
i

1 PLAY SELECTION IN AMERICAN

FOOTBALL: A CASE STUDY IN

NEURO-DYNAMIC PROGRAMMING

Stephen D. Patek1 and Dimitri P. Bertsekas2

1Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

sdpatek@mit.edu

2Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

dimitrib@mit.edu

Abstract: We present a computational case study of neuro-dynamic program-
ming, a recent class of reinforcement learning methods. We cast the problem
of play selection in American football as a stochastic shortest path Markov
Decision Problem (MDP). In particular, we consider the problem faced by a
quarterback in attempting to maximize the net score of an o�ensive drive. The
resulting optimization problem serves as a medium-scale testbed for numerical
algorithms based on policy iteration.

The algorithms we consider evolve as a sequence of approximate policy eval-
uations and policy updates. An (exact) evaluation amounts to the computation
of the reward-to-go function associated with the policy in question. Approxi-
mations of reward-to-go are obtained either as the solution or as a step toward
the solution of a training problem involving simulated state/reward data pairs.
Within this methodological framework there is a great deal of exibility. In
specifying a particular algorithm, one must select a parametric form for esti-

1

2

mating the reward-to-go function as well as a training algorithm for tuning the
approximation. One example we consider, among many others, is the use of a
multilayer perceptron (i.e. neural network) which is trained by backpropaga-
tion.

The objective of this paper is to illustrate the application of neuro-dynamic
programming methods in solving a well-de�ned optimization problem. We will
contrast and compare various algorithms mainly in terms of performance, al-
though we will also consider complexity of implementation. Because our version
of football leads to a medium-scale Markov decision problem, it is possible to
compute the optimal solution numerically, providing a yardstick for meaningful
comparison of the approximate methods.

INTRODUCTION

In this paper, we present a case study of practical algorithms for solving large-
scale dynamic optimization problems. In the class of problems we consider,
rewards accumulate in stages as an underlying system transitions from state
to state. What is desired is a controller which, at every stage, implements a
control action, determining probability distributions for

1. the transition to a successor state and

2. the amount of reward to be earned that stage.

The objective is to synthesize a policy for the controller, i.e. a mapping from
states to control actions, which maximizes the expected reward accumulated
over time.

Dynamic programming is the classical framework for solving problems of
this type. Included in this framework are the classical algorithms: value itera-
tion and policy iteration (see [Bertsekas, 1995b], [Puterman, 1994], and [Ross,
1983]). In this paper we are primarily concerned with methods that relate to
policy iteration, whereby an optimal solution is computed through a sequence
of policy evaluations and updates. Each policy evaluation amounts to com-
puting the expected long-term reward (reward-to-go) from each state of the
system. Each policy update involves computing an action at each state which
is \greedy" with respect to the expected long-term reward of the alternative
actions. Unfortunately, due to the \curse of dimensionality," the steps of policy
iteration are computationally infeasible for most realistic, large-scale engineer-
ing problems. In this sense, classical policy iteration is primarily a conceptual
algorithm, not of practical interest.

In recent years, Approximate Policy Iteration (API) has been suggested as
a practical approach to solving large-scale dynamic optimization problems. In
this framework, approximations of reward-to-go are trained through simulation
and least squares optimization, and policy updates are computed based upon

PLAY SELECTION IN AMERICAN FOOTBALL 3

these approximations. The approximations take on a �xed parametric form,
called an approximation architecture.

API is one out of several classes of algorithms that comprise the meth-
ods of Neuro-Dynamic Programming (NDP) [Barto et al., 1995, Bertsekas and
Tsitsiklis, 1996]. We view these methods as part of the broader �eld of Re-
inforcement Learning (RL), a long-standing �eld in arti�cial intelligence. In
general, the methods of NDP are analogous to the classical algorithms of dy-
namic programming. The \Neuro-" pre�x is attached to indicate the use of
(usually neural-network) approximations for reward-to-go. What distinguishes
NDP from other forms of approximate dynamic programming is its heavy re-
liance on simulation as a means for obtaining reward-to-go approximations.
For a sampling of other approximate dynamic programming algorithms we re-
fer the reader to [Bertsekas, 1995b], [White, 1969], [Whitt, 1978], [Whitt, 1979],
[Schweitzer and Seidmann, 1985], [Barto et al., 1995], and [Werbos, 1992].

As an alternative to API (but still within the framework of NDP), we con-
sider a related class of algorithms known collectively as Optimistic Policy It-
eration (OPI). In de�ning OPI it is useful to note �rst that in API an honest
attempt is made at every stage to approximate the reward-to-go function. The
goal there is to have an approximation which is accurate everywhere in the
state space, requiring that a large number of sample trajectories be generated.
The sample data is often stored in memory and is then presented many times
to the training algorithms. In this way each state/reward data pair can have a
signi�cant impact on the outcome of training. OPI, on the other hand, can be
de�ned to be approximate policy iteration where

1. a relatively small number of sample trajectories are generated per policy
and

2. the data is allowed to impact the approximation in only a very limited
fashion before a new policy is computed.

(The user of this type of algorithm is optimistic about the e�ectiveness of the
data in describing the reward-to-go function of the current policy.) OPI has
become a very popular method, with a number of important success stories
appearing in the literature (see especially [Tesauro, 1995]).

For our case study, we have applied both API and OPI to a simpli�ed ver-
sion of American football. We consider the problem of play selection for one
o�ensive drive in the middle of an in�nitely long game. (End-game e�ects are
ignored.) In contrast to real American football, we ignore the fact that there is
an intelligent opponent which necessitates the use of randomized strategies and
causes the probabilities of successful plays to be dependent on �eld position.
State transitions in our framework are determined through a �xed probabilistic

4

model in which only o�ensive play decisions can inuence the trajectory of the
o�ensive drive. The objective is to maximize the expected di�erence between
\our" team's drive-score and the opposing team's score from the �eld position
at which they receive the ball. That is, we want to determine a stationary
policy which achieves

J�(i)
4
= max
policies �

E

8>><
>>:

�
Points received at the end of our drive
from initial �eld-position, i; under policy �:

�

�

�
anticipated points gained by the opposing
team from our �nal �eld position.

�
9>>=
>>;
:

(1.1)

The probabilistic model we use is detailed in the Appendix. Despite the sim-
plicity of our model, we obtain a moderately large problem, having 15250 states.

To give a preview of our experimental results, we have found that many of
the methods for training reward-to-go approximations perform similarly. For
a �xed policy (in API), the �nal approximations that result from temporal
di�erences learning [Sutton, 1988] (i.e. TD(�) with di�erent values of �) are
not that di�erent from approximations due to the Bellman error method or even
the approximations due to linear least squares regression via the matrix pseudo-
inverse. This is true even in the context of OPI, where policies change more
on a continual basis. Regarding TD(�), we have found that values of � closer
to one are generally best, but only by a slight margin. Our best results were
usually obtained with � = 1, supporting the assertion put forth in [Bertsekas,
1995a]. One of our main conclusions is that football is an e�ective testbed for
neuro-dynamic programming methods. The problem itself is not trivial; the set
of allowable policies is quite large, containing a huge number of policies that
are reasonable but indistinguishable in heuristic terms. On the other hand,
since an exact solution can be computed numerically, we have a useful basis for
comparisons of the approximate methods.

The rest of this paper is organized as follows. First, we give a quick intro-
duction to approximate and optimistic policy iteration. Our description there
is largely qualitative. We refer the reader to [Bertsekas and Tsitsiklis, 1996] for
a more complete description of the algorithms. Next, we formulate the problem
of optimal play selection as a stochastic shortest path problem. After describ-
ing the optimal solution to the problem (obtained numerically), we describe
a heuristic (suboptimal) solution, which, while consistent with conventional
wisdom about football, is signi�cantly worse than the optimal solution. Next,
we discuss the technical issues we encountered in applying API and OPI to
football. After describing approximation architectures, we specify our training
algorithms and our technique for choosing initial conditions for sample trajec-
tories. Next, we give the experimental results of our case study. The best

PLAY SELECTION IN AMERICAN FOOTBALL 5

policies obtained by the approximate methods are compared to the exact so-
lution obtained earlier. The main body of the paper ends with a discussion of
the results and a few brief conclusions.

APPROXIMATE AND OPTIMISTIC POLICY ITERATION

The main idea behind the methods of this paper is that exact evaluations of the
reward-to-go function in policy iteration can be replaced with approximations,
denoted ~J(�; r). As the notation suggests, the approximations are selected from
a parametric family of functions (e.g. neural networks), where the parameter
vector r 2 <d is chosen on the basis of simulation data and least squares
regression. Let i� be a typical state of interest. In applying our numerical
algorithms, we will use Monte Carlo estimates of the reward-to-go from i� to
decide which policies are best and sometimes when to terminate algorithms.
(More generally, we could choose a subset of interesting states.) API and OPI
can be described by the following algorithm. The integer parameters Np, Ne,
Ns, and Nt are set by the user in advance, determining the general behavior of
the algorithm.

1. Start with an initial policy �0.

2. Given �k,

(a) If k 2 fj �Np j j = 0; 1; 2; : : :g, then generate Ne sample trajectories,
each starting from i�, to obtain an estimate of J�k (i

�).

(b) Given a probabilistic rule for picking initial conditions, generate Ns

sample trajectories, recording

Dk =

�
(ilt; g

l
t) j

l = 1; : : : ; Ns

t = 1; : : : ; T l

�
(1.2)

where ilt is the t-th state encountered in the l-th sample trajectory,
glt is the corresponding sample reward-to-go, and T l is the length of
the l-th trajectory. Store the data in memory for future use.

(c) Tune the parameter vector rk based on Dk using a prespeci�ed train-
ing algorithm. For some training algorithms, the training can be
done in real-time (i.e. as the sample data is being generated). Let
the training algorithms cycle through the data Nt times.

(d) Compute a new policy �k+1 := G(rk), where G is the \greedy"
operator which chooses the actions at each state that are best with
respect to the reward-to-go approximation given by rk.

6

In API, an honest attempt is made to approximate the entire reward-to-
go function J�k associated with each policy �k. Generally, this requires Ns

and Nt to be large. In this way a great deal of sample data is generated,
and this data is heavily exploited by the training algorithms. In addition, Np

will generally be set to one, and Ne will be set to be very large, so that we
obtain an accurate estimate of J�k (i

�) for every policy. Assuming that, in the
training phase of each iteration, a limiting parameter value r�k is approached,
then the API iteration can be expressed roughly as �k+1 � G(r�k). Clearly, the
iterations of API are heavily dependent on the nature of G and the relationship
between �k and r�k . (These are in turn determined by both the architecture
for reward-to-go approximation and the method used for choosing simulation
initial conditions.) A priori, there is no guarantee (in fact, it is unlikely) that the
method will converge to a single policy. It is more likely that an \oscillatory"
mode will arise where, after enough iterations, the method starts generating
with some periodicity the same policies over and over again.

In contrast, policy updates in OPI are computed on the basis of very rough
(optimistic) approximations of the reward-to-go function. Generally, very little
sample data is generated for each policy, with Ns set to one or a very small
number. Also, Nt is generally set to be a very small number, so the e�ect of
training is very limited. The intuition here is that the corresponding policy
update represents an incremental change from the old policy. To make up for
the limited amount of training data per policy, usually a very large number of
policy updates are computed. OPI has one very important, practical di�culty:
there is no automatic mechanism for evaluating the policies that are computed.
By the optimistic nature of OPI, very little data is required to compute new
policies. However, to gain a practical evaluation of a policy's e�ectiveness,
many additional sample trajectories are required (i.e. we have to keepNe large).
Generating lots of \extra" sample trajectories is contrary to the spirit of OPI, so
evaluation of the successive policies is an inherent di�culty of the method. One
way to circumvent this is to evaluate policies only periodically, setting Np to
be some large positive integer. This technique will unfortunately ignore many
of the policies that are produced, some of which may be very close to optimal.
On the other hand, this technique allows most of the computational e�ort to
be directed toward the underlying OPI method. Assuming that the parameter
vector rk converges (as k !1), there is no guarantee that it won't converge to
a point where small perturbations can result in substantially di�erent greedy
policies. If this is the case, then it is possible that the true rewards associated
with the successive policies will not converge. This observation provides a
mechanism for the \oscillatory" behavior often exhibited by OPI. In general
OPI is a poorly understood algorithm. In particular, we are unaware of any
theoretical results which guarantee convergence.

PLAY SELECTION IN AMERICAN FOOTBALL 7

THE FOOTBALL MODEL

Problem Formulation

Here we present a simpli�ed version of American football which we cast as a
stochastic shortest path problem. The \system" in this model is the current
o�ensive drive whose net score we are trying to maximize. The state of the
system is characterized by three quantities: x = the number of yards to the
goal, y = the number of yards to go until the next �rst down, and d = down
number. We discretize x and y by yards, resulting in 15250 states. (The rules
of our model are such that at �rst down there is a unique value of y associated
with each value of x. Also, it is impossible to have y > x.) Each individual
state is identi�ed by i 2 S, where S is a �nite set. The triple (xi; yi; di)
denotes the �eld position, yards to go until next �rst down, and down number
corresponding to state i 2 S. We shall sometimes abuse notation and refer to
(xi; yi; di) or simply (x; y; d) as the state. Transitions from state to state are
governed by the probabilistic model described in the Appendix. At each state,
the quarterback must choose one out of four play options: run, pass, punt, and
kick (�eld goal). The quarterback's policy is a function � : S ! U , where U
denotes the set of control options.

Our team transitions to an absorbing, zero-reward termination state T when-
ever it loses possession of the ball. Rewards in this framework are earned only
upon �rst transitioning to T . The amount of reward is exactly the score re-
ceived at the end of the our team's driveminus the expected score to be received
by the opponent at the end of their drive. The latter is a function of where
they receive the ball. As is the case in real football, termination of the current
o�ensive drive is inevitable under all policies. Thus, the problem of maximiz-
ing expected total reward can be viewed as a stochastic shortest path problem
(see [Bertsekas and Tsitsiklis, 1991]).

As we will discuss shortly, our model for football is numerically tractable.
However, simple enhancements to the model can be implemented that make the
problem computationally infeasible. For example, by more �nely discretizing
the playing �eld, say to half-yard units, we would have 60500 states, an increase
by a factor of four. Alternatively, if we wanted to examine end-game e�ects,
we could factor in time as a state variable. By discretizing time in 10 second
intervals and then playing for the last two minutes of the game, we would
have 15250 � 120=10 = 183000 states. For these larger problems, it becomes
impractical or even impossible to use numerical implementations of the classical
methods; the memory and processing requirements would be too great.

8

The Optimal Solution

Fortunately, our original 15250 state model leads to a problem that can be
solved exactly through numerical implementation of policy iteration. On a
120 MHz Pentium machine running the Linux operating system, it took ap-
proximately 2.5 minutes to obtain the optimal solution. In evaluating the
reward-to-go function for each policy of the iteration, we applied successive
approximation applied until the sup-norm di�erence between the iterates was
less than 10�6 football points. Starting from the initial policy \always run",
six policy iterations were required to determine the optimal policy. The code
was written in the C programming language.

The optimal policy and corresponding reward-to-go functions are shown in
Figure 1.1. First down is distinctive because the plots there are two-dimensional
graphs. This reects the fact that, at �rst down, there is only one possible value
of y for each value of x. While it is optimal to run from x = 1 to x = 65, the
optimal policy requires that pass attempts be made from (roughly) x = 66 to
x = 94. For the next 5 yards it is optimal to run, and at x = 100, the optimal
policy is to pass again. (This is not the result of a bug in the software.) We
note from the reward-to-go function that, from 80 yards to the goal (which
is where we typically expect to gain possession of the ball), the expected net
reward is -.9449 points. Thus, if our team were always to receive the ball at this
point, we could expect ultimately to lose the game. This is strictly a function
of the parameters of our mathematical model.

The results for the remaining downs are presented as surface plots. In theory,
y can be as large as x. However, in practical terms it is unlikely to have y > 20.
While the possibility of x � y appears in the computations, the plots in the
�gure show what happens only for values of y from one to 20. At second down,
the optimal policy dictates that pass attempts be made for a wide range of
values of x and y. The plot also shows that there is a run-attempt region for
the remaining values of x and y. At third down it is usually optimal to pass;
however, for x and y large enough it is actually optimal to punt. (This is where
our team's outlook for the drive is particularly gloomy. The risk is great that
the other team will gain possession of the ball in a region disadvantageous to
us.) The fourth down optimal policy exhibits the most variety in terms of
choosing di�erent play options. If our team is close enough to either a new �rst
down or the goal, then a running or passing play is indicated. On the other
hand, if a new �rst down or touchdown is not likely, then either a �eld goal
attempt or punt is speci�ed.

PLAY SELECTION IN AMERICAN FOOTBALL 9

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6
Expected net score

Yards to goal

Optimal policy

Run

Pass

0 10 20 30 40 50 60 70 80 90 100
Yards to goal

1st Down

0
5

10
15

20 020406080100

−5

0

5

10

Expected net score
2nd Down

Yards to Next 1st Down
Yards to Goal

Optimal policy

Pass
Run

20 0
2015

40
10 60

805
100

Yards to Next 1st Down

0
Yards to Goal

0
5

10
15

20
0

20
40

60
80

100

−10

0

10

Expected net score
3rd Down

Yards to Next 1st Down
Yards to Goal

Punt

Optimal policy

Pass

Run

20 0
2015

40
10 60

805
100

Yards to Next 1st Down

0
Yards to Goal

0
5

10
15

20 020406080100

−5

0

5

Expected net score4th Down

Yards to Next 1st Down Yards to Goal

Field Goal

Optimal policy

Punt

20 0

Pass

2015
40

Run

10 60
805

100
0

Yards to Next 1st Down
Yards to Goal

Figure 1.1 Complete characterization of the optimal expected score and the optimal policy.

10

A Heuristic Solution

To give an idea of the di�culty of football, we hypothesize a class of reasonable
policies as follows:

1. At �rst down, PASS.

2. At second down, if the number of yards to the next �rst down is less than
three, then RUN; otherwise, PASS.

3. At third down,

(a) if the number of yards to the endzone is less than 41,

if the number of yards to the next �rst down is less than 3, then
[either RUN or PASS],

otherwise, [either RUN or PASS]

(b) if the number of yards to the endzone is greater than 40,

if the number of yards to the next �rst down is less than 3, then
[either RUN or PASS],

otherwise, [either RUN or PASS]

4. At fourth down,

(a) if the number of yards to the endzone is less than 41,

if the number of yards to the next �rst down is less than 3, then
[either RUN, PASS, or KICK],

otherwise, [either RUN, PASS, or KICK]

(b) if the number of yards to the endzone is greater than 40,

if the number of yards to the next �rst down is less than 3, then
[either RUN, PASS, or PUNT],

otherwise, [either RUN, PASS, or PUNT]

The options chosen for each region of the state space collectively de�ne a sta-
tionary policy which may be evaluated exactly (by numerical methods). Each
such policy evaluation requires roughly a minute to compute. The number of
policies de�ned in this class is 1296, so evaluating all of them can take close to
a full day of compute-time.

To provide a means of comparing policies in this class, we arbitrarily chose
a state of interest:

i� $ (xi� = 80; yi� = 10; di� = 1) (1.3)

PLAY SELECTION IN AMERICAN FOOTBALL 11

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6
Expected net score

Yards to goal

Heuristic policy

Run

Pass

0 10 20 30 40 50 60 70 80 90 100
Yards to goal

1st Down

0
5

10
15

20 020406080100

−5

0

5

10

Expected net score
2nd Down

Yards to Next 1st Down
Yards to Goal

Heuristic policy

Pass

20
Run

0
2015

40
10 60

805
100

Yards to Next 1st Down

0
Yards to Goal

0
5

10
15

20
0

20
40

60
80

100

−10

0

10

Expected net score
3rd Down

Yards to Next 1st Down
Yards to Goal

Heuristic policy

Pass

20
Run

0
2015

40
10 60

805
100

Yards to Next 1st Down

0
Yards to Goal

0
5

10
15

20 020406080100

−5

0

5

Expected net score4th Down

Yards to Next 1st Down Yards to Goal

Heuristic policy

Field Goal

Punt

20 0
2015

40

Run

10 60
805

100
0

Yards to Next 1st Down
Yards to Goal

Figure 1.2 Characterization of the best heuristic policy.

12

This is the \typical" state at which our team will receive the ball. The best
policy in the heuristic class is de�ned to be the one which has the highest
expected reward-to-go from i�. Figure 1.2 shows the best heuristic policy,
along with its corresponding reward-to-go function. The best heuristic expected
reward-to-go from i� is -1.26, which is .32 game points worse than optimal.

It is important to note that signi�cant e�ort would be required to improve
upon the performance of our best heuristic policy. For example, if we included
options for running and passing at �rst down and in both regions at second
down, then the number of policies in this class would jump to 10368. The
computations for this enhanced class of policies would require just over seven
days!

ON APPLYING API AND OPI TO FOOTBALL

In this section we provide details about our application of NDP to football.
We �rst discuss the approximation architectures we used and then we discuss
training algorithms and our rule for picking simulation initial conditions.

The Approximation Architectures

In describing approximation architectures for football, it is useful to recall that
each state i 2 S can be uniquely associated with the triple (xi; yi; di). As
functions of i, the quantities xi, yi, and di can be viewed as features which
characterize the state i.

We chose to use a piecewise continuous architecture, comprised of four inde-
pendent subarchitectures. Each down number has its own subarchitecture. In
mathematical notation, the approximation architectures are all of the form

~J(i; r) = H(��(i); ��(i); rdi) (1.4)

whereH is a generic form for the approximation on the respective subsets, ��(i)
is a \standard" feature vector containing scaled versions of xi and yi, �

�(i) is
a vector of additional features (f1; : : : ; fnf), and r = (r1; : : : ; r4) is a data
structure containing the parameter vectors for the respective subarchitectures.
The feature vectors ��(i) and ��(i) are given by

��(i) = (�xdi � xi; �ydi � yi) 2 <2 (1.5)

��(i) = (�f1di � f1(i); : : : ; �
fnf
di

� fnf (i)) 2 <nf (1.6)

where � = f(�xd ; �
y
d ; �

f1
d ; : : : ; �

fnf
d); d = 1; : : : ; 4g denotes a set of �xed

scaling parameters that multiply the input values xi, yi, and the feature values
fl(i) for di�erent down numbers di. These scaling parameters are not subject
to training. Rather, they are set in advance based on engineering judgment.

PLAY SELECTION IN AMERICAN FOOTBALL 13

In the following subsections we discuss the three main parametric forms we
used in football: MLP, Quadratic, and Recursive.

Multilayer Perceptron (MLP). A multilayer perceptron can be viewed as
a parametric form for function approximation. MLP's are generically comprised
of one or more hidden \layers" of sigmoidal activation units. Each layer of
activation units is preceded by an a�ne transformation which is fed by the
output of the adjacent layer closer to the input of the network. The output
of the network is formed either by a layer of activation units (whose output
levels are constrained) or by a �nal a�ne transformation. In training, the
coe�cients of the a�ne layers are tuned according to a least squares criterion.
For a comprehensive discussion of neural networks, including the multilayer
perceptron, we refer the reader to [Haykin, 1996] and [Hertz et al., 1991].

For our case study, we used multilayer perceptrons with only a single hidden
layer of activation units. The only input to each MLP subarchitecture is the
scaled standard feature vector ��. (This allows us to drop the feature vector
�� from our notation.) To make the de�nition explicit, let R be a positive
integer equal to the number of hidden nonlinear elements for each multilayer
perceptron. Let �� represent the value of the scaled standard feature vector
evaluated at some state i. Let � = (W1; b1;W2; b2) be the parameter data
structure which applies on the subset di, where W1 2 <R�2, b1 2 <R, W2 2
<1�R, and b2 2 < are collectively the weights of the multilayer perceptron.
The output of the architecture is computed as

H(��; �) =W2�(�
�) + b2; (1.7)

where �(��) 2 <R is a vector whose elements are computed as

�l(�
�) = tanh(l(�

�)); (1.8)

and l(�
�) is the l-th element of the vector (��) 2 <R, computed as

 (��) =W1�
� + b1: (1.9)

In the football case study, we set R = 20. In addition, we set �xd = �yd = :01
for d = 1; : : : ; 4. This guarantees that the elements of ��(i) are in [0; 1] for all
states i 2 S.

Quadratic. Here we describe an architecture which is quadratic in the feature
vector (x; y; d). The most appealing aspect of this architecture is its simplicity.
Computer subroutines that implement this architecture are easy to develop and
execute quickly.

14

To give a mathematical description, it is useful to de�ne the quadratic ex-

pansion of a vector. Let � = (�1; : : : ; ��n)
0 2 <�n. Then,

Q(�)
4
= (1; �1; : : : ; �n; (�1)

2; �1�2; : : : ; �1�n; (�2)
2; �2�3; : : : ; (�n)

2); (1.10)

denotes the quadratic expansion of �. As before, let �� represent the value
of the scaled standard feature vector evaluated at some state i. Let � be the
parameter vector which applies on the subset di. The quadratic architecture
for reward-to-go approximation is given by H(��; �) = �0Q(��). The scale
factors in � for the case study were chosen as: �xd = :01 for all d; �yd = :05 for
d = 2; 3; 4; and �y1 = 0. (We use �y1 = 0 because, at �rst down, the number of
yards to go until the next �rst down is uniquely determined by the number of
yards to the end-zone.)

Quadratic with Feature Recursion (Recursive). Because the quadratic
architecture uses relatively few parameters and is a form which admits an exact
solution in training, approximations using this architecture can be evaluated
and trained very quickly. Unfortunately, for the same reasons, the quadratic
architecture has a limited ability to approximate very irregular functions. Intu-
itively, the richness of the architecture is limited by the number of features used.
The recursive architecture that we describe here is essentially the quadratic ar-
chitecture of the preceding subsection with the additional twist that every once
in a while a new feature function is added. In this paper, the new features are
themselves the past approximations of the reward-to-go function.

We �rst describe the recursive architecture in the context of API. Let ��

represent the value of the scaled standard feature vector evaluated at some
state i. Let � be the parameter vector which applies on the subset di. Suppose
that �k is the current policy and that we are trying to approximate J�k . Let

f ~J(�; rk�1); : : : ; ~J(�; rk�np)g represent the approximations of the reward-to-go
functions for the preceding np policies. With the proper scalings, these are the
elements of the vector of \additional" features ��:

��(i) = (�f1di �
~J(i; rk�1); : : : ; �

fnp
di

� ~J(i; rk�np)): (1.11)

The recursive architecture is given byH(��; ��; �) = �0Q(��; ��), whereQ(a; b)
is the quadratic expansion of the elements of both a and b. To make the
architecture well-de�ned for the �rst np iterations, we initialize �� with zeros,
so that the earliest iterations tend to imitate the quadratic architecture.

Although this architecture is basically \quadratic", there are signi�cant com-
plexities involved in its implementation. The architecture is inherently compu-
tationally intense because all of the past approximations of reward-to-go are

PLAY SELECTION IN AMERICAN FOOTBALL 15

needed to evaluate the architecture, even if np = 1. For example, to evalu-

ate the approximation ~J(i; rk), one of the features needed in the computation
is ~J(i; rk�1). Similarly, the evaluation of ~J(i; rk�1) requires the evaluation of
~J(i; rk�2), and so on.
Because relatively few policies are ever generated in API, it is practical to

implement the recursive architecture as described above. With OPI, since so
many distinct policies are produced, this architecture would be impractical. A
simple modi�cation is to compute recursions infrequently (periodically), keep-
ing track of the \good" policies in between. The scale factors in � for the case
study for the Recursive architecture were chosen as: �xd = :01 for all d; �yd = :05

for d = 2; 3; 4; �y1 = 0; and �fkd = 1=7 for all d and k = 1; : : : ; np.

Training Algorithms

Here we briey describe the training algorithms we used to tune approxima-
tions of reward-to-go. For more details we refer the reader to [Bertsekas and
Tsitsiklis, 1996] and the references contained therein. We focused on the most
commonly used algorithms: temporal di�erences learning TD(�), the Bellman
error method, and linear least-squares regression (referred to as SVD). TD(�),
with � a real number in the range [0; 1], is actually a class of iterative algorithms
which can be implemented in real-time. TD(1) reduces to the backpropaga-
tion algorithm commonly used in training neural networks. The Bellman error
method is a related recursion which can be viewed as an incremental gradient
method for minimizing the error in solving Bellman's equation. For architec-
tures which are linear in the parameters (such as the quadratic architecture),
the SVD method can be used to compute the least squares solution in a single
step. The method is called \SVD" because the singular value decomposition
is used to compute the pseudo-inverse of the covariance matrix of the sample
data.

Simulation: sampling initial conditions

Here we describe the random mechanism by which we chose initial conditions
for the simulated football trajectories. The most important aspect of this rule
is that it selects initial conditions corresponding to the states our team is most
likely to encounter.

1. With probability .35 start at fourth down.

Choose yards to go x uniformly from 1 to 100.

Choose yards to next �rst down y uniformly from 1 to x.

2. With probability .30 start at third down.

16

Choose x uniformly from 1 to 100.

Choose y uniformly from 1 to x.

3. With probability .25 start at second down.

With probability .25, choose x uniformly from 1 to 50.

With probability .75, choose x uniformly from 51 to 100.

Choose y uniformly from 1 to x.

4. With probability .10 start at �rst down.

With probability .25, choose x uniformly from 1 to 75.

With probability .75, choose x uniformly from 76 to 100.

If x < 10, choose y = x. Else, choose y = 10.

EXPERIMENTAL RESULTS

The table in Figure 1.3 describes the experimental runs for our case study.
Each row in the table corresponds to

1. a particular scheme for updating policies: API or OPI,

2. an approximation architecture: MLP, Quadratic, or Recursive, and

3. a training algorithm: TD(�), Bellman Error, or SVD.

In each entry of the column labeled \Training method," we specify several
parameter values corresponding to separate runs. For example, by entering
TD(0,.5,1), we mean to say we tried the algorithm with � set to 0, then with �
set to .5, and �nally with � set to 1. We show in bold the parameter settings
which are best with respect to sample expected reward-to-go from the typical
initial condition i� $ (80; 10; 1). (The sample evaluation is based on Ne = 8000
independent sample trajectories, all starting from i�.) Exact evaluations of
reward-to-go from i� for the best runs are shown in the column labeled \Exact
RTG of Best". The last column of the table gives the �gure number for the
experiments in each row. For the OPI runs, sample evaluations from i� are
computed every Np = 200 policy updates.

The algorithmic parameters shown in the table represent the best settings
we could �nd based on a considerable amount of tinkering. We tried to be
objective in this process, not wanting to \sabotage" any particular algorithm.
Our goal was to be both comprehensive in scope and honest in evaluation.
Results for the case study are shown in Figures 1.4 through 1.9. The �gures
all generally follow the same format. For each experimental run, we plot

PLAY SELECTION IN AMERICAN FOOTBALL 17

1. the sample evaluations of reward-to-go from i� as a function of policy
number, and

2. �rst down error from optimal of

(a) the approximation that yielded the best policy

(b) the exact evaluation of the best policy

as a function of the number of yards to the goal.

In some cases we also show the exact evaluation of the rollout policy based on
(i) the best policy of the trial and (ii) 20000 \rollouts" per state/action pair.
The axis scales in the �gures are held constant to aid visual comparisons. (For
some the the runs the traces go \o�-scale.") Results for the API methodology
are shown in Figures 1.4 through 1.6, while Figures 1.7 through 1.9 are devoted
to OPI.

DISCUSSION AND CONCLUSIONS

Our observations from the case study are as follows.

1. Regarding API:

(a) This algorithm along with the MLP architecture has yielded the best
results.

(b) For the best API runs, the �rst-down approximations of reward-to-
go are close to optimal. Exact evaluations of the best suboptimal
policies are extremely close to the optimal reward-to-go function.

(c) In general, the more complex the architecture, the better the results
(at the expense of longer computation times). The existence of local
minima in the MLP architecture does not seem to have e�ected the
results.

(d) When using TD(�) to train the approximations, we found that � = 1
gave the best results (compared to � = 0 and � = :5), although not
by a very great margin. The Bellman error method gave the worst
results.

(e) The \oscillatory" limiting behavior of API can be seen in the means
plots of Figures (1.4) through (1.6).

(f) As an imitation of exact policy iteration, API is not totally convinc-
ing. In particular, the means plots are not monotonically increasing.
On the other hand, usually only 10 iterations are required to obtain

18

\peak" performance. (This compares favorably with the 6 policy
iterations that are required to solve the problem exactly.)

2. Regarding OPI:

(a) Despite the lack of theoretical guarantees, OPI can �nd policies
whose sample evaluations from i� are competitive.

(b) In the end, even for the \best" OPI runs, the approximations of the
reward-to-go function at �rst down are not very close to the optimal
reward-to-go function. The same is true for the exact evaluations of
the suboptimal policies.

(c) In general, the more complex the architecture, the better the results
(again, at the expense of longer computation times).

(d) Regarding algorithms for training the approximations, there is no
clear winner. For the MLP architecture, the best results were ob-
tained with TD(1). For the quadratic architecture the Bellman error
method worked best; whereas, for the recursive architecture TD(.5)
worked best.

(e) We see that OPI can be oscillatory, despite the convergence of the
parameter vectors (not shown in the �gures).

(f) OPI will very quickly �nd a policy which is signi�cantly better than
the initial policy. On the other hand, to come up with policies that
are close to optimal, it is necessary to let the algorithm run for a
very long time.

3. Football is an e�ective testbed for NDP:

(a) It represents a challenge for the approximate methods and seems to
have characteristics of truly large scale examples. However, because
we can compute the optimal solution to the problem, we have a
yardstick for comparisons of the alternative methods.

(b) Our model for football is not totally trivial as evidenced by the poor
performance of the best heuristic policy.

(c) Finally, football is intuitive. This aids in the implementation and de-
bugging of the algorithms and also provides a means for interpreting
the results.

The main purpose of this case study was to determine the limits of perfor-
mance for competing forms of NDP. As a result, we were not careful to keep
records of run-times. Nonetheless, the following comments should be useful. As
a rule, the trials which gave the best results required the most time to complete.

PLAY SELECTION IN AMERICAN FOOTBALL 19

The amount of time required for a particular algorithm usually depends on the
complexity of the approximation architecture. Holding everything else �xed,
API and OPI take roughly the same amount of time to complete. (One is not
clearly faster than the other.) Except for the experiments with the Recursive
architecture, the \good" API and OPI runs took signi�cantly less time than
the exhaustive search through the heuristic class of policies described earlier.
On the other hand, for this model of football, the exact computation of the op-
timal policy required considerably less time than the fastest of the approximate
methods (by more than an order of magnitude.)

As for the future, football can provide a vehicle for many more interesting
case studies. In particular, by adding new features to the model and enhancing
its realism, the dynamic optimization problem can easily become intractable.
One signi�cant change to the model would involve allowing the defense to make
play selections in addition to the o�ense. The case of an intelligent opponent
would be very interesting to explore computationally. Other case studies may
involve alternative methods of NDP, most notably Q-learning.

20

Scheme Architecture Training Method Exact RTG Fig
of best

API MLP TD(0, .5, 1) and -.954 1.4
Bellman Error

API Quadratic SVD: -1.172 1.5
4k and 30k sample
trajectories per policy

API Recursive SVD: -.957 1.6
30k traj/policy & np = 2,
30k traj/policy & np = 5,
45k traj/policy & np = 7

OPI MLP TD(0, .5, 1) and -1.022 1.7
Bellman Error

OPI Quadratic TD(0, .5, 1) and -1.161 1.8
Bellman Error

OPI Recursive TD(0, .5, 1) and -1.006 1.9
Bellman Error

Figure 1.3 Table of experimental runs for the football case study. The best run for each

experiment is shown in bold. Note that the optimal reward to go from i� is -.9449.

PLAY SELECTION IN AMERICAN FOOTBALL 21

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.0)

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.5)

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation
Error of rollout policy

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(1.0)

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Bellman Error

Figure 1.4 API with the MLP architecture using the TD(�) (� = 0; :5; 1) and the

Bellman error methods with 100 cycles through 10000 sample trajectories in training per

policy.

22

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

SVD: 4k

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t

S
c
o

re

Error of best policy
Error of NN approximation
Error of rollout policy

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t

d
o

w
n

SVD: 30k

Figure 1.5 API with the Quadratic architecture using the SVD method of training: 4k

and 30k sample trajectories per policy.

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t

S
c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t

d
o

w
n

Recursive: 2 Past Policies

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t

S
c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t

d
o

w
n

Recursive: 5 Past Policies

0 2 4 6 8 10 12 14 16 18 20
−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t

S
c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t

d
o

w
n

Recursive: 7 Past Policies

Figure 1.6 API with the Recursive architecture using the SVD method of training: 2 past

policies (30k traj./policy), 5 past policies (30k traj./policy), 7 past policies (45k traj./policy).

PLAY SELECTION IN AMERICAN FOOTBALL 23

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.0)

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.5)

Error of best policy
Error of NN approximation
Error of rollout policy

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(1.0)

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Bellman Error

Figure 1.7 OPI with the MLP architecture using the TD(�) (� = 0; :5; 1) and Bellman

error methods of training with one sample trajectory per policy.

24

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.0)

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(0.5)

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

TD(1.0)

0 1 2 3 4 5 6 7 8

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Bellman Error

Figure 1.8 OPI with the Quadratic architecture using the TD(�) (� = 0; :5; 1) and

Bellman error methods of training with one sample trajectory per policy.

PLAY SELECTION IN AMERICAN FOOTBALL 25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t

S
c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Recursive: TD(0.0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Recursive: TD(0.5)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−2

−1.8

−1.6

−1.4

−1.2

−1

Policy Iteration number

E
x
p

e
c
te

d
 N

e
t
S

c
o

re

Error of best policy
Error of NN approximation

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

Yards to goal

E
rr

o
r

fr
o

m
 o

p
ti
m

a
l
a

t
1

s
t
d

o
w

n

Recursive: TD(1.0)

Figure 1.9 OPI with the Recursive architecture using the TD(�) method of training:

� = 0; :5; 1, with one sample trajectory per policy.

26

Appendix: The Football Model

We consider one o�ensive drive from the perspective of the quarterback. The
objective is to maximize the expected di�erence between \our" team's drive-
score and the opposing team's score from the �eld position at which they receive
the ball, as in (1.1). The state of the game is characterized by three quantities:
x = number of yards to goal (�eld position), y = yards to go until the next
�rst down, and d = down number. The o�ensive drive ends whenever any of
the following events occur.

1. A new �rst down fails to be earned after four plays.

(The o�ense always receives the ball \at �rst down", i.e. with d
set equal to 1. At this time values for x and y are set, reecting
(respectively) our team's �eld position and the number of yards they
must move forward in (nominally) four stages. Generally, each stage
results in d being incremented by one, along with with x and y being
decremented by the number of yards earned. If our team manages
to achieve y � 0 with d � 4, then they receive a new �rst down, i.e.
d := 1 , along with a new value for y. New values of y at �rst down
are computed according to minf10; xg.)

2. A touchdown is scored. (This occurs whenever the o�ense is able to
achieve x � 0.)

3. A run attempt is fumbled, a pass is intercepted, or a punt or �eld-goal
attempt is made.

The playing �eld is discretized, with x and y taking on integer values. States
for which y > x are impossible. Since we do not include penalties in this model,
there can be only one value of y associated with each value of x at �rst down.
All totaled, there are 15250 = 3 � (100) � (101)=2 + 100 states for which the
quarterback must have some control action in mind.

The outcome of a given drive is random, depending on the quarterback's
strategy and the transition probabilities associated with the various play op-
tions. There are always four play options from which to choose: run, pass,
punt, and kick (�eld-goal). Transition probabilities and further details are
spelled out in the following paragraphs. The last paragraph below describes
how our team's net score is computed.

Run attempts. With probability .05, a run attempt will result in a fumble.
If the ball is not fumbled, then the ball moves forward Dr � 2 yards, where
Dr is a Poisson random variable with a mean of 6. Negative gain is entirely
possible, although not probable.

PLAY SELECTION IN AMERICAN FOOTBALL 27

If the run attempt results in x � 0, then the current drive ends with a
touchdown. If the run attempt is fumbled in the opponent's end zone (i.e.
x � 0), then the opponent recovers the ball at x = 20. (When the \opponent
recovers the ball at x = 20", the opponent has 80 yards to go to reach his goal.)
If the run attempt is not fumbled but results in x > 100, then the opposing
team scores a safety and \recovers the ball at x = 20". Even worse, if the run
attempt is fumbled with x > 100, then the drive ends with the opposing team
scoring a touchdown.

Pass attempts. Pass attempts can result in one of four possibilities: pass
intercept (with probability .05), pass incomplete (with probability .45), quar-
terback sack (with probability .05), or pass complete. If the pass is either
completed or intercepted, then the ball moves forward Dp� 2 yards, where Dp

is a Poisson random variable with a mean of 12. Incomplete passes result in no
movement of the ball. If the quarterback is sacked, then the ball moves back
Ds yards, where Ds is a Poisson random variable with mean 6.

If the pass attempt is completed and results in x � 0, then the current drive
ends with a touchdown. If the pass attempt is intercepted in the opponent's
end zone (i.e. x � 0), then the opponent recovers the ball at x = 20. If the pass
attempt is completed and results in x > 100, then the opposing team scores
a safety and recovers the ball at x = 20. Even worse, if the pass attempt is
intercepted with x > 100, then the drive ends with the opposing team scoring
a touchdown.

Punt attempts. A punt always results in the ball being turned over to the
other team. The distance the ball moves forward is nominally 6 �Dp+6, where
Dp is a Poisson random variable with a mean of 10. If this exceeds the distance
to the goal, then the opposing team simply receives the ball at x = 20.

Field goal attempts. The probability of a successful �eld-goal attempt is
given as maxf0; (:95 � :95x=60)g. If the �eld goal attempt is successful, the
opponent receives the ball at x = 20. However, if the �eld-goal attempt fails,
the opponent picks up the ball wherever the �eld-goal attempt was made.

Drive score and Expected net score. If our team scores a touchdown,
then it immediately receives 6.8 points. If the other team scores a touchdown,
then we immediately receive -6.8 points. (The opposing team can score a
touchdown, for example, if our team fumbles the ball in its own end zone.) If
a successful �eld-goal attempt is made, then the immediate reward is 3 points.
If a safety is scored, then the immediate reward is -2.0 points. When the drive
is over, an amount equal to the opposing team's expected score (for their drive)

28

is subtracted. The opposing team's expected score is a function of where they
receive the ball: 6:8x=100.

References

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using
real-time dynamic programming. Arti�cial Intelligence, 72:81{138.

Bertsekas, D. P. (1995a). A counterexample to temporal di�erences learning.
Neural Computation, 7:270{279.

Bertsekas, D. P. (1995b). Dynamic Programming and Optimal Control, volume
I and II. Athena Scienti�c, Belmont, MA.

Bertsekas, D. P. and Tsitsiklis, J. N. (1991). Analysis of Stochastic Shortest
Path Problems. Mathematics of Operations Research, 16:580{595.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scienti�c, Belmont, MA.

Haykin, S. (1996). Neural Networks, a comprehensive foundation. Macmillan,
New York.

Hertz, J. A., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory

of Neural Computation. Addison-Wesley, Reading, MA.
Puterman, M. L. (1994). Markovian Decision Problems. Wiley, New York.
Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming. Aca-

demic Press, New York.
Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynommial approxi-

mations in markov decision processes. Journal of Mathematical Analysis and

Applications, 110:568{582.
Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Di�er-

ences. Machine Learning, 3:9{44.
Tesauro, G. J. (1995). Temporal Di�erence Learning and TD-Gammon. Com-

munications of the ACM, 38:58{68.
Werbos, P. J. (1992). Handbook of Intelligent Control, chapter Approximate

Dynamic Programming for Real-Time Control and Neural Modeling. Van
Nostrand, New York. (eds. D. A. White and D. A. Sofge).

White, D. J. (1969). Dynamic Programming. Holden-Day.
Whitt, W. (1978). Approximations of dynamic programs i. Mathematics of

Operations Research, 3:231{243.
Whitt, W. (1979). Approximations of dynamic programs ii. Mathematics of

Operations Research, 4:179{185.

