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Abstract

We generalize the ε-relaxation method of [BPT97a] for the single commodity, linear or
separable convex cost network flow problem to network flow problems with positive gains. The
method maintains ε-complementary slackness at all iterations and adjusts the arc flows and the
node prices so as to satisfy flow conservation upon termination. Each iteration of the method
involves either a price change on a node or a flow change along an arc or a flow change along a
simple cycle. Complexity bounds for the method are derived. For one implementation employing
ε-scaling, the bound is polynomial in the number of nodes N , the number of arcs A, a certain
constant Γ depending on the arc gains, and ln(ε0/ε), where ε0 and ε denote, respectively, the
initial and the final tolerance ε.

1. INTRODUCTION

Consider a directed graph G = (N ,A) with node set N = {1, . . . , N} and arc set A ⊂ N×N .

We denote by N the number of nodes and by A the number of arcs. (The implicit assumption that

there exists at most one arc in each direction between any pair of nodes is made for notational

convenience and can be dispensed with.) We are given, for each node i ∈ N , a scalar si (supply

of i) and, for each arc (i, j) ∈ A, a positive scalar γij (gain of (i, j)) and a convex, closed, proper

function fij : � → � ∪ {∞} (cost function of (i, j)). The generalized separable convex cost

network flow problem is

minimize f(x) :=
∑

(i,j)∈A
fij(xij) (P)

subject to
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

γjixji = si, ∀ i ∈ N , (1)
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1. Introduction

where the real variable xij is referred to as the flow of the arc (i, j) and the vector x = {xij |
(i, j) ∈ A} is referred to as the flow vector . We refer to (P) as the primal problem. We assume

that each fij is co-finite in the sense that limζ→−∞ f−
ij (ζ) = −∞ and limζ→∞ f+

ij (ζ) = ∞, where

f−
ij (ζ) and f+

ij (ζ) denote, respectively, the left and right derivative of fij at ζ [Roc70, p. 116],

[Roc84, p. 315]. An important special case is the linear cost case, where

fij(xij) :=
{

aijxij if bij ≤ xij ≤ cij

∞ otherwise
, (2)

for given scalars aij , bij , cij . This special case has been much studied (see [AMO93, Chap. 15],

[Ber98, Chap. 8], [Jew62], [Mur92, Chap. 8] and references therein) and has applications in many

areas including financial planning, logistics, hydroelectric power system control (see [AMDZ87],

[AMOR95], [DMZ89], [GHKS78] and references therein). Another important special case is the

ordinary network case, where γij = 1 for all (i, j) ∈ A (see [Ber98], [Roc84]). For the general

case, a range of applications is surveyed in [DMZ89]. A flow vector x satisfying

fij(xij) < ∞, ∀ (i, j) ∈ A,

as well as the conservation-of-flow constraint (1) is called feasible. A feasible x satisfying

f−
ij (xij) < ∞ and f+

ij (xij) > −∞, ∀ (i, j) ∈ A, (3)

is called regularly feasible (see [Roc84, p. 329], [Ber98, p. 418]). We will assume that there exists

at least one regularly feasible flow vector . In the linear cost case of (2), the condition (3) reduces

to the standard capacity constraint: bij ≤ xij ≤ cij for all (i, j) ∈ A.

There is a well-known duality framework for this problem (see [Roc84] and also [Ber98],

[BeT89], [Roc70]), involving a Lagrange multiplier pi for the ith conservation-of-flow constraint

(1). We refer to pi as the price of node i, and to the vector p = {pi | i ∈ N} as the price vector .

The dual problem is

minimize q(p) (D)

subject to no constraint on p,

where the dual cost function q is given by

q(p) :=
∑

(i,j)∈A
qij(pi − γijpj) −

∑
i∈N

sipi,

and qij is derived from fij by the conjugacy relation

qij(tij) := sup
xij∈�

{xijtij − fij(xij)}.
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The co-finite assumption on fij implies that qij is real-valued and, together with the existence of

a regularly feasible solution, guarantees that both the primal problem (P) and the dual problem

(D) have optimal solutions and their optimal costs are the negatives of each other ([Roc84, p.

360], [Ber98, p. 452]).

Following [BHT87] and [TsB90], we say that a flow vector x and a price vector p satisfy the

ε-complementary slackness (ε-CS for short) conditions, where ε is any positive scalar, if

fij(xij) < ∞, and f−
ij (xij) − ε ≤ pi − γijpj ≤ f+

ij (xij) + ε, ∀ (i, j) ∈ A. (ε−CS)

It is known ([Roc84, p. 360], [Ber98, p. 452]) that a feasible flow vector x and a price vector p

are primal and dual optimal, respectively, if and only if they satisfy 0-CS.

For the primal problem (P) and its dual (D), there are available a number of solution

methods, such as nonlinear variants of the primal simplex method, dual simplex method [Roc84,

Sec. 11J], and relaxation method [TsB90]. The primal simplex method iteratively improves the

primal cost function and the other methods iteratively improve the dual cost function. For

the ordinary network case (with convex cost), there have recently been proposed other solution

methods, based on minimum mean cycle canceling [KaM93], and on ε-relaxation [Ber98, Chap.

9], [BPT97a], [BPT97b], [DMZ95], [Pol95]. For the linear cost ordinary network case, further

specialization and improvements of the preceding methods, as well as many other methods,

have been proposed (see the books [AMO93], [BeT88], [Mur92], [Roc84] and references therein).

If f is twice differentiable (not necessarily separable), the primal truncated-Newton method

specialized to generalized network flow [AMDZ87], [DMZ89] and the general-purpose reduced

gradient method using quasi-Newton updates [MuS93] can also be applied.

Here, we propose an extension of the ε-relaxation method studied in [BPT97a], [BPT97b],

[DMZ95], [Pol95] from the ordinary network case to the generalized network case of (P) and

(D), and we present a (computational) complexity analysis for the method. Our interest in the

ε-relaxation method stems from its good performance on linear/quadratic cost ordinary network

flow problems, as reported in the above references, and its suitability for implementation on

parallel computers [BeG97], [BGM97], [BCE95]. However, the extension is highly nontrivial due

to the presence of nonunity arc gains. In particular, flow augmentations along cycles of non-unity

gain need to be considered and new techniques need to be developed to deal with the presence

of directed cycles in the admissible graph. In fact, even for the linear cost case our method and

the associated complexity bounds are new to our knowledge. Previous complexity bounds for the

linear cost case (other than those obtained by specializing general linear programming complexity

bounds [Vai89]) are further restricted to either the case of all nodes being supply nodes (i.e., si ≥ 0

for all i ∈ N ) or being demand nodes (i.e., si ≤ 0 for all i ∈ N ), with zero lower capacity on
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all arcs [AdC91], [CoM94], or the case of a generalized circulation (i.e., maximizing the flow on

a particular arc) [GPT91], [Rad98]. We also report some of our computational experience with

the method. Our experience indicates that, as in the ordinary network case (for which extensive

computational results are given in [BPT97a]), the method is not significantly affected by ill-

conditioning in the cost function. Furthermore, on nonlinear problems, our method substantially

outperforms a nonspecialized nonlinear programming code such as MINOS.

The remainder of this paper is organized as follows. In Section 2, we motivate and formally

describe the ε-relaxation method for solving (P) and (D). In Section 3, we show that the method

has finite termination for any fixed ε. In Section 4, we present one specific implementation of the

method which has a particularly favorable complexity bound. In Section 5, we report some of our

numerical experience with the method. In what follows, by a path P in G, we mean a sequence

of nodes (i1, i2, ..., im) in N and an associated sequence of (m − 1) arcs in A such that, for each

k = 1, ..., m − 1, either (ik, ik+1) or (ik+1, ik) is an arc of the sequence. The set of forward arcs

of P (those of the form (ik, ik+1)) is denoted by P+ and the set of backward arcs of P (those of

the form (ik+1, ik)) is denoted by P−. We define the gain of the path P by

γP :=


 ∏

(i,j)∈P+

γij


 /


 ∏

(i,j)∈P−
γij


 , (4)

with γP := 1 if P comprises a single node. We say that a path P is forward if P− = ∅. A cycle

is a path whose starting node equals the ending node. A path is said to be simple if it contains

no repeated nodes except (in the case where the path is a cycle) for the starting and the ending

nodes.

2. THE ε-RELAXATION METHOD

In this section we formally describe an ε-relaxation method, based on ε-CS, for solving (P)

and (D). For a flow vector x, we define the surplus of node i to be the difference between the

supply si and the net outflow from i:

gi := si +
∑

{j|(j,i)∈A}
γjixji −

∑
{j|(i,j)∈A}

xij . (5)

The idea of the ε-relaxation method is to alternately adjust the price of the nodes and the flow of

the arcs so as to maintain ε-CS while decreasing the surplus of the nodes toward zero. Termination

occurs when the surpluses of all the nodes are zero. We describe this in more detail below.
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The method uses two fixed scalars ε > 0 and θ ∈ (0, 1). For any flow-price vector pair (x, p)

satisfying ε-CS, we say that an arc (i, j) ∈ A is active if

pi − γijpj > f+
ij (xij) + θε (6a)

and is inactive if

pi − γijpj < f−
ij (xij) − θε. (6b)

In the ordinary network case, an arc being active (respectively, inactive) is equivalent to, in

the terminologies of [Ber98], [BPT97a], [BPT97b], the arc being in the candidate/push list of its

starting (respectively, ending) node. For an active (respectively, inactive) arc (i, j), the supremum

of δ for which

pi − γijpj ≥ f+
ij (xij + δ)

(respectively, pi − γijpj ≤ f−
ij (xij − δ)) is called the flow margin of the arc. An important fact,

shown below, is that the flow margins of these arcs are always positive.

Proposition 1: The flow margins of all active and inactive arcs are positive.

Proof: We argue by contradiction. Assume that for an arc (i, j) ∈ A we have

pi − γijpj < f+
ij (xij + δ), ∀ δ > 0.

Since the function f+
ij is right continuous, this yields

pi − γijpj ≤ lim
δ↓0

f+
ij (xij + δ) = f+

ij (xij),

and thus (i, j) cannot be active. A similar argument shows that an arc (i, j) ∈ A such that

pi − γijpj > f−
ij (xij − δ), ∀ δ > 0,

cannot be inactive. Q.E.D.

The ε-relaxation method starts with a flow-price vector pair (x, p) satisfying ε-CS. The

method comprises two phases. In the first phase, only “up” iterations (to be defined shortly) are

performed so as to adjust (x, p) until no node with positive surplus remains. In the second phase,

only “down” iterations (to be defined shortly) are performed so as to adjust (x, p) until no node

with negative surplus remains.
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2. The ε-Relaxation Method

ε-Relaxation Method – General Form (ε > 0)

Initialization: Choose any flow vector x = {xij | (i, j) ∈ A} and price vector p = {pi | i ∈ N} satisfying

ε-CS. Fix any scalar θ ∈ (0, 1).

First Phase: Repeatedly choose a node i with positive surplus gi and adjust (x, p) by doing an up iteration

at node i, until all nodes have nonpositive surplus.

Second Phase: Repeatedly choose a node i with negative surplus gi and adjust (x, p) by doing a down

iteration at node i, until all nodes have nonnegative surplus.

In an up iteration at a node i with positive surplus gi, we perform one of the following three

operations:

(a) A price rise on node i, which increases the price pi by the maximum amount that maintains

ε-CS, while leaving all arc flows and all other prices unchanged.

(b) A flow push (also called a δ-flow push) along an arc (i, j) [or along an arc (j, i)], which

increases xij [or decreases xji] by a positive amount δ, while leaving all node prices and all

other arc flows unchanged.

(c) A flow push (also called a δ-flow push) along a cycle C containing i, which increases xkl

[respectively, decreases xkl] by a positive amount γCk
δ for all (k, l) ∈ C+ [respectively, for

all (k, l) ∈ C−], while leaving all node prices and all other arc flows unchanged. [Here, Ck

denotes the portion of C from i to k, and γCk
is given by (4).]

[The effect of operation (c) is to decrease the surplus of node i by the amount δ/(1 − γC)

(respectively, 0) if γC �= 1 (respectively, if γC = 1), while leaving the surplus of all other nodes

unchanged.] A δ-flow push along an arc (respectively, a cycle) is said to be saturating if it changes

the flow margin of the arc (respectively, one of the arcs of the cycle) from positive to zero. For a

fixed ε > 0 and θ ∈ (0, 1), and a given flow-price vector pair (x, p) satisfying ε-CS, an up iteration

updates (x, p) as follows:

An Up Iteration at a node i with gi > 0

Step 1: If i has no active outgoing arc and no inactive incoming arc, go to Step 3. Otherwise, choose

any active arc (i, j) or inactive arc (j, i). If this arc belongs to some cycle C of G whose

forward arcs are all active and whose backward arcs are all inactive and if no price rise nor

saturating flow push has been performed since the last up iteration at node j, go to Step

2b. Otherwise, go to Step 2a.∗

∗ In variants of the method, instead of always going to Step 2a at this point, we go to Step
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2. The ε-Relaxation Method

Step 2a: Perform a δ-flow push along the chosen arc, where

δ =

{
min {flow margin of (i, j), gi} if (i, j) is the chosen arc

min {flow margin of (j, i), gi/γji} if (j, i) is the chosen arc.

Exit.

Step 2b: Perform a δ-flow push along C, where

δ =

{
min(k,l)∈C{(flow margin of (k, l))/γCk

} if γC ≥ 1

min{min(k,l)∈C

{
(flow margin of (k, l))/γCk

}, gi/(1 − γC)
}

if γC < 1,

and Ck denotes the portion of C from i to k. Exit.

Step 3: Perform a price rise on i and exit.

In general, finding the cycle C in Step 1 is expensive. However, such a cycle can be found

without excessive overhead by using special implementations of the first phase of the method.

More precisely, consider the following implementation, which aims at performing a flow push

along a cycle for as long as no price rise or no saturating flow push is performed.

(a) Select any node i0 with positive surplus. If no such node exists, terminate the first

phase of the method. Else let k := 0 and go to (b).

(b) If i := ik has no active outgoing arc and no inactive incoming arc, perform a price rise

on node ik and go to (a). Otherwise, choose any active arc (i, j) or inactive arc (j, i). If j = il

for some l < k, go to (c). Else perform a δ-flow push along this arc as in Step 2a, and if this

saturates the arc or if the surplus of j remains nonpositive, go to (a); else let ik+1 := j, increment

k by 1 and go to (b).

(c) A cycle whose forward arcs are all active and whose backward arcs are all inactive is

C : il, il+1, ..., ik, il. Perform a δ-flow push along C as in Step 2b, and go to (a).

A down iteration at a node i with gi < 0 is defined analogously to an up iteration, but

with “active” and “inactive” switched and with “increase” and “decrease” switched. In addition,

“up”, “rise”, “gi” are replaced by, respectively, “down”, “drop”, “−gi”.

There is also an important modification of the above implementation, called the auction/

sequential-shortest-path algorithm (see [Ber92], [Ber98], [BPT97b], [Pol95] for special cases of this

algorithm that apply to the ordinary network case), in which we refrain from performing a flow

2b if we had encountered a cycle C containing this arc and whose forward arcs are all active and

whose backward arcs are all inactive; and go to Step 2a if no such cycle was encountered. These

variants have similar termination properties and admit the same complexity bound as the stated

method.
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push until we encounter a node j with negative surplus, at which time we push flow from i0 along

the path , j towards j by an amount that either saturates an arc or zeroes out the surplus of i0

or j. With this modification, it is possible to mix up and down iterations without affecting the

termination or the complexity of the method. Finally, we note that, in contrast to the ordinary

network case (see [BPT97a]), we need to consider not only flow pushes along arcs, but also flow

pushes along cycles. The intuition for this is that a cycle C with γC < 1 is “flow absorbing”

when flow is pushed along C and thus C acts like a node with negative surplus; similarly, a cycle

C with γC > 1 is “flow generating” when flow is pushed along C and thus C acts like a node

with positive surplus.

We make the following observations about the up iterations in the ε-relaxation method.

(Analogous observations can be made for the down iterations.)

1. The iterations preserve ε-CS and the prices are monotonically nondecreasing. This is evident

from the initialization and Step 3 of the up iteration.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all subsequent

up iterations. The reason is that a flow push at a node i cannot make the surplus of i

negative (cf. Steps 2a, 2b), and cannot decrease the surplus of any other node.

3. If at some iteration a node has negative surplus, then its price must be equal to its initial

price. This is a consequence of observation 2 above and the fact that price rises occur only

on nodes with positive surplus.

Notice that the surpluses of all nodes are nonpositive at the beginning of the second phase.

Moreover, the surpluses remain nonpositive throughout the second phase (since a down iteration

does not change the surplus of any node from nonpositive to positive). Therefore, it follows that,

at the end of the second phase, the surplus of all nodes are zero, i.e., the flow vector x is feasible.

3. TERMINATION OF THE ε-RELAXATION METHOD

To prove the termination of the ε-relaxation method of Section 2, we first have the following

proposition which bounds from below the price rise/drop increments.

Proposition 2: Each price rise (respectively, price drop) increment in the ε-relaxation method

is at least (1 − θ)ε/γ̄, where γ̄ := max
{
1,max(i,j)∈A γij

}
.
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Proof: We note that a price rise on a node i occurs only when it has no active outgoing arc

nor inactive incoming arc. Thus for every arc (i, j) ∈ A we have pi − γijpj ≤ f+
ij (xij) + θε, and

for every arc (j, i) ∈ A we have pj − γjipi ≥ f−
ji (xji)− θε. This implies that we can increase pi by

an amount of at least (1 − θ)ε/γ̄ and still maintain ε-CS. A similar argument applies to a price

drop. Q.E.D.

Next, we have the following technical lemma, obtained by specializing the Conformal Real-

ization theorem in [Roc84, Chap. 10] to circulations in a certain augmented generalized network.

Lemma 1: Consider any flow vector y = {yij | (i, j) ∈ A} and let hi :=
∑

{j|(j,i)∈A} γjiyji −∑
{j|(i,j)∈A} yij for all i ∈ N . Then, for any s ∈ N with hs < 0, there exist a t ∈ N and a simple

path H in G from s to t that conforms to y; that is, yij > 0 for all (i, j) ∈ H+ and yij < 0 for

all (i, j) ∈ H−. Moreover, either ht > 0 or t belongs to a simple cycle C in G that conforms to y

and satisfies γC < 1.

Proof: Let S := {i ∈ N | hi < 0} and T := {i ∈ N | hi > 0}. Define the augmented directed

graph G′ = (N ′,A′), where N ′ := N ∪ {0}, A′ := A ∪ ({0} × S) ∪ (T × {0}), and define the

scalars:

γ′
ij :=




γij if (i, j) ∈ A
−

∑
k∈S hk/

∑
k∈T hk if i ∈ T , j = 0

1 if i = 0, j ∈ S
, y′

ij :=




yij if (i, j) ∈ A
hi if i ∈ T , j = 0

−hj if i = 0, j ∈ S
.

Then, the vector y′ := {y′
ij | (i, j) ∈ A′} is a circulation for the generalized network G′ with arc

gains γ′
ij , (i, j) ∈ A′. For any s ∈ S, since y′

0s > 0, we have from the Conformal Realization

theorem [Roc84, p. 456] and the characterization of elementary primal supports for generalized

networks [Roc84, p. 463] that there exist in G′ either (i) a simple cycle C with γC = 1 or (ii) two

disjoint simple cycles C1 and C2, with γC1 > 1 and γC2 < 1, and a simple path H from a node

in C1 to a node in C2 or (iii) two simple cycles C1 and C2, with γC1 > 1 and γC2 < 1, that have

a (single) joint portion or meet in exactly one node. Moreover, in case (i), C conforms to y′ and

uses (0, s); in case (ii), C1, C2, H conform to y′ and one of them uses (0, s); in case (iii), C1, C2

conform to y′ and one of them uses (0, s). It can be verified that, in all cases, there exists in G a

simple path that conforms to y and goes from s to either a node in T or a node in a simple cycle

that conforms to y and whose gain is less than 1. Q.E.D.

For a path P in G, define

ΓP :=
∑
i∈P

γPi , (7)
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3. Termination of the ε-Relaxation Method

where, for each node i ∈ P , Pi denotes the portion of the path P from the starting node of P

to i. By using Prop. 2 and Lemma 1, we obtain the following proposition which bounds the

total number of price rises in terms of ΓP and other network parameters. The proof is patterned

in part after the proofs for the linear cost ordinary network case [Ber86a], [BeE88], and for the

convex cost ordinary network case [BPT97a], [Pol95].

Proposition 3: Let K be any nonnegative scalar such that the initial price vector p0 for

the ε-relaxation method satisfies Kε-CS together with some feasible flow vector x0. Then, the

ε-relaxation method performs at most (K + 1)Γ/(1 − θ) price rises on each node and at most

(1 + Γ)(K + 1)Γ/(1 − θ) price drops on each node, where

Γ := γ̄ · max
H: simple path

{
γH

(
max

C: simple cycle with γC<1

ΓC

1 − γC

)
+ ΓH

}
,

and γH , γC ,ΓC ,ΓH are given by Eqs. (4), (7) and γ̄ := max
{
1,max(i,j)∈A γij

}
.

Proof: Consider the pair (x, p) at the beginning of an up iteration in the ε-relaxation method.

Since the flow vector x0 is feasible, we have upon applying Lemma 1 to y := x0 − x (for which

hi = −gi) that, for each node s with gs > 0, there exist a node t and a simple path H in G from

s to t that conforms to x0 − x, i.e.,

xij < x0
ij , ∀ (i, j) ∈ H+, (8a)

xij > x0
ij , ∀ (i, j) ∈ H−. (8b)

Moreover, either gt < 0 or t belongs to a simple cycle C in G with γC < 1 and conforming to

x0 − x, i.e.,

xij < x0
ij , ∀ (i, j) ∈ C+, (9a)

xij > x0
ij , ∀ (i, j) ∈ C−. (9b)

From Eqs. (8) and (9), and the convexity of the functions fij for all (i, j) ∈ A, we have

f+
ij (xij) ≤ f−

ij (x0
ij), ∀ (i, j) ∈ H+, (10a)

f−
ij (xij) ≥ f+

ij (x0
ij), ∀ (i, j) ∈ H−. (10b)

Since the pair (x, p) satisfies ε-CS, we also have that

pi − γijpj ∈ [f−
ij (xij) − ε, f+

ij (xij) + ε], ∀ (i, j) ∈ A. (11a)

Similarly, since the pair (x0, p0) satisfies Kε-CS, we have

p0
i − γijp0

j ∈ [f−
ij (x0

ij) − Kε, f+
ij (x0

ij) + Kε], ∀ (i, j) ∈ A. (11b)
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Combining Eqs. (10)-(11), we obtain

pi − γijpj ≤ p0
i − γijp0

j + (K + 1)ε, ∀ (i, j) ∈ H+,

pi − γijpj ≥ p0
i − γijp0

j − (K + 1)ε, ∀ (i, j) ∈ H−.

Applying the above inequalities for all arcs of the path H, we obtain

ps − γHpt ≤ p0
s − γHp0

t + (K + 1)

(∑
i∈H

γHi

)
ε, (12)

where Hi denotes the portion of the path H from s to i ∈ H. We observed earlier that if a node

has negative surplus at some time, then its price is unchanged from the beginning of the method

until that time. Thus if gt < 0, then

pt = p0
t . (13)

On the other hand, if t belongs to some simple cycle C satisfying Eq. (9), a similar argument

shows that

pi − γijpj ≤ p0
i − γijp0

j + (K + 1)ε, ∀ (i, j) ∈ C+,

pi − γijpj ≥ p0
i − γijp0

j − (K + 1)ε, ∀ (i, j) ∈ C−,

which when applied for all arcs of the cycle C yields

pt − γCpt ≤ p0
t − γCp0

t + (K + 1)

(∑
i∈C

γCi

)
ε,

where Ci denotes the portion of the cycle C from t to i ∈ C. Using γC < 1, we obtain

pt ≤ p0
t + (K + 1)

(∑
i∈C γCi

)
1 − γC

ε. (14)

Therefore, if gt < 0, then Eqs. (12) and (13) yield

ps ≤ p0
s + (K + 1)

(∑
i∈H

γHi

)
ε ≤ p0

s + (K + 1)Γε,

and if t belongs to some simple cycle C satisfying (9), then Eqs. (12) and (14) yield

ps ≤ p0
s + (K + 1)γH

(∑
i∈C γCi

)
1 − γC

ε + (K + 1)

(∑
i∈H

γHi

)
ε ≤ p0

s + (K + 1)Γε/γ̄, (15)

where the second inequality follows from the definition of Γ. Since only nodes with positive

surplus can increase their prices and, by Prop. 2, each price rise increment is at least (1− θ)ε/γ̄,

we conclude from Eq. (15) that the total number of price rises that can be performed for node s

is at most (K + 1)Γ/(1 − θ).

11



3. Termination of the ε-Relaxation Method

Now we estimate the number of price drops on each node. Let p1 = {p1
i | i ∈ N} denote

the price vector at the end of the first phase of the ε-relaxation method. From Eq. (15) we see

that p0
i ≤ p1

i ≤ p0
i + (K + 1)Γε/γ̄ for all i ∈ N , so that

p0
i − γijp0

j − (K + 1)Γε ≤ p1
i − γijp1

j ≤ p0
i − γijp0

j + (K + 1)Γε, ∀(i, j) ∈ A.

Since (x0, p0) satisfies Kε-CS, this implies that (x0, p1) satisfies (K + (K + 1)Γ)ε-CS. Since, by

Prop. 2, each price drop increment is at least (1−θ)ε/γ̄, an argument analogous to the one above,

but with p0 replaced by p1 and with Lemma 1 applied to y := x − x0 instead, yields that the

number of price drops that can be performed on each node is at most (K+(K+1)Γ+1)Γ/(1−θ) =

(1 + Γ)(K + 1)Γ/(1 − θ). Q.E.D.

The preceding proposition shows that the bound on the number of price changes is in-

dependent of the cost functions, but depends only on the arc gains and the scalar K0 given

by

K0 := inf{K ∈ [0,∞) | (x0, p0) satisfies Kε-CS for some feasible flow vector x0 },

which is the minimum multiplicity of ε by which 0-CS is violated by the initial price together

with some feasible flow vector. This result will be used later to prove a particularly favorable

complexity bound for the ε-relaxation method. Note that K0 is well defined for any p0 because,

for all K sufficiently large, Kε-CS is satisfied by p0 and any feasible flow vector x.

We will now derive a bound on the number of flow pushes required by the ε-relaxation

method. By our choice of δ (see Steps 2a and 2b of the up iteration), a nonsaturating flow push

always exhausts (i.e., sets to zero) the surplus of the node being iterated on. In what follows, for

any ε > 0 and θ ∈ (0, 1), and any flow-price vector pair (x, p) satisfying ε-CS, we define the arc

set

A∗ := {(i, j) | (i, j) ∈ A is active} ∪ {(j, i) | (i, j) ∈ A is inactive}

and the admissible graph G∗ := (N ,A∗). By analyzing changes in the admissible graph, we have

the following proposition, which bounds the number of flow pushes between successive price rises

in the first phase.

Proposition 4: The number of flow pushes along arcs (respectively, cycles) between two

successive price rises (not necessarily at the same node) performed by the ε-relaxation method is

at most N2A (respectively, NA).

Proof: Consider the flow pushes between two successive price rises. First, we observe that

the number of arcs in the admissible graph G∗ is nonincreasing after a flow push, and is strictly

12



3. Termination of the ε-Relaxation Method

decreasing after a saturating flow push. Thus, the number of saturating flow pushes is at most

A.

Consider the flow pushes between changes in the admissible graph G∗ (which must all be

nonsaturating). Each flow push along an arc, being nonsaturating, does not increase the number

of nodes with positive surplus, while each flow push along a cycle, being nonsaturating, decreases

this number by one. (For a flow push from node i along a cycle C to be nonsaturating, we must

have γC < 1 and the surplus of i must be set to zero, while the surplus of all other nodes must

be left unchanged.) Thus, there can be at most N flow pushes along cycles. By the logic of an

up iteration, a flow push along an arc (oriented in the direction of flow change) belonging to a

forward cycle of G∗ is performed only if the ending node of this arc has not been iterated upon in

an earlier flow push. Thus, there can be at most N flow pushes along arcs belonging to forward

cycles of G∗. There remains to estimate the number of flow pushes along arcs (oriented in the

direction of flow change) not belonging to any forward cycle of G∗. These arcs form an acyclic

directed graph, say G∗∗. Moreover, a flow push can repeat at an arc, say (i, j), in G∗∗ only if

there is an arc in G∗∗ pointing into i along which a flow push was performed earlier. Since any

forward path in G∗∗ has length at most N − 1 (so the surplus of a node can be propagated to

successors along the arcs of G∗∗ by at most N − 1 flow pushes) and originally at most N nodes

have positive surplus, this implies that the total number of flow pushes along arcs in G∗∗ is at

most (N − 1)N .

Thus, between two successive price rises, the admissible graph can change at most A times

and, between successive changes in the admissible graph, there are at most N flow pushes along

cycles and at most N2 flow pushes along arcs. Q.E.D.

It follows from Props. 3 and 4 that the first phase of the ε-relaxation method terminates

after at most O(NKΓ) price rises, and at most O(N3AKΓ) flow pushes along arcs, and at most

O(N2AKΓ) flow pushes along cycles, where K is any nonnegative scalar such that the initial price

vector satisfies Kε-CS together with some feasible flow vector. A similar result can be shown for

the second phase, though the bounds increase by a multiplicative factor of Γ (cf. the estimates of

Prop. 3). In Section 4, a specific implementation of the method with sharper complexity bound

will be presented. Upon termination of the ε-relaxation method, we have that the flow-price

vector pair (x, p) satisfies ε-CS and that x is feasible since the surplus of all nodes is zero. The

following result from [TsB90, Props. 7 and 8] shows that this flow vector and price vector are

within a factor that is essentially proportional to ε of being optimal for, respectively, the primal

problem (P) and the dual problem (D).

13



4. A Sweep Implementation of the ε-Relaxation Method

Proposition 5: For each ε > 0, let x(ε) and p(ε) denote any flow and price vector pair

satisfying ε-CS with x(ε) feasible and let ξ(ε) denote any flow vector satisfying 0-CS with p(ε)

[ξ(ε) need not be feasible]. Then

0 ≤ f
(
x(ε)

)
+ q

(
p(ε)

)
≤ ε

∑
(i,j)∈A

|xij(ε) − ξij(ε)| . (16)

Furthermore, f
(
x(ε)

)
+ q

(
p(ε)

)
→ 0 as ε → 0.

Proposition 5 does not give an a priori estimate of how small ε has to be in order to achieve

a certain degree of approximate optimality, as measured by the duality gap. However, in the

common case where finiteness of the arc cost functions fij imply lower and upper bounds on the

arc flows:

−∞ < bij := inf
ξ
{ξ | fij(ξ) < ∞} ≤ sup

ξ
{ξ | fij(ξ) < ∞} =: cij < ∞,

as in the linear cost case of (2), the right-hand side of (16) is bounded above by ε
∑

(i,j)∈A |cij−bij |,
which gives an a priori estimate of the duality gap between x(ε) and p(ε).

4. A SWEEP IMPLEMENTATION OF THE ε-RELAXATION METHOD

We say that a strongly connected component (abbreviated as SCC) of the admissible graph

G∗ is a predecessor of another SCC of G∗ if there is a forward path in G∗ from a node in the first

SCC to a node in the second SCC (and we say that the second SCC is a successor of the first

SCC). [An SCC of G∗ is a subgraph G′ of G∗ with the properties that (i) there is a forward path

in G′ from every node in G′ to every other node in G′ and (ii) G′ is not properly contained in any

other subgraph of G∗ with property (i).] Observe that flow is pushed towards the successors of a

SCC and that flow cannot be pushed from a SCC to any of its predecessor SCC. We say that an

SCC is positive if it contains at least one node with positive surplus; otherwise the SCC is called

nonpositive.

The sweep implementation of the ε-relaxation method, introduced in [Ber86] and further

analyzed in [BeE88], [BeT89], and [BeC93] for the linear cost ordinary network case, selects a

node for an up iteration as follows (an analogous rule holds for selecting a node for a down

iteration): Let G∗ denote the current admissible graph. Choose any positive SCC of G∗ whose

predecessor SCC are all non-positive. In Step 1 of an up iteration, select i to be any node in the

chosen SCC with positive surplus. Also, in Step 1, always go to Step 2b when (i, j) belongs to

some forward cycle C of G∗.
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4. A Sweep Implementation of the ε-Relaxation Method

For the sweep implementation, we can improve on Prop. 4 as shown in the proposition

below. The intuition for this improvement is that an up iteration at a node i having a positive

predecessor SCC may be wasteful since its surplus may be set to zero through a flow push and

become positive again by a flow push at a node in the predecessor SCC. The sweep implementation

avoids performing such an up iteration. Our proof follows the corresponding line of analysis for

the ordinary network case in [BPT97a], [Pol95].

Proposition 6: For the sweep implementation of the ε-relaxation method, the number of

nonsaturating flow pushes between two successive price rises (not necessarily at the same node)

is at most N + NÃ, where Ã denotes the maximum number of arcs contained in any SCC of the

admissible graph.

Proof: Consider the flow pushes between two successive price rises. Each nonsaturating flow

push at a node i changes the surplus of i to zero. Since i, by selection, does not have any

predecessor node in a different SCC with positive surplus, the surplus of i will remain at zero

until the SCC containing i changes (due to the removal of a saturated arc from this SCC). Thus,

the number of nonsaturating flow pushes between changes in the SCC of the admissible graph

is at most N . Since at least one arc is removed from an SCC of the admissible graph each time

the latter changes, the number of changes in the SCC of the admissible graph is at most Ã.

Q.E.D.

By using Props. 3 and 6, we obtain the following improved complexity bound for the sweep

implementation of the ε-relaxation method.

Proposition 7: Let K be any nonnegative scalar such that the initial price vector for the

sweep implementation of the ε-relaxation method satisfies Kε-CS together with some feasible

flow vector. Then, the method requires O(KΓN) price rises and O(KΓN2(1 + Ã)) flow pushes

in the first phase and O(KΓ2N) price drops and O(KΓ2N2(1 + Ã)) flow pushes in the second

phase.

Proof: It suffices to analyze the first phase of the ε-relaxation method, which involves up

iterations only. According to Prop. 3, there are O(KΓ) price rises on each node, so the number

of price rises is O(KΓN). Furthermore, whenever a flow push is saturating, it takes at least

one price rise on one of the end nodes before the flow on that arc can be changed again. Thus

the total number of saturating flow pushes is O(KΓA). Finally, by Prop. 6, the number of

nonsaturating flow pushes between successive price rises is at most N(1+Ã), so the total number

of nonsaturating flow pushes is O(KΓN2(1 + Ã)). Since A ≤ N2, the result for the first phase
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5. Computational Experimentation

follows. An analogous analysis applies for the second phase. Q.E.D.

In the ordinary network case where Γ = O(N) and the second phase is not needed, it was

shown in [BPT97b, Prop. 5] (also see [BPT97a, Prop. 4] for the case of θ = 1/2) that if the initial

admissible graph is acyclic, then the admissible graph will remain acyclic at all iterations of the

ε-relaxation method, in which case Ã = 0 (each SCC always comprises an individual node and

hence contains no arc at all) and, since Γ = O(N), Prop. 7 would yield a complexity bound of

O(KN2) price changes and O(KN3) flow pushes. In general, we have Ã ≤ A. We can further

improve the complexity of the ε-relaxation method by using ε-scaling as is described in [BPT97a]:

initially set ε = ε0 for some ε0, run the ε-relaxation method until it terminates with some (x0, p0),

then decrease ε by a fixed fraction (e.g., a half) and rerun the ε-relaxation method with p0 as the

starting price vector, and so on, till ε reaches some target value ε. Assuming that ε0 is chosen

sufficiently large so that the initial price vector satisfies ε0-CS together with some feasible flow

vector, this yields an improved complexity bound in which K is replaced by ln(ε0/ε), that is, a

bound of O(ln(ε0/ε)ΓN) on the number of price changes and a bound of O(ln(ε0/ε)ΓN2(1+Ã)) on

the number of flow pushes in the first phase. A similar bound, though higher by a multiplicative

factor of Γ, holds for the second phase. To our knowledge, this is the first complexity result for

the generalized network flow problem with nonlinear cost function.

5 COMPUTATIONAL EXPERIMENTATION

We have developed an experimental Fortran code implementing the ε-relaxation method

for the case of problems (P) and (D) with quadratic arc cost functions. The code, named QE-

RELAXG (“Q” stands for quadratic and “G” stands for generalized), implements the version

of the ε-relaxation method whereby the cycle C in Step 1 of each iteration is found using the

technique described in Section 2 and ε is adjusted using the ε-scaling technique of Section 4. In

this section, we report on our computational experience with the code on some test problems. (We

have also implemented a version of the auction/sequential-shortest-path algorithm mentioned in

Section 3. This work is still very preliminary, although the initial results are encouraging.)

First we describe the test problems. In these problems, the cost function of each arc (i, j)

is quadratic of the form

fij(xij) =

{
aijxij + bijx2

ij if 0 ≤ xij ≤ cij ,

∞ otherwise,
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5. Computational Experimentation

for some aij ∈ � and bij ∈ [0,∞) and cij ∈ [0,∞). We call aij , bij , and cij the linear cost

coefficient, the quadratic cost coefficient, and the capacity, respectively, of arc (i, j). The test

problems are created using the public-domain Fortran problem generator NETGENG [Hul76],

which is an extension of the popular generator NETGEN that creates linear-cost generalized

assignment/transportation/transshipment problems having a certain random structure. (See

Tables 1 and 2 for the NETGENG parameters that we used to create the test problems.) As

NETGENG creates only linear-cost problems, we modified the created problems as in [BHT87]

and [BPT97a] so that, for a user-specified fraction (taken to be a half in our tests) of the arcs,

the quadratic cost coefficient is randomly generated from a user-specified range of consecutive

integers (taken to be {1, 2, 3, 4, 5} in our tests) according to a uniform distribution, and, for the

remaining arcs, the quadratic cost coefficient is set to a user-specified value b. When b = 0, the

cost function f is mixed linear/quadratic. When b > 0, the cost function f is strictly convex

quadratic and, as b → 0, the dual problem (D) becomes increasingly more ill-conditioned in the

traditional sense of unconstrained nonlinear programming.

Next, we describe the implementation details for QE-RELAXG. This code uses θ = 1/2

and is initialized with pi = 0 for all nodes i and with ε = 1
5 max(i,j)∈A{aij + 2bij x̂ij}, where

x̂ij = min{cij ,maxi∈N |si|}. The initial flow vector x is then chosen to satisfy ε-CS with the

initial price vector. The code terminates when the node surpluses and the duality gap f(x)−q(p)

are below 10−5 times, respectively, maxi∈N |si| and |f(x)|. A further enhancement, adapted from

the ε-relaxation codes for the ordinary network case [BPT97a], is the use of a surplus threshold

whereby only nodes whose surplus exceeds this threshold in magnitude are selected for up/down

iterations. This threshold is initially set to 1
4 maxi∈N |si| and is decreased at the rate 1

4 each

time ε is decreased, until this threshold reaches 10−5 · maxi∈N |si|. (We also experimented with

a stricter termination criterion where 10−5 is replaced by 10−8. The code did not change its

qualitative behavior, though the solution times increased by a factor between 1 and 4.) After

some experimentation, we settled on 1/5 as the fraction used in ε-scaling. Otherwise, we have

not fine-tuned the parameters in the code.

Now we describe our computational tests and experience. Our tests were designed to study

the performance of the ε-relaxation method relative to the earlier relaxation methods, and the

dependence of this performance on network topology, arc gains, and problem ill-conditioning.

We experimented with three sets of test problems generated using NETGENG as described

above: the first set comprises mixed linear/quadratic cost problems with varying topology and

arc capacities (Table 1); the second set comprises mixed linear/quadratic cost problems with

varying ranges of arc gains (top half of Table 2); the third set comprises strictly convex quadratic

cost problems with varying degrees of ill-conditioning (bottom half of Table 2). The solution
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5. Computational Experimentation

time for QE-RELAXG on these problems are shown in the last column of the tables. These

times were obtained by compiling and running QE-RELAXG on a Sun Ultra-1 workstation and

under the Solaris operating system, Version 2.5.1. The -O option was invoked when compiling.

From the solution times we see that the performance of QE-RELAXG is not significantly affected

by changes in the number of nodes (see bottom half of Table 1) or problem ill-conditioning (see

bottom half of Table 2). A possible explanation for the latter is that, by its use of ε-CS, quadratic

cost coefficients that are small are effectively treated as zeros by the ε-relaxation method. Thus, in

contrast to the relaxation methods of [BHT87] and [TsB90], the ε-relaxation method is well suited

to handle ill-conditioned problems (also see [BPT97a] for analogous observations in the ordinary

network case). On the other hand, the performance of QE-RELAXG is adversely affected by

increases in the number of arcs (see top half of Table 1) and, more significantly, by the presence

of non-unity arc gains near 1 (see top half of Table 2). The reason for the latter is not well

understood, though it seems to be related to the way in which NETGENG generates problems

with arc gains near 1, namely, the generated problems tend to be infeasible or nearly infeasible,

with many flow generating cycles needed to meet the flow demands and many flow aborbing

cycles needed to absorb the flow supplies. For these nearly infeasible problems, a large number

of price rises/drops are required to direct flow from flow generating cycles to sinks and from

sources to flow aborbing cycles. (The value of Γ does not appear to be a factor since, according

to the proof of Prop. 3, Γ affects complexity of the ε-relaxation method only through upper

and lower bounds on the prices generated by the method. In our tests, these bounds did not

change significantly, nor did the average price increment.) Also, we observed that, on all runs,

the computation was dominated by price rises/drops and flow pushes along arcs, with less than

0.1 percent of flow pushes being made along cycles (and the cycles were typically short). In other

words, QE-RELAXG behaves much like its counterpart for the ordinary network case where flow

pushes are made only along arcs.

To assess the efficiency of our coding, we compared QE-RELAXG with two specialized

Fortran codes: the ε-relaxation code NE-RELAXF from [BPT97a] for mixed linear/quadratic

cost ordinary network flow problems, and the primal-simplex code NET2 from [Cur83] for linear

cost generalized network flow problems (also see [TsB87]). In our tests, we found QE-RELAXG to

be slower than NE-RELAXF, though not beyond a factor of 1.5 in solution time. QE-RELAXG

was typically slower than NET2, by a factor between 1.2 to 4. NET2 was also adversely affected

by the presence of non-unity arc gains near 1, as well as by wider gain range. And on two problems

with gain range of .2–4.0, NET2 was unable to find a feasible solution even with double-precision

arithmetic (see Table 3). Thus, although QE-RELAXG is not as fast as the specialized codes, as

might be expected, it can serve as a good all-around code, since it can handle arcs that involve
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gains as well as nonlinear cost. In fact, even for special cases such as linear cost generalized

network flow problems, the ε-relaxation method can still be competitive with existing methods on

some problems (see row 3 of Table 3), though further study and experimentation with alternative

implementations are required.

While this paper was under review, the referees suggested that we compare QE-RELAXG

with popular linear programming (LP) or nonlinear programming (NLP) codes such as MINOS

or CPLEX. Although we did not have CPLEX, we did have MINOS 5.4 by Murtagh and Saunders

[MuS93], which we ran on a common set of test problems as QE-RELAXG. The test results with

MINOSL, a version MINOS adapted for LP, are tabulated in Table 3. The test results with

MINOS, the NLP code, are tabulated in Table 4. The tests were run on a Dec Alpha as the

Sun Ultra-1 was not easily accessible to us at this time. The test problems were generated using

NETGENG with the same settings as in Table 2, although, to simplify input into MINOS, we

truncated the real data aij , cij , γij , and si to 3 decimal places. Due to the large problem size,

some care was needed to set parameters in MINOS so that it has sufficient workspace. After some

experimentation, we settled on nwcore = 15000000 and Superbasics limit = min{3000, A + 1}.
The objective function and gradient were defined in the subroutine funobj, with the quadratic

cost coefficients bij stored in a common block inside funobj. We consulted with Michael Saunders

to ensure that these MINOS settings and data inputs were reasonable. To make a fair comparison

of QE-RELAXG with MINOS, we changed 10−5 in the termination criterion for QE-RELAXG to

10−8 and 10−7, respectively, for the first eight and the last eight problems in Table 4. This ensured

that the accuracy of the solutions generated by QE-RELAXG, as measured by cost, is similar

to that generated by MINOS. The solution times for MINOSL and MINOS, as reported under

“Time for solving problem”, do not include the problem input time nor the time for objective

function. As can be seen from Tables 3 and 4, QE-RELAXG is significantly faster than MINOSL

and MINOS on most of the test problems. The exceptions are the linear cost uncapacitated

transportation problems in Table 3 and the two quadratic cost problems in Table 4 with non-

unity arc gains near 1, for which QE-RELAXG is at most twice as fast as MINOSL or MINOS

(and slower than MINOSL on one problem). Changing the termination criterion for MINOSL

and MINOS does not appear to improve their solution times appreciably. For example, on the

sixth problem in Table 4, MINOS required 10278 iterations to terminate with an objective value

of 404789494 while, after 10000 iterations, the objective value was still at 404847785. Workspace

allocation is also an issue for MINOS on the quadratic cost problems. For example, setting

Superbasics limit too low (e.g., 2000) caused early exit, while setting it too high (e.g., 10000)

resulted in workspace requirement exceeding the available disk space.
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 ����
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� ���
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�
��		� 	���
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��� 	���� ���	�� � ��
����� ����
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��� ���	�� � 	�
��
�

 ��



Transhipment �xed ��� 
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cap� ����� 	���� 	��� 
��� ���	�� � ���
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 ����
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 ����
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�
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���

Transportation �xed ��� 
��� ���	�� � 	�	�
���
 ����

	��� 
��� ���	�� � ���	����
 
���

Table 	� Solution times �in seconds� for QE�RELAXG� Problems are created using NET�

GENG with SEED � 	
������� No� sources � No� sinks � �No� nodes���� Supply �

��� � �No� nodes�� and Linear Cost Coe�� � �	� 	����� Quadratic Cost Coe�� is randomly

generated from f	� �� 
� �� �g for half of the arcs and is equal to the value b shown in column

six for the remaining arcs�
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nodes arcs range cost Soln� times Soln� times Soln� times
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Table 	� Solution times �in seconds� for QE�RELAXG� NET� and MINOSL on a Dec Alpha�

Problem parameters are as in Table �� with the linear cost coe�cients aij� capacities cij� gains

�ij � and supplies si truncated to � decimal places� The quadratic cost coe�cients bij are set

to zero� 	�NET� exited with unsatis
ed demand of ����� at node 
�� and ����
 at node �����
�NET� exited with unsatis
ed demand of ����� at node �� and ���� at node �����
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Table �� Solution times �in seconds� for QE�RELAXG and MINOS on a Dec Alpha� Problem

parameters are as in Table �� with the linear cost coe�cients aij� capacities cij� gains �ij �

and supplies si truncated to � decimal places�
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