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A New Algorithm for Solution of Resistive 
Networks Involving Diodes 

DIMITRI P. BERTSEKAS 

AMracr-The solution of electric network problems by various algo- 
rithms such as for example Newton’s method is often hampered by tbe 
presence of physical diodes wItIt steeply rising exponential characteristics 
wblch cause overflow and slow convergence during numerical computation. 
In this paper we propose and analyze an algorithm which bypasses these 
difficulties by successively approximating the steep diode characteristics by 
smoother exponential functions. The algorithm may be mod&d to be used 
in the presence of ideal diodes and is related to penalty and multiplier 
methods for constrained mlnimlxation and Davidenko’s method for solving 
certain ill-conditioned systems of nonlinear equations. 

I. INTRODUCTION 

C ONSIDER a connected nonlinear resistive electric 
network consisting of m nodes and r arcs. Let i,, 

denote the current through the nth arc and v,, denote the 
voltage difference across the nth arc. Let i = (iI,. * * ,i,)’ 
and v=(v,;.. , v,)’ denote the corresponding r-dimen- 
sional (column) vectors. If A is the incidence matrix of the 
network and B is the loop matrix of the network we have 
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from Kirchhoff’s current and voltage laws 

Ai=O 
Bv=O. (1) 

As is well known (see e.g., [ 1]), the equations above yield a 
set of r independent equations in (i,v). Suppose that s, 
with 1 < s < r, out of the r arcs of the network consist of 
physical diodes with exponential characteristics of the 
form 

g,(i,,v,)=i,-p,(e9n”n-l)=O, n=l;**,s (2) 

where JJ~ and 4, are given positive scalars, while there are 
(r - s) additional equations relating i and u of the form 

f,(i,u)=O, n=s+l;**,r (3) 

where f, are continuously differentiable functions. 
The numerical solution of the system of equations (1) 

(2) (3) can be attempted by application of Newton’s 
method. However this approach in practice often meets 
with formidable difficulties when the coefficients q, in the 
diode characteristic equations (2) are large (a typical 
range of values for transistor circuits is q,, = 30-40). First, 
as predicted by Kantorovich’s theorem (see e.g., [2]), the 
region around a solution where Newton’s method exhibits 
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fast convergence depends strongly on the magnitude of in+P, 
the second derivatives of the functions g,, and f,. When q,, 
is large the second derivative of g,, with respect to v, is 
very large even for moderate positive values of v,. As a 
result Newton’s method can converge very slowly unless 
the starting point is very near a solution. Second, when q, 
is large the range of values eG% can take is very large with 
overflow easily resulting during numerical computation. 

The numerical difficulties associated with straightfor- 
ward application of Newton’s method in diode network 
problems are widely recognized (see e.g., Calahan [3]) and 
a number of approaches [4]-[7], [23] have been suggested 
in the literature for overcoming these difficulties. One of 11 
the approaches suggested has been the employment in a 
particular way of Davidenko’s method [8] for solving 
ill-conditioned systems of nonlinear equations [9]. In this 2 
paper we propose an algorithmic approach similar to 0 
Davidenko’s but yet different in some important aspects 
which results, in our opinion, in considerably more 
efficient computation. Our approach is based on an equiv- 
alence between network problems and optimization prob- 
lems which has been known for some time and has been 
sharpened to a definitive form recently by Minty [lo], 
Rockafellar [ 111, [ 121, and others in the context of modern 
duality theory. It is also based on some recent ideas in the 
theory of computational optimization which have given 
rise to a class of methods for constrained optimization 
called methods of multipliers (see [13] for a literature 
survey). This class of methods has several important 
advantages over the class of penalty function methods 
and tends to replace them in most applications. The 
algorithm considered in this paper is directly related to a 
method of multipliers with exponential penalty function 
first proposed by B. Kort and the author in 1972 [14]. In 
the next section we describe our algorithm while in Sec- 
tion III we present results of computational experiments. 
In Section IV we explain the motivation of the algorithm 
and we provide a convergence result for the case of a 
monotone network. From the discussion of Section IV it 

” 
il 

Fig. 1. 

The functions g, and & are depicted in Fig. 1. Notice that 

lim g,(i,,u,,y,,~)=g,(i,,v,) 
E-O+ 

Vi,,, v,ER, Y,>O, n= 1;. . ,s. (6) 

In fact it is easy to see that if {i,“}, {o,“} are convergent 
sequences with i,“+l$ v,“-+i& {y,“} is any sequence of 
positive numbers bounded above and bounded away from 
zero, (6) is a sequence of nonnegative numbers and 
furthermore 

then we must have 

Based on the observations above, a possible approach 
for solving the system of equations (l)-(3) is to specify 
sequences {y:}, n=l;**,s, {ek}, and {yk} with 

will become evident that similar algorithms may be con- 
structed to treat other types of “ill-conditioned” arc char- 

O<S< y,“<A, Vk, for some 6, A (7) __ 
acteristics involving, for example, nondifferentiabilities, O< ck+, < 6, Vk, Q-90 (8) 
discontinuities, etc. Examples of this type of algorithms 
have been provided in separate publications [15], [16], 

0 ( Yk+ 1 ( yk, Vk> Y,+‘O (9) 

]241, ~251. and find for each index k vectors (ik, v k, which approxi- 
mately solve the system of equations (1) (3) (4) in the 

II. THE ALGORITHM 
sense that 

Consider the possibility of replacing (2) by equations of 
the form 

I&(i,“2v,k3Y,k?Ek)i G Yk? n=l, 

If, (ikfvk)l Q Yk? n=s+l; 

. . . ,s 

. . ,r 

(10) 

(1’) 

&(i,,qd,,~)=O, n=l;..,s (4) llAikll G yk 

where y, >0 and z > 0 are scalar parameters and & is llB~kll ( Yk (12) 

defined by where I]. I] denotes the usual Euclidean norm. Then any 

&(in,qYnr~)= i, 
limit points i, V of the sequences { ik}, {ok} constitute a 
solution of the network equations (l)-(3). In other words 

- (YJ w/(1 +qpn) l/(l+q”r)eq”o,/(l+q”r)+Pn. (5) successive approximate solution (within yk) of the system 
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of equations (I), (3) (4) yields in the limit solutions of the 
system of equations (l)-(3). 

Notice that finding (ik,vk) satisfying (lo)-(12) by 
means of Newton’s method wili not present difficulties for 
moderately large values of ek since now the exponential in 
(5) rises much less steeply than in the diode equation (2). 
Thus by starting with relatively large values of E (say e = 1) 
and progressively reducing E towards zero one gradually 
approaches a solution of the problem in a manner which 
alleviates the effects of “ill-conditioning” much in the 
spirit of Davidenko’s method and penalty function 
methods in constrained minimization. 

An important additional feature of the method pro- 
posed is the introduction of the scalar. parameters y,“, 
n= 1,. . . ,s. While the algorithm would work if the scalars 
ynk were held constant (say fixed at the value ynk = 1 for all 
k) we propose to update y,k according to the equation 

Y,“+‘=(Y”) 
k %dl + %f”‘(p,) 

n=l;-.,s. (13) 

Notice that from (5), (lo), and (13) we have for all k 

Ii,“+p,,-y,k+l/ G yk, n=l;**,s. (14) 

As a result if the sequence {u,“} generated by the algo- 
rithm is bounded we have (using (5) (10)) that the 
sequence {ink+pn} after some sufficiently large index is 
positive and bounded away from zero. It follows, in view 
of (14) and the fact y,-+O, that the sequence {y,““} is 
bounded away from zero for every n = 1, * * * ,s as required 
by (7). It turns out that in many cases the algorithm 
proposed is much more efficient when the updating for- 
mula (13) is utilized than when the parameters y,” are left 
constant. In fact the algorithm may work satisfactorily 
even if the parameter ek is not decreased to zero but rather 
is held constant at some positive value. In other words 
convergence may be induced by iteration (13) alone. This 
fact will be proved for the case of monotone networks in 
Section IV. For other cases there are no analytical results 
presently available. However experimental evidence sup- 
ports the conjecture that the employment of (13) will 
accelerate convergence in the great majority of cases of 
interest. 

It is worth noting that, with minor modifications, the 
algorithm can be also applied to problems with ideal 
rather than physical diodes, i.e., for diodes with character- 
istic equation 

e 

i, = 
i 

0, if v, < 0 

+m, if v, >0 * 

The approximating function & in this case takes the form 

~~(i,,v,,y,,E)=i,-yy,e”n”=O 

and the multiplier iteration (13) takes the form 

y,“+ 1 =y,ked/~, n = 1;. . ,s. 

R + i E _- l v m- 
Fig. 2. 

i+P 

Fig. 3. 

We note also that it is possible to use an approximating 
function for an ideal diode which is not exponential. Such 
functions may be obtained from corresponding members 
of a general class of penalty functions introduced in 
[ 17]-[ 191 in the manner explained in Section IV. 

We end this section by demonstrating pictorially how 
the algorithm will work for the case of a simple example 
network. 

Example 

Consider the network shown in Fig. 2 where the diode 
shown is either ideal or has an exponential characteristic. 
We assume that the solution of the approximating 
network is exact, i.e., yk ~0. 

Let i and v denote the current and voltage difference 
across the diode and let them be related by 

i=p(eq”- 1). 

The successive iterations of our algorithm (with yk GO) are 
shown in Fig. 3. Notice the mechanism by which the 
multipliers yk are generated and the fact that the “ap- 
proximating” exponential characteristic 

(yk)qdl+qd(p) l/(l+q~k)ew/(l+l?c~~ 

intersects the diode exponential peq” at the point with 
vertical coordinate yk= ik-’ +p. It is easy to see in the 
example above that convergence to the pair (<a) can be 
induced by the multiplier iteration (13) alone without the 
need to decrease ek to zero thus completely eliminating the 
ill-conditioning problem. It is to be noted however that 
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Fig. 4. 

convergence will be faster when ek is successively reduced 
to zero rather than kept constant. 

Consider now the case where the diode in Fig. 2 is an 
ideal diode. Then the solution of the problem is trivially 
i= E/R, V=O. Fig. 4 shows how our algorithm will find 
this solution. 

III. COMPUTATIONALASPECTSAND RESULTS 

The algorithm presented in this paper has been utilized 
to solve a few test problems. Generally the method per- 
formed in a reliable manner. In our experimental program 
the pure form of Newton’s method for solving nonlinear 
equations (i.e., with stepsize equal to one) was utilized 
throughout. In a general purpose program however one 
would certainly need to modify Newton’s method by 
including a steplength procedure or other devices which 
would improve reliability. The algorithmic solution of 
each “approximate” network problem was terminated 
when the absolute value of each of the equations was less 
than 10m5 (yk= lop5 in (lo)-(12)). 

A special automatic procedure was utilized to de- 
termine the sequence of parameters { ek}. At the beginning 
of the computation a sufficiently large initial value ea was 
determined such that the values of all equations at the 
initial point (i”,vo,yo) were reasonable (say < 103). At the 
beginning of the kth solution cycle a trial value ek= 
ek-i/8 was adopted and this value was decreased or 
increased depending on whether the values of all equa- 
tions at the point (ik- ‘, v k- ‘,y k, was within certain 
ranges. (In our program we decreased e by a factor of 8 if 
all initial equation values were less than lop3 and we 
increased e by a factor of 2 if some initial equation values 
were greater than unity. We took however always ek < 
0.5~~~~ so that the sequence {ek} was always monotoni- 
cally decreasing.) This automatic procedure for adjusting 
the approximation parameter E is aimed at striking a 
reasonable balance between fast convergence of the algo- 
rithm and reduction of ill-conditioning. 

From computational experience as well as theoretical 
considerations based on general properties of multiplier 
methods (see, e.g., [13]) the rate of convergence is accel- 

Fig. 5. 

TABLE1 

erated if successive values of ek are reduced as much as 
possible without inducing ill:conditioning. Also the initial 
values of the multipliers y” should be taken as close as 
possible to their final values U,= i+p, (c.f. (14)). 

As an example we give some computational results for a 
simple test problem. 

Test Problem 

Consider the network given in Fig. 5 containing two 
identical diodes. 

Case 1: For this case the diodes have identical ex- 
ponential characteristics of the form i = 0.1 X IO-l4 (e40” - 
1). The two equations for the voltages ui,u2 at the points 1 
and 2 shown in the figure are as follows: 

E-2v2-p[eq(130Z-ol-6E)- ‘1 =O (15) 

1.5E-2v,-0.5v,-p[eq(“l-‘j-l]=0 (16) 

where 

p =O.l x lo-l4 2 q=40, E=2. 

When the pure form of Newton’s method was utilized 
to solve the equations above we obtained convergence in 
12 iterations from the initial point vi = v2 = 1 to the final 
point vi = 1.8052, v2 = 1.0000. However for the initial point 
(3,0) Newton’s method was progressing very slowly and 
failed to converge after 20 iterations while for the initial 
points (0,4) and (- 2,6) overflow occurred immediately. 

We now give in Table I the results of the computation 
using our method. The table gives the parameter ek for the 
kth network problem, the multiplier values y f, yt (y :, y: 
refer to the diodes in (15) and (16), respectively), the 
values of v,, vz obtained, and the number of iterations of 
Newton’s method. The initial point was v, = v2= 1. Notice 
that the number of iterations is 8 (four less than for the 
ordinary Newton’s method). For the same initial multi- 
pliers yy =yz= 0.1 and other starting points u,, v2 we 
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obtained similar results. For the initial point v, = 3, v2 = 0 
the number of iterations was 8. For vi =O, v,=4 the 
number was 15. For v, = -2, v,=6 the number was 11. 
For vi =5, vz= 8 the number was 12. For v, = 10, v,=5 
the number was 15. Thus there was no difficulty in solving 
the problem for widely varying initial conditions and 
furthermore the number of iterations required was not 
extremely sensitive to the initial values of v, and v2. 
Similar results were obtained for E= 10 and the same 
initial conditions although the number of iterations re- 
quired was higher (around 30). This may be attributed to 
the fact that for E = 10 the initial multiplier values yp=yy 
= 0.1 differ considerably from their final values. 

Case i: Here the two diodes are ideal. For E = 2, yp= 
yi=O.l and a variety of initial values for v,, V~ the correct 
values for v,, v2 (vi = vz= 1) was obtained within five 
significant digits in 30-35 Newton iterations. Similar re- 
sults were obtained for E = 10. 

IV. MONOTONENETWORKS-RELATIONTO A 

METHOD OF MULTIPLIERS 

We now provide convergence analysis of the algorithm 
proposed for the case of a monotone network as consid- 
ered by Minty, Rockafellar, and others. In contrast with 
Section II we will not assume that the sequence {Q} 
utilized in the algorithm converges to zero. Instead we will 
assume that ek is kept constant although the proof of the 
result can be easily modified to cover the case where ek is 
not constant and is bounded above. We will also assume 
that the solution of the system of equations (1), (3), (4) is 
carried out exactly (i.e., yk =0 in (lo)-(12)). 

The case considered is when in addiition to the topo- 
logical network equations 

Ai=O 
Bv=O (1) 

and the diode equations 

g,(i,,v,)=in--pn(eqn”n-l)=O, n= 1;. . ,s (2) 

the currents and voltage differences across the nondiode 
arcs must lie on corresponding complete increasing curves 
as defined in Rockafellar [ll]. These last relations are 
denoted by 

(i,,v,)Er,, n=s+l;=.,r (‘5) 

where I,, are nonempty subsets of R x R. We are seeking 
a solution to the system of relations (1) (2), (15): 

Now by Theorem 1 of [ 111 a pair of vectors (i, i5) solves 
(I), (2), (1.5) if and on& if i solves a certain optimization 
problem (see [ I1 ] ) and V solves the optimization problem 

minimize i 
( 

!q 
n=l 4, 

eqnun- *)-P,o,) + 5 ~~(4 
n=s+l 

subject to Bv = 0. (16) 

The functions ‘p, : R+( - 00, + 001 above are con- 
structed from the complete increasing curves I?, of (15) as 
follows (see [ 111). Define for all v,, E R 

and consider the interval 

1, = { v,lr,(v,) : nonempty}. 

Then fix some I?,, E I, and define 

%(VnL)n) = + 00, if v, 4 I, 

where for w E Z,,, y,(w) is any scalar belonging to l?,(w). 
As shown in [11] the functions qn as defined above are 
convex and lower semicontinuous on R. Furthermore by 
[ 11, theorem 1’1 a vector U solves the optimization-problem 
(16) if and only ij there exists a vector i such that (i, i?) solve 
the network problem (I), (2), (1.5). The algorithm that we 
propose will be studied in terms of the optimization prob- 
lem (16) which is equivalent to the network problem 
under consideration in view of the discussion above. 

Problem (16) is equivalent to the following problem 

minimize e 
i 

p”[e qA.(o,- 4 
n=, 9, 

-11-P,% + zi: %C%> 
I n=s+l 

subject to Bv = 0, u, < 0 ,n=l;..,s (17) 

where we have introduced additional variables u,; * * ,u,. 
A vector V is an optimal solution of problem (16) if and 
only if (U,O) is an optimal solution of problem (17). One 
may solve problem (17) numerically by using some con- 
strained minimization method. In particular one may use 
a method from the class of multiplier algorithms. These 
algorithms have been proposed and analyzed recently (see 
[13], [14], [17], [18]). They are similar in spirit to classical 
penalty methods, but are much superior in terms of speed 
of convergence and reliability. A multiplier method such 
as those proposed in [ 141 and [ 181 when applied to prob- 
lem (17) consists of sequential solution for k = 0, 1,. . . , of 
the problem 

minimize i: 
i 

p”[ 
n=l al 

eqnconpun)- 1 ] -p,V, + Ckp 

( )i 
?,Yi 

+ i P)n(vn> 
n=s+l 

subject to Bv = 0 (18) 

where ynk are nonnegative scalars referred to as the multi- 
pliers and {ek} is a sequence of positive scalars referred to 
as the penalty parameter sequence. The real valued func- 
tion p, referred to as a generalized penalty function, 
satisfies certain conditions (see [ 141, [IS]) chief among 
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which are continuity and convexity with respect to u and 

p(u,y)>O, vu>o, 

P(%Y> < 0, VU<0 

Jll P(%Y> = @J 

JIJlm P(KY) > - cQ 

for ally > 0. The most commonly 
the quadratic 

yu+ +u2, 

-- ; Y2> 

used penalty function is 

I.42 -y 

u< -y 

however in our case it is essential to utilize the following 
exponential penalty function (see [ 141, p. 163): 

PW)=yW- 1) (19) 

for reasons that will become apparent shortly. 
Multiplier methods can be operated similarly as penalty 

methods by taking ~~‘0. The feature however which 
distinguishes them from penalty methods is that after each 
minimization of the form (18) the multipliers are updated 
by means of the iteration 

n= 1;. . ,s (20) 

where u,” n=l;*. ,s together with some vector v k = 
<v:; * - ,v,“) solve problem (18). This iteration is aimed at 
choosing ynk’ ’ as close as possible to Lagrange multipliers 
corresponding to the inequality constraints in (17). The 
significant advantage of multiplier methods over penalty 
methods stems from the fact that iteration (20) can induce 
convergence of the method (i.e., vk-+V, u,“-+ii,,--a solu- 
tion of (17)) even without taking ek+O as in penalty 
methods. Under convexity assumptions (see [14], [18]) it is 
merely sufficient to keep { ek} bounded above-for exam- 
ple, ek=constant. In the absence of convexity it is neces- 
sary to have rk < E for all k sufficiently large where E>O is 
a scalar depending on the problem (see [13]). Thus the 
well known disadvantages of penalty methods associated 
with very small values of ek are alleviated. Furthermore 
the overall method requires significantly less computation 
time than a corresponding penalty method. 

Let us now consider the multiplier method with the 
exponential penalty function (19) and ek G E > 0 applied to 
problem (17). We introduce the vector y = (y,; . . ,ys) and 
we consider the Augmented Lagrangian defined by 

L(v,u,y,c)= i 
l 

Llr[e~(Q-Un)-l]-pnv~ 
n=’ 9, 

In the general iteration of the algorithm a multiplier 
vector yk=(yf; -. ,y,“) with positive coordinates is given 

and one obtains a pair of vectors (v k, u k, which solve the 
problem 

(22) 
Subsequently the multiplier vector is updated by means of 
the iteration 

y,"+ ' = y,"e d/O i= 1;. . ,s. (23) 

The minimization cycle of (22) is repeated with yk+’ 
replacing y k. The initial multiplier vector y” is an arbitrary 
vector with positive coordinates. 

Now the typical minimization cycle (22) can be carried 
out explicitly (i.e., in closed form) with respect to u. 
Indeed one may verify by straightforward calculation that 

*+w 
= 4, (Yn) %4’+%‘)(pn) ‘/(l+q”~)eq”o”/(‘+q”~) 

while the minimizing scalar tl, above satisfies 

(24) 

In view of the relations above the minimization problem 
(22) can be written as 

min L’ (v,y k, e) 
Bo=O 

(25) 

where the function i is defined by 

i(v,yk,e)= i 
fl=l i 

1 +-AI’ ( y,k)4”4’ +A 

* (PJ l/~l+~“~~e~“o”/~l+q”c~ 

I 

- i: ( 2 + cYy,k+P,v, 
n=l n 

) + i ~,(vn>. (26) 
n=s+l 

Furthermore the multiplier iteration (23) can be written 
by using (24) as 

Yn 
k+l =(y,k)c’~(l+q~O(p,)l/(~+~~‘)e”“/(’+~’), 

n= 1;. * ,s. (27) 

Thus even though the multiplier algorithm was defined 
in terms of the additional variables u,; * * ,u,, the com- 
putations need not involve these variables and in its 
reduced form the algorithm consists of sequential minimi- 
zations of the form (25), (26) followed by multiplier updat- 
ings of the form (27). This important feature is present 
thanks to our particular choice of a penalty function with 
exponential form. 

Now to relate the algorithm specified by (25)-(27) to 
the algorithm of Section II we need only observe that the 
minimization- problem (25), (26) is, in view of the theo- 
rems of [ 111 mentioned earlier, equivalent to solving the 
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_ system of relations 

Ai=O, Bv=O, (in,4 ET,, n=s+l;-.,r 

(28) 
gn(i,,v,,Yi,E) = i, _ (y,k)qnr’(1+qnf)(pn)1/(1+q”t)e4~U./(1+q~c) 

+pn=o, n = 1; . . ,s. (29) 

In conclusion the algorithm proposed in Section II (for 
the case where yk=O, ck=eE) is equivalent to the method 
of multipliers specified by (21)-(23) or the method of 
multipliers specified by (25)-(27). 

We now provide the following proposition the proof of 
which is similar to the proof of corresponding results in 
[ 141. Actually in [14] the results obtained are weaker (a 
fact which prompted the authors of [14] to consider a 
slightly different class of algorithms for convex program- 
ming [17]-[19]). However for the special case under con- 
sideration the stronger convergence results given here may 
be obtained by exploiting.the fact that the sequences { y,“} 
can be shown to be bounded away from zero. 

Proposition 

Let the assumptions of this section hold and assume 
that the system of relations (1) (2), (15) has a nonempty 
solution set S* which is bounded in v (i.e., there exists a 
p > 0 such that ]I V]] < p for all (< 3 E S*).’ 

a) For every yk=(yt; * * ,y,“) with ynk >O, n= 1; * * ,s, 
and e > 0 the system of relations (28), (29) has a nonempty 
solution set which is bounded in v. 

b) Let { vk,y k} be a sequence generated. by the algo- 
rithm which consists of repetitive solution of the system 
(28), (29) with the multiplier vectors yk updated by (27). 
Then the sequence { vk,y k} is bounded. Furthermore if 
(V,y3 is any one of its limit points, then there exists a 
vector in R ’ such that the pair (t t?) is a solution of the 
system (l), (2), (15) and u satisfies 

U, = i, +pn =p,eqm’*, n=l;**,s. (30) 

Proof: The proof relies heavily on the theory of convex 
functions and convex programming as presented in 
Rockafellar’s text [22]. 

a) Using the notation (21) we have for any yk, y with 
y,k>o,ynno, n=l;..,s 

L(v,u,Y~,()= i 
1 

fIll[eq~(‘~-‘n)- 1] -p,V, 
py=, 4n 

Notice that the last term on the right above is real valued 
and bounded for any fixed 7 and a bounded sequence 
{ yk}. We will show that problem (22) has a nonempty 
and compact optimal solution set. To this end we must 
show that the function L(v,u,y k,e) has no direction of 
recession (5, ii) with Bi; = 0 (see [22, p. 691 for the defini- 
tion of a direction of recession; also [22, car. 8.7.1, th. 
27. Id). Let (6,17) be such that (6, zZ)# (0,O) and B6 = 0. Our 
assumption that the system of relations (l), (2), (15) has a 
nonempty solution set bounded in o implies that problem 
(17) has a nonempty and compact solution set. Hence 
there are two possibilities. Either (6,;) satisfies 6, < 0, 
n= 1,. . . ,s and (v”, G) is a direction of recession of the 
objective function of problem (17), given below for con- 
venience 

or else z&>O for some iE{l;..,s}. If li,<O, n=l;*.,s 
then by taking y= 0 in (31) the right side is the same as 
the objective function of problem (17) plus a constant and 
it follows that (r?,tl) cannot be a direction of recession of 
L(u,u,yk,c). If z’ii>O for some ri~{l;**,s} then take 
yn =0 for n# 5 in (31) and take yi sufficiently large to 
guarantee that (G,n) is not a direction of recession of the 
resulting function on the right. Since it is possible to 
choose y; in this way (see [22, th. 8.8, car. 8.7.1, th. 9.31) it 
follows that (u”,ti) is not a direction a recession of 
L(~,u,y~,e). Hence problem (22) has a nonempty and 
compact solution set and by [ 11, th. 1’1 the set of relations 
(28), (29) has a nonempty solution set.bounded in v. 

b) The proof of this part will be developed through 
several lemmas. Consider the ordinary dual functional 
d: RS+[ - co, co) of problem (17) defined for each y = 
(~1,. . . tv,> by 

d(y)= 
1 

+ n~~+lQw ’ 1 ify,>O,n=l;..,s’ 

-00, otherwise 

(33) 

A vector 7 is a maximizing point of d if and only if it is a 
Lagrange multiplier vector of problem (17) ([22, $281) in 
the sense thaty,>O, n=l;..,s and 

where V is an optimal solution of problem (16) or equiv- 
‘Conditions for this to occur are given in [20], [21]. alently (V,O) is an optimal solution of problem (17). Since 
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each k > 1: 

-c~<d(y~)<d,(y~)<d(y~+‘), ifyk#yk+’ 

d(yk)=d,(yk)= m;xd(y), ifyk=yk+'. 

Furthermore {v k, u k,y k} is a bounded sequence. 
Proof: Consider the sequences {u,“}, n = 1, * + . ,s de- 

fined by y,” + ’ = yte Lh*/’ (c.f. (23)). Then (uk,uk) solve for 
each k the problem 

min L(u,u,yk,e). 
Bv=O 

If yk#y k+’ then u/Z0 for some fi~{l;**,s} and a 
simple calculation shows that 

t$<c(e d/f - 1) < ute 4/c 

while for all n we have 

(37) 

(U,O) attains the minimum in the left side of (34) we 
obtain by differentiation with respect to U, 

Hence 

-he 4.0. +r, = 0. 

Y, =w %o.= i, +pn, n= 1;. . ,s (35) 

where i together with I? are a solution to the network 
equations (l), (2), (15). Since the set of all such V is 
nonempty and compact by our assumption the set of ally 
of (35) is also nonempty ‘and compact. We state our 
conclusion as a lemma. 

Lemma I 

A vector ~=(~t; * * ,y,) is a maximizing point of the 
dual functional d of (33) if and only if 

y,=p,e%k=~~+p n, n= 1;. * ,s 

where ({I?) is some solution of the network equations (l), 
(2), (15). The set of all these maximizing points is non- 
empty and compact. 

n= 1;. . ,s. (38) 

Now from (23), (33), (36)<38) and the fact y,k >O, n = 

Consider now the function d, : RS+[ - co, co) defined for each y = (yt; . . ,y,) and e > 0 by 

4(y)= 

hi, C, $ [ eqJvnvun)- 1 
[ 1 

]-p,u,+v,(e+-1) + i ~(4 
I n=s+l 

= ~i~oL(v,u,Y,+ ify,>O, n= 1; *. ,s 

-00, otherwise 

This is the dual functional associated with the problem 

minimize i 
1 

$[e q.(v, - 4 - 
n=, %I 

subject to Bu = 0, e(esi’-- 1) < 0, n= 1; . * ,s. 

The problem above has the same optimal solutions as 
problem (17) and by repeating the procedure given earlier 
we obtain the following. 

Lemma 2 

The set of maximizing points of the dual functional d, 
of (36) is identical to the set of maximizing points of the 
dual functional d of (33). 

We now show the following crucial lemma which dem- 
onstrates that our algorithm may be viewed as an ascent 
method for maximizing both d,and d,. 

Lemma 3 

For a sequence {v k, u k,y k} generated by the algorithm 
where u k is defined by (23) the following hold true for 

(36) 

1; * * ) s we obtain 

The’last equality follows from the fact that (vk, uk) satisfy 
the necessary conditions for minimizing over all (v, u) with 
Bu = 0 the function 
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This can be seen from the fact that (uk,uk) solve problem (41) 
(22) and from the updating formula (23). To show d(yk) 
> - cc for all k > 1 we note that we have d,(y k, > - bo for v, =p,e4”Gn-&- - (44 # 0, n= 1; * * ,s. (42) 
all k > 0 since the infimum in (36) is attained. It follows 
that d(yk+‘)> d,(yk)> - cc for all k > 0. The preceding 

By the definitions (33) and (36) of d and d, we have 

proof also shows that d(yk)< d,(yk”)< d(yk+‘) for all 
k and hence if yk=yk+’ equality holds throughout. Also d,(yk)= mi20L(v,U,yk,c)= i 

ifyk=yk+litfollowsthatu,k=O,n=l,~~~,sand(vk,O)is 
1 

~[e~(O~Pu~)-l] 
n=l R 

an optimal solution of problem (17). Hence yk+’ is a 
Lagrange multiplier vector for problem (17) and d(y k+l) 

-p,u,k+cy,k(e’~/‘- 1) + $j cp,(u,“) 
I n=s+l 

= max,d(y). 
Finally to show that {u k, u k,y k} is a bounded sequence d(yk) ( i 

( 
5 [ e~(‘~-‘~)- 1] -p,v,k+y,ku,k 

observe that n=, 4, .I 

uk~{y14(y)W(yo)}~ k=O, 1;. . . (39) + i %(Un”)* 
n=s+l 

The set of maximizing points of d, is nonempty and 
compact by Lemmas 1 and 2. Hence all its level sets are From the relations above and (38) we obtain 

compact and in particular the set in (39) is compact ([22, 
car. 8.7.11). Hence {yk} is bounded. To show that 

d,(yk)-d(yk)>y,f[c(eU.X/C-l)-z+f]>O (43) 

{ uk, uk} is bounded consider (31). Take yn,, n = 1; . . ,s 
sufficiently large so that the function 

we have { d,(y k, - d (y k)}+O by using the monotonicity 
and boundedness of { d(y k)} (c.f. Lemma 3). Hence (43) 

i(u,u,~,~)= i 
( 

P,[eR(‘n-U”)-l]-pnv~+~~u~ 
and (42) yield that 

n=, 4, 1 de E,/L1)-f+) 

+ i (pn(vn) from which 
n=s+l 

ii,=o, n= 1; *. ,s. 
has no directions of recession and hence its level sets are 
compact. Let 6 E R be such that From (42) and (44) we obtain 

(3 

SC i inf {cyr,“(ef/c-l)-~nt}, k=O,l;... 
V, =pne%O”, n= 1; f * ,s. (45) 

n=l * Also by lower semicontinuity of ‘p, and (44) we obtain 

Such a 6 exists by boundedness of {y”}. Then (31) yields 

m,axW) 2 d(y k+l) > d,(yk)= L(vk,Uk,yk,E) 

> i (uk, Uk,J+) + 6. 

Hence (u k, u k, belongs to the compact set 

((~,~)l~(v,~,~,~)~myaxd(y)-S) 

and {v k, u k} is bounded. Q.E.D. 
We are now ready to prove the last part of the proposi- 

tion. Let {v k, u k,y “} be a sequence generated by sequen- 
tial solution of the problem 

(40) 

with yk updated by (27). This sequence is bounded by 
Lemma 3. We have from the necessary conditions for 
optimality for problem (40) 

(4') 

If (6, U,y3 is any limit point of { vk, uk,y k} we have from 

= i (:(e Gi - 1) -7pncn 
1 

+ i %(67>. 
n=l n n=s+l 

Since (U,C)=(U,O) is also a feasible vector for problem 
(17) it follows that (V,O) is an optimal solution for prob- 
lem (17). Hence V is an optimal solution for problem (16) 
and by [ll, th. 1’1 there exists a vector i such that (V,i)‘ 
solve the set of relations (1), (2) (15). Using also (45) it 
follows that li, U,, and Y,, n = 1; . . ,s satisfy the relation 
stated in the proposition. Q.E.D. 

We note finally that the approach of this paper could, 
be used to construct algorithms for solution of network 
problems involving “ill conditioned” arc characteristics 
other than exponential such as, for example, discontinu- 
ous or nondifferentiable characteristics. The general idea 
is to convert the problem to an equivalent optimization 
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problem and subsequently approximate this problem by 
utilizing an appropriate multiplier method (i.e., an ap- 
propriate penalty function which “matches” the problem) 
from the wide class of methods available [ 141, [ 17]-[ 191. 

1161 

V. CONCLUSIONS 

The algorithm presented in this paper represents a 
simple way to overcome the numerical difficulties 
associated with steeply rising diode characteristics in resis- 
tive network problems. As such it can be viewed as a 
method for increasing the reliability of network analysis 
algorithms. Since the nature of the method is such that the 
basic network structure of the problem is not affected, the 
procedure proposed can be very easily incorporated 
within existing programs. 
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