŜAx=�Ŝb+�ŜAx� (51)

which is a projected version of the equation x = �b + A�Ve
x∗ −�Ve

x∗� + Ax satisfied by x∗ −�Ve
x∗. This

approach can be easily implemented with simulation in practice.3 We have that the error bound of Theorem 2.1
or 2.2 for the projected Equation (51) associated with Ŝ carries over to the combined estimate x̂=�Ve

x∗ + x̄Ŝ ∈
S+Ve:

	x̂− x∗	� ≤��A��� Ŝ�	x∗ −�S+Ve
x∗	� ≤��A��� Ŝ�	x∗ −�Sx

∗	��
where the second inequality follows from 	x∗ −�S+Ve

x∗	� ≤ 	x∗ −�Sx
∗	� . Comparing this bound with an error

bound on the solution x̄ of the projected equation associated with S,

	x̄− x∗	� ≤��A���S�	x∗ −�Sx
∗	��

we see that it is sensible to compare the bound ��A��� Ŝ� with ��A���S�: we interpret the former (latter) as
that one can construct an approximating solution in S+Ve (S) with the approximation error being no greater than
��A��� Ŝ�	x∗ −�Sx

∗	 (��A���S�	x∗ −�Sx
∗	�). If ��A��� Ŝ�≤��A���S�, it would imply that in terms of

approximation error, x̂ has a better worst-case guarantee than x̄. (If e ∈ S, then it always holds that x̂ has less
bias than x̄; see Remark 2.4.)
Figure 4 shows how the use of Ŝ may improve the error bounds, and the improvement is significant in this

case for applying Theorem 2.1. Figure 4(d) illustrates that the bound of Theorem 2.1 for the projected equation
associated with Ŝ can still be too loose, if S nearly contains the direction of some other eigenvector of A besides e
that is associated with an eigenvalue close to 1. (Here, the eigenvector and eigenvalue can be complex, and the
relation of S with the eigenvector is considered in �n with S being a subspace in the latter.) Proposition 2.2
and Remarks 2.4, 2.5 are, in principle, applicable in such cases, but there is a difficulty in practice to obtain the
eigenvectors of A other than the trivial one, e. Figure 4(d) also illustrates that Theorem 2.2 is significantly less
affected by this eigenspace issue.
Figure 5 compares the bounds for the case where the projection norm is the standard unweighted Euclidean

norm. With respect to this norm, the mapping �A=�P����� is not necessarily a contraction for small values
of �, even though in the example in Figure 5 it is. The standard bounds and the bound of Theorem 2.1 need the
value 	�A	, while the bound of Theorem 2.2 does not. For comparison of these bounds, we compute 	P	 using
the knowledge of P , bound 	�A	 by �1−��	�P	/�1−�	�P	�, and plug the latter in the standard bounds and
the bound of Theorem 2.1. The value 	�P	 is shown in the titles of the subfigures in Figure 5. The behavior of
the bounds is similar to that in Figure 4.
Note that although an upper bound on 	�A	� is needed to apply Theorem 2.1, similar to when applying the

standard error bounds, Theorem 2.1 is applicable in cases where the best upper bound on 	�A	� we know is
no less than 1, whereas the standard error bounds are inapplicable in such cases.

3 Implementing this approach in practice is straightforward, and we note some details here. The basis vectors of Ŝ can be generated from �

by subtracting � ′� from the rows of �. These row vectors are referred to as feature vectors associated with the states. The vector � ′� is
simply the mean feature vector when the random process of states is stationary, with the stationary distribution given by �, so � ′� can be
estimated easily by sample average. This procedure of changing the approximation subspace by subtracting the mean feature is common
in the context of average cost MDP problems; see, e.g., Konda [9]. We can also compute easily the projection of x∗ on Ve when � is the
invariant distribution of the Markov chain associated with P ; in particular,

� ′x∗ = � ′g+�� ′Px∗ = � ′g+�� ′x∗ ⇒ p�Ve
x∗ = � ′g

1−�
e�

so �Ve
x∗ can be calculated through simulation by averaging the one-stage costs. When � is not the invariant distribution associated with P ,

it is difficult to compute �Ve
x∗ without bias. However, this component is in any case not absolutely needed, because it is constant over all

states and not useful for policy iteration, and also because it is not needed in the projected Equation (51), as noted in Remark 2.4 in §2.2.2.
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Figure 4. Comparison of error bounds as functions of � for two discounted problems with randomly generated Markov chains.
Notes. The dimension parameters are n= 200, k = 50, and the weights � in the projection norm is the invariant distribution. Standard I
and Standard II refer to the bounds (3) and (4), respectively. The Markov chain is the same in (a) and (b), and in (c) and (d). In (c) and
(d), the Markov chain has a “noisy” block structure with two blocks, causing P to have a subdominant eigenvalue relatively close to 1; S
is chosen to contain e and a vector close to an eigenvector associated with that subdominant eigenvalue. The subspace Ŝ is derived from S

by orthogonalization, as shown in Figure 3. In (d), the bounds of Theorem 2.2 corresponding to the two subspaces S and Ŝ coincide.

As a particular application example related to this discussion, let us consider the following scheme, which is
commonly used for exploring states and actions that do not occur frequently under the policy to be evaluated.
At each time, at some state, we follow that policy with probability 7 < 1 and deviate from it with probability
1 − 7 for the purpose of exploration. This induces a Markov chain whose transition matrix is of the form
7P + �1−7� �P for some stochastic matrix �P �= P . Correspondingly, we let the weights � in the projection norm
be the invariant distribution of this Markov chain, i.e.,

� ′�7P + �1−7� �P�= �′� (52)

Then, for the projected equation solved by TD(�) and 7> �2�2, it is not difficult to show by using the implication
of the above relation, � ′P ≤ � ′/7, that we can simply bound the matrix norms 	P	� and 	�A	� = 	�P�����	� by

	P	� ≤
1√
7
� 	�P�����	� ≤ 	P�����	� ≤

�1−��	�P	�
1−�	�P	�

≤ �1−���/
√
7

1−��/
√
7

� (53)

where neither 	�P�����	� nor its upper bound above is necessarily less than 1. (For example, with �= 0 and
7= 1/2, we have by Equation (53) 	�P�����	� ≤ 	�P	� ≤

√
2�.) With the upper bound on 	�P�����	� given
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Figure 5. Comparison of error bounds for discounted problems.
Notes. The setup is the same as for Figure 4, except that the projection norm is the standard Euclidean norm. The Markov chain has a
“noisy” block structure. The subspace S is chosen randomly.

in Equation (53), we can apply Theorem 2.1 to compute an error bound on 	x∗ − x̄	� for the above exploration
scheme with 7> �2�2.
Thus the availability of computable error bounds for noncontraction mappings can facilitate the design of

policy evaluation algorithms with improved exploration. We also note that we can use the bound of Theorem 2.2
in conjunction with TD(0)-type algorithms. In particular, in Example 5.2 we will show how to estimate the
matrix R in cases where the projection norm is determined by an exploration policy and where the projection
norm is given explicitly with the desirable weights.

4.1.2. Average cost and stochastic shortest path (SSP) problems. In the average cost case (similarly for
SSP), x∗ is the differential cost (also called the bias vector) of the policy to be evaluated, and x∗ is orthogonal
to e. To simplify the discussion, let us assume that the approximation subspace is orthogonal to e. Let � be
the invariant distribution of the Markov chain. The mapping �A = �P����� with � = 1�� ∈ 50�1� is nonex-
pansive with respect to 	 · 	� , and the error bound corresponding to the bound (4), as given by Tsitsiklis and
Van Roy [18], is

	x∗ − x̄	� ≤
1√

1−�2
�

	x∗ −�x∗	�
for some �� < 1, with the property that �� → 0 as �→ 1. In fact, �� is the modulus of contraction of some
mapping of the form 7I + �1 − 7��A, 7 ∈ 50�1�, i.e., a damped version of �A, which attains the minimal
modulus of contraction among all damped versions. The convergence of �� to zero as � approaches 1 reflects
the fact that with � approaching 1, �A converges to the zero matrix (as A converges to the rank-one matrix e�′).
However, the exact value of �� is usually unknown, so this bound provides no quantitative information.
Figure 6 shows the bounds of Theorems 2.1 and 2.2, with the term 	�A	� in the bound of Theorem 2.1

further upper-bounded by 1. Notice that as �→ 1, the bound of Theorem 2.1 converges to
√
2 instead of 1. This

is due to the over-relaxation in the analysis for the case where �A is near zero, as discussed in §2.2.2. Notice
also in Figure 6(b) that the bound of Theorem 2.1 is affected by the relation of the approximation subspace to
the eigenspace of A associated with eigenvalues that are close to 1, similar to the discounted case. By contrast,
the bound of Theorem 2.2 performs well.

4.1.3. Optimal stopping problems. In optimal stopping problems, we have an uncontrolled Markov chain
with transition matrix P , and we seek an optimal policy to stop the process so that we minimize the expected
total cost. For simplicity of discussion, we consider the discounted case. The optimal cost function x∗ is the
unique solution of the nonlinear Bellman equation,

x= g+�P min1c� x2�

where g is the vector of one-stage costs associated with continuation, c is the vector of one-stage costs associated
with stopping, and the minimization in min1c� x2 is component-wise.
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Figure 6. Comparison of error bounds for average cost problems with randomly generated Markov chains.
Notes. The setup is the same as for Figure 4. In (b), the Markov chain has a “noisy” block structure, and S is chosen as in Figure 4(c).

Let � be the invariant distribution of the Markov chain. Algorithms analogous to TD(0) (Tsitsiklis and
Van Roy [19], Choi and Van Roy [7], Yu and Bertsekas [21, 22]) solve the projected Bellman equation,

x=�g+��P min1c� x2�

which is also nonlinear and has a unique solution x̄ due to the contraction property of the mapping ��P min1c� ·2
with respect to 	·	� (Tsitsiklis and Van Roy [19]). There is an error bound analogous to the bound (4): 	x̄−x∗	�
≤ �1/

√
1−�2�	x∗ −�x∗	� (Tsitsiklis and Van Roy [19]), and such error bound is also useful in bounding the

performance of suboptimal policies constructed based on x̄ (Van Roy [20]).
To apply our error bounds, we will form a linear equation based on the approximating solution x̄, which

satisfies
x̄=�g+��P min1c� x̄2=�g+��P�I− Ix̄�c+��P Ix̄ x̄� (54)

where Ix̄ is an n× n diagonal matrix with its ith diagonal entry defined by

Ix̄� ii =
{
1 x̄i < ci�

0 otherwise�

We consider the linear equation
x= g+�P�I− Ix̄�c+�P Ix̄x� (55)

and its projected form
x=��g+�P�I− Ix̄�c�+��P Ix̄x�

Both equations have a unique solution because ��P Ix̄ is a contraction mapping with respect to 	 · 	� . The
solution of the projected equation is x̄, as can be seen by comparing the equation with Equation (54). Let x̂ be
the solution of Equation (55). If x̄ = x∗, then x̂ = x̄ = x∗, so the difference x̂ − x̄ provides some information
about the quality of x̄ as an approximation of x∗. We can apply our error bounds with A= �P Ix̄ to bound x̂− x̄,
once x̄ is computed. Estimating the matrices in the bounds using simulation data is no more complicated than in
the policy evaluation case where there is no matrix Ix̄ involved in A, because Ix̄ is simply a diagonal matrix with
1s or 0s on its diagonal. Thus our error bounds can provide supplementary information about the approximation
quality, in addition to the bounds based on the contraction property (Tsitsiklis and Van Roy [19], Van Roy [20]).

4.2. Large general systems of linear equations. For solving large general systems of linear equations
using the projected equation approach (Bertsekas and Yu [4]), the bound of Theorem 2.2 can be computed in a
straightforward way, as shown in Example 5.1 in §5. Theorem 2.2 is not only much sharper than Theorem 2.1
for this case but also more convenient, because it does not require the knowledge of 	A	� .
5. Estimating the low-dimensional matrices in the bounds. We consider estimating the k× k matrices

involved in the bounds of Theorems 2.1, 2.2 by simulation—if instead of using simulation, products of k×n and
n×n matrices can be computed directly, then the calculation could be done directly with common matrix algebra.
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The estimation of B and M using simulation has been well explained in the literature (see, e.g., Boyan [5], Nedić
and Bertsekas [13], Bertsekas and Yu [4]), so we discuss here how to estimate the matrix R in Theorem 2.2:

R=�′�A�−1A′���

The bounds in §3 involve other small-size matrices, which have similar forms to the matrices B, M , or R and
can therefore be estimated using the same procedures for estimating the latter matrices, as explained in §3.
We demonstrate the estimation of R in two examples, one related to solving general linear equations and the

other to policy evaluation in MDP, both with the TD(0)-type methods. For the TD(�) case with � > 0, which
differs from TD(0) in that A itself is a summation of infinitely many matrices [cf. Equation (50) in the preceding
section], we do not yet have an efficient way of estimating R.
Our methods for estimating R are based on a common procedure. Let 9�i� be the k-dimensional vector whose

transpose 9�i�′ is the ith row of �. Denote an entry of A and � by aij and �i, respectively. We first express R
as a certain summation of the k× k matrices 9�i�9�j�′�1≤ i� j ≤ n, for instance,

R= ∑
1≤i� l� j≤n

�ailajl� ·
�i�j

�l

·9�i�9�j�′� (56)

Guided by such an expression, we generate a sequence of triple indices �it� jt� lt�� t ≥ 0, according to some
probability distribution, and we choose proper weights wt�it� jt� lt� so that for all �i� j� l�, we have the following
match between the weighted long-run averages and the respective coefficients in the summation in Equation (56):

1

t+ 1

t∑
m=0

wm�im� jm� lm�=5�im� jm� lm�= �i� j� l� −→ �ailajl� ·
�i�j

�l

� as t→�� with probability 1�

Here =5· · ·  denotes the indicator for the event given in the brackets. As a consequence, the estimate Rt defined
as the sample average

Rt =
1

t+ 1

t∑
m=0

wm�im� jm� lm� ·9�im�9�jm�′

converges to R as t→� with probability 1.
Without loss of generality, in this subsection we assume that

∑n
i=1 �i = 1 so that � can be viewed as a

distribution. In practice, we never need to normalize � because the normalization constant will be canceled in
the product defining the matrix G2 in the bound.

Example 5.1. Suppose both � and A are known explicitly. This case is relevant to the application of solving
general linear equations, in which we know explicitly the entries of A, and we might want to choose a particular
projection norm, for instance, the standard Euclidean norm (all entries of � being equal). We express R as the
summation given in Equation (56) and generate a sequence of triple indices �it� jt� lt� as follows. We generate a
sequence �l0� l1� / / / � such that the empirical frequencies of 1�2� / / / � n in this sequence converge to �. Given lt ,
we generate two mutually independent transitions �lt� it� and �lt� jt� according to a certain transition probability
matrix P with pij �= 0 whenever aji �= 0. We then define Rt by

Rt =
1

t+ 1

t∑
m=0

(
aimlm

plmim

· ajmlm

plmjm

)
· �im�jm

�2lm
·9�im�9�jm�′�

where t is a suitably large number. It is easy to see that with probability 1, for each �i� j� l�, as t→�,

1
t+ 1

t∑
m=0

(
aimlm

plmim

· ajmlm

plmjm

)
· �im�jm

�2lm
· =5�im� jm� lm�= �i� j� l�

converges to

�lpliplj ·
(
ail

pli

· ajl

plj

)
· �i�j
�2l

= �ailajl� ·
�i�j

�l

�

Therefore, comparing Rt with the expression of R in Equation (56), we have Rt →R as t→� with probability 1.
We approximate R by the symmetrized matrix �Rt + R′

t�/2. In the special case where �i = 1/n for all i, R
reduces to �1/n��′AA′�, the indices lt can be generated independently with the uniform distribution, and the
ratio �im�jm/�

2
lm
in Rt reduces to 1. �

Example 5.2. This example is relevant to the MDP applications, in particular, evaluating the cost or
Q-factors (i.e., costs associated with state-action pairs) of a policy using TD(0)-like algorithms, with and with-
out exploration enhancements. Suppose we do not know explicitly � and A. Moreover, suppose the ratios
)ij = aij/pij are known for a certain transition matrix P with pij �= 0 whenever aij �= 0, and that � is the unique
invariant distribution of the Markov chain associated with P . While P is not explicitly known, it is assumed
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that a simulator is available to generate transitions according to P . In the context of policy evaluation in MDP,
P is the transition matrix of the Markov chain induced by a policy that is possibly different from the policy
to be evaluated—the case with exploration; in the case without exploration, the two policies are the same, and
P = )A for some positive constant ). The estimation problem we have here is to estimate R using a trajectory
�i0� i1� / / / � of the Markov chain associated with P .
Following the common procedure for estimating R outlined at the beginning of this section, we first express

R as

R= ∑
1≤i� l� j≤n

�)il)jl� ·
(
�ipil ·

pjl�j

�l

)
·9�i�9�j�′� (57)

The ratios )il�)jl are known under our assumption. What we need to approximate by properly weighted sample
averages are the quantities �ipil and �pjl�j�/�l. For all �i� l�, �ipil are simply the joint probabilities of two
consecutive states of the Markov chain when the chain is in equilibrium, so they can be approximated by
the empirical frequencies of transitions �im−1 = i� im = l� occurred in the trajectory �i0� i1� / / / �. The quantity
�pjl�j�/�l equals the conditional probability of the previous state being j given the current state being l when
the Markov chain is in equilibrium, so it can be approximated by the empirical frequency of the occurrence of
�im−1 = j� im = l� among all transitions in the trajectory that end at l. This shows that we can approximate R as
follows. At time t and given it+1 = l, we draw one sample �ĵ� l� uniformly from the set of past transitions that
end at the state it+1, namely the set 1�itk−1� itk � � itk = l� tk ≤ t + 12, and we let jt = ĵ . (It also works to simply
let jt be the state immediately preceding the most recent visit to l prior to time t+ 1.) We then define Rt by

Rt =
1

t+ 1

t∑
m=0

�)imim+1)jmim+1� ·9�im�9�jm�′�

By the ergodicity of the Markov chain and the preceding discussion, it is clear that for each �i� j� l�, as t→�,

1
t+ 1

t∑
m=0

�)imim+1)jmim+1� · =5�im� jm� im+1�= �i� j� l� −→ �)il)jl� ·
(
�ipil ·

pjl�j

�l

)

with probability 1, so, by comparing Rt with the expression of R in Equation (57), the convergence of Rt to R
as t→� with probability 1 is evident. We approximate R by the symmetrized matrix �Rt +R′

t�/2.
It can be seen that generating “backward” transitions �ĵ� l� to a given state/index l according to the steady-

state conditional distribution increases the memory and computational requirements, because the past history of
the simulation must be stored and searched. If the Markov chain is reversible (i.e., �jpjl = �lplj for all j� l),
then we can omit the step of generating backward transitions by using the reversibility property. The reason is
that when the chain is in equilibrium, a forward transition �im+1� im+2� from im+1 automatically gives us such a
backward transition: the probability of im+2 given im+1 is pim+1im+2 = ��im+2pim+2im+1�/�im+1 . Correspondingly, the
estimation procedure can be substantially simplified by letting jm = im+2 in Rt .
When the weight vector � is given explicitly and need not be the invariant distribution of P , a variant of

the above procedure is possible. In this case, we can approximate the invariant distribution of P , denoted by @̄,
using the empirical frequencies of 1�2� / / / � n in the trajectory �i0� i1� / / / � up to time t. Let @t� i be the empirical
frequency of the occurrence of im = i in the trajectory up to time t. We define Rt by

Rt =
1

t+ 1

t∑
m=0

�)imim+1)jmim+1� ·
(
�im�jm
�im+1

· @t� im+1

@t� im
@t� jm

)
·9�im�9�jm�′�

and we approximate R by the symmetrized matrix �Rt +R′
t�/2. The reasoning on the convergence of Rt to R

as t →� is similar to the case discussed earlier. By the ergodicity of the Markov chain, for each �i� j� l�, as
t→�,

1

t+ 1

t∑
m=0

�)imim+1)jmim+1� ·
(
�im�jm
�im+1

· @t� im+1

@t� im
@t� jm

)
· =5�im� jm� im+1�= �i� j� l�

converges to

�)il)jl� ·
(
@̄ipil ·

pjl@̄j

@̄l

· �i�j
�l

· @̄l

@̄i@̄j

)
= �)il)jl� ·

(
�ipil ·

pjl�j

�l

)
�

with probability 1. Comparing Rt with Equation (57), the convergence of Rt to R as t→� follows. �

We summarize the discussion in the two preceding examples. When � and A are known, it is straightforward
to estimate R. In the MDP context, where � or A are unknown, there is a memory and computation issue
when simulating backward transitions according to the steady-state conditional distribution, as well as when a
desirable weight vector � does not match the frequencies of the indices generated by simulation. The procedures
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given above do not adapt easily to the case where A itself is a summation of infinitely many matrices, as in the
multistep projected Bellman equations solved by TD(�� with �> 0.

6. Conclusion. We have derived new data-dependent computable error bounds for the approximate solution
of large linear systems using the Galerkin/projected equation approach, as well as a least-squares equation
error approach. The bounds hold for both contraction and noncontraction mappings. Their applicability for
noncontraction mappings is not only useful for approximating solutions of general linear equations but is also
useful in the context of MDP when using exploration to evaluate the cost of policies. Furthermore, in the context
of MDP, our bounds can be used in performance bounds for approximate policy iteration, such as those of
Munos [12].
One potential use of our bounds is to suggest changes in the projected equation in order to reduce the

amplification ratio. For example, extensive computational experience with TD(�) methods indicates that the
simulation noise tends to increase as � increases, so there is strong motivation to use small values of � as long as
the amplification ratio is close to 1. On the other hand, the use of small values of � might result in unacceptably
large amplification ratio, as demonstrated analytically by examples given in Bertsekas [1]; see also Bertsekas
and Tsitsiklis [3, Example 6.5, pp. 288–289]. Unfortunately, the bounds (3), (4) are too conservative to provide
useful information about the amplification ratio, and our bounds can provide quantitative guidance as well as
valuable insight in this regard. Furthermore, our bounds can be similarly used in the general noncontraction
context, in conjunction with simulation-based TD(�)-like algorithms that have been developed in our recent
paper (Bertsekas and Yu [4]). There might be other potential uses of our bounds; for example, in suggesting
changes to the choice of approximation subspace, thereby affecting both the baseline error and the amplification
ratio, but this is a subject for future research.
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