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RELAXATION METHODS FOR LINEAR PROGRAMS* t 

PAUL TSENG* AND DIMITRI P. BERTSEKAS? 

In this paper we propose a new method for solving linear programs. This method may be 
viewed as a generalized coordinate descent method whereby the descent directions are chosen 
from a finite set. The generation of the descent directions are based on results from 
monotropic programming theory. The method may be alternatively viewed as an extension of 
the relaxation method for network flow problems [1], [2]. Node labeling, cuts, and flow 
augmentation paths in the network case correspond to, respectively, tableau pivoting, rows of 
tableaus, and columns of tableaus possessing special sign patterns in the linear programming 
case. 

1. Introduction. Consider the general linear programming problem with m vari- 
ables and n homogeneous equality constraints. We denote the constraint matrix for the 
equality constraints by E (E is an n X m real matrix), the jth variable by xi, and the 
per unit cost of the jth variable by ai. The problem then has the form: 

m 

Minimize E aijx (LP) 
j=1 

m 

subjectto eixj=O Y= 1,2,...,n, (1) 
j=1 

i< x, < c j j= 1,2,...,m, (2) 

where the scalars lj and ci denote respectively the lower and the upper bound for the 
jth variable and eij denotes the (i, j)th entry of E. We make the standing assumption 
that (LP) is feasible. 

We consider an unconstrained dual problem to (LP): Let Pi denote the Lagrange 
multiplier associated with the ith constraint of (1). Denoting by x and p the vectors 
with entries xj, j = 1,2,..., m, and pi, i = 1,2,..., n respectively we can write the 
corresponding Lagrangian function 

m n 

L(x, p) = E aj- eijPi xj. 
j=l \ i=l 

The unconstrained dual problem is then 

Minimize q(p) subject to no constraints on p, (3) 
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where the dual functional q is given by 

q(p)= - min L(x, p) 
<x <C 

ma j aXjeiPi - ax. (4) Y. m ax E eijpi - aj Xj (4) 
jIJ <cJ i=1 

We will call x the primal vector and p the price vector. The vector t with 
coordinates 

tj= eijpi j = 1,2,...,m (5) 
i-I 

is called the tension vector corresponding to p. In what follows we will implicitly 
assume that the relation (5) holds where there is no ambiguity. 

For any price vector p we say that the column index j is: 
Inactive if tj < aj, 
Balanced if t = aj, 
Active if ti > aj. 

For any primal vector x the scalar 

m 

di= eijxj Vi = 1,2,..., n, (6) 
j=1 

will be referred to as the deficit of row index i. 
The optimality conditions in connection with (LP) and its dual given by (3), (4) state 

that (x, p) is a primal and dual optimal solution pair if and only if 

xj = Ij for each inactive column index j, (7) 

Ij < xji cj for each balanced column index j, (8) 

Xj = cj for each active column index j, (9) 

d, = 0 for each row index i. (10) 

Conditions (7)-(9) are the complementary slackness conditions. Let d be the vector with 
coordinates di (in vector form d = Ex). We define the total deficit for x to be En=Ildil. 
The total deficit is a measure of how close x is to satisfying the linear homogeneous 
constraints (1). 

The dual problem (3) can be easily seen to be an unconstrained convex programming 
problem, and as such its solution motivates the use of nonlinear programming 
methods. One such method is the classical coordinate descent method whereby at each 
iteration a descent is made along one of the coordinate directions. This method does 
not work in its pure form when the cost function is nondifferentiable. We bypass this 

difficulty by occasionally using directions other than the coordinate directions. The 
idea is illustrated in the example of Figure 1 where a multi-coordinate direction is used 

only when coordinate descent is not possible. 
To develop the mechanism for generating the multi-coordinate descent directions we 

will view the problem of this paper in the context of monotropic programming theory 
[7], [8]. We can write (LP) as 

m n 

Minimize , fj(x) + 8 (di) subject to (-d, x) C, (P) 
j=l i=1 
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p2 
/ level curve of 

the objective 
/ * 22 / // function 

p3 p4 

p' denotes the price vector generated 
at the rth iteration. 

FIGURE 1. Example of Convergence Using Multi-Coordinate Descents. 

where fj: R -, (- oo, oo] is the convex function 

ajxj if Ij < xj < ci, 
(xy) = 

+oo if Xj < 1 or > cj, 

8: R - (-oo, oo] is the convex function 

() f0 if= 0, 
( oo else, 

and C is the extended circulation space 

C= (-d, x) E eixj 
= 

d,= , Vi = l,2,..., n. (11) 
j= 1 

From (4) we see that the dual functional q(p) can be written explicitly as 

q(p) = g(ETp) where (12) 

m 

g(t) = E gj(t), (13) 
j=1 

and the convex, piecewise linear functions gi are given by 

gi(ti) 
= 

(tJ- ) f t aj, (14) 
(tj- aj)cj if tj > aj 

(see Figure 2). Actually gj is the conjugate convex function of fi (in the usual sense of 
convex analysis [6]) 

gJ(ti) = sup t i,x - f(xj)} 
xj 

as the reader can easily verify (see also [8]). 
We now write the dual problem (3) in a form which is symmetric to (P) 

m 

Minimize E gj(tj) subject to (p, t) e C (D) 
j=1 
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gj(tj) 
. slope = Ij 

~\ /^^ V ~ ,,slope = c 

aj t; 

FIGURE 2. Graph of gj. 

where C is the subspace 

C = (p, t)ltj = eijpi (15) 
i=1 

Problems (P) and (D) are symmetric in that they both involve minimization of a 
separable function over a subspace, C and C ' can be easily verified to be orthogonal 
subspaces, fj and gj are conjugates of each other, while the conjugate convex function 
of 8 is the zero function. In fact (P) and (D) constitute a pair of dual monotropic 
programming problems as introduced in Rockafellar [7]. It was shown there in a more 
general setting that these programs have the same optimal value and their solutions are 
related via conditions (7)-(10). An important special property of these programs is that 
at each nonoptimal point it is possible to find descent directions among a finite set of 
directions-the elementary vectors of the subspace C [in the case of (P)] or the 
subspace C ' [in the case of (D)]. The notion of an elementary vector of a subspace is 
dealt with extensively in [8] (see also [7]) where it is defined as a vector in the subspace 
having minimal signed support (i.e. a minimal number of nonzero coordinates). We are 
interested in the elementary vectors because they can be very efficiently generated by a 
tableau pivoting technique and because they provide us with the necessary generaliza- 
tion of coordinate vectors in the price space. In the special case of network flow 
problems for which the tableau pivoting may be implemented by means of labeling, the 
generalized coordinate descent approach yields an algorithm that is superior to the 
primal simplex method, which for many years has been considered as the most efficient 
method for linear network flow problems [1], [2]. 

In the next section we give an overview of the relationship between the elementary 
vectors and certain tableaus, called the Tucker tableaus, and describe a pivoting 
algorithm, called the Painted Index algorithm, for generating Tucker tableaus with 
special sign patterns [8]. In ?3 we characterize the descent directions in terms of the 
Tucker tableaus and show how to use the Painted Index algorithm to generate dual 
descent directions. In ?4 we introduce a class of generalized coordinate descent 
algorithms for solving (D) where descent directions are generated by the Painted Index 
algorithm. A numerical example is given at the end of ?4. In ?5 we address the issue of 
finite convergence of these algorithms. In ?6 we report on computational experience. 

2. Tucker tableau and the Painted Index algorithm. In order to use elementary 
vectors in our algorithm we need a suitable characterization of the elementary vectors 
of the extended dual subspace C ' and a method for generating them. In the special 
case of network constraints, the elementary vectors of C are characterized by the 
cutsets of the network. In the general case of arbitrary linear constraints, the elemen- 
tary vectors of C and C ' are characterized by the Tucker representations of C and C ' 
and to generate them we will use a generalization of node labeling for network 
problems called the Painted Index algorithm (see [8, Chapter 10]). 
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XN = column variables 
JL 

x8 =row -B 
variables 

FIGURE 3. Tucker Tableau Corresponding to a Partition of Tx = 0 into BXB + NXN = 0. 

We will first give a brief overview of Tucker tableaus and then discuss the algorithm 
for generating them. Consider a linear homogeneous system Tx = 0 where T is a 
matrix of full row rank. Each column of T has an index and we denote the set of 
indexes for the columns of T by J. Since T has full row rank, we can partition the 
columns of T into [B N], where B is an invertible matrix. Then Tx = 0 can be 
expressed as 

B = -B -NxN where x= XB 

This way of expressing Tx = 0 is a Tucker representation of S, where the subspace S is 
given by S = {xlTx = 0). Similarly, 

tN = (B-N) tB where t = 
tN 

is a Tucker representation of S , where S ' is the orthogonal complement of S, given 
by S' = (tlt = TTp for some p}. The matrix -B-1N is a Tucker tableau. The 
columns of -B-~N are indexed by the indexes of the columns of N. The rows of 
-B- 'N are indexed by the indexes of the columns of B (see Figure 3). With respect to 
a given tableau, an index is basic if its corresponding variable is a row variable and 
nonbasic otherwise. Clearly the number of distinct tableaus is finite. Furthermore, 
starting from any tableau, it is possible to generate all Tucker representations of S and 
S1 by a sequence of simplex method-like pivots (see Appendix A for the pivoting 
rule). 

A fundamental relationship exists between the Tucker representations and the 
elementary vectors of S and S : Each column of a Tucker tableau yields in a certain 
way an elementary vector of S, and conversely, every elementary vector of S is 
obtainable from some column of some Tucker tableau. In a similar way, rows of 
Tucker tableaus correspond to elementary vectors of the dual subspace S ?: 

PROPOSITION 1 ([8, Chapter 10]). For a given Tucker tableau and for each basic 
index i and nonbasic index j let aij denote the entry of the tableau in the row indexed by i 
and the column index by j. The elementary vector of S corresponding to column j* of the 
given tableau has the normalized form 

1 ifj = *, 
z = (... z... )j where z = aii. ifj is basic, (16) 

0 else. 

The elementary vector of S1 corresponding to row i* of the given tableau has the 
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r 
b 
w 

g 

r 

b 

g w b r 

0 0 0 o < ~~0 >~0 inc O >O <0 0 
arb arb arb 

FIGURE 4. Column Compatibility for Tuc 

g w b r 

0 0 0 arb 

arb = arbitrary 

inc = incompatible 

ker Tableau. 

arb = arbitrary 

0 > 0 < 0 arb 

w 0 0 > 0 arb inc = incompatible 

g inc 

FIGURE 5. Row Compatibility for Tucker Tableau. 

normalized form 
1 ifj = i*, 

v = (. j .. v ) where v = -ai,. ifj isnonbasic, (17) 
0 else. 

By a painting of the index set J we mean a partitioning of J into four subsets (some 
possibly empty) whose elements will be called "green", "white", "black", and "red", 
respectively. 

For a given tableau, a column, indexed by say s, of the tableau is said to be column 
compatible if the colour of s and the pattern of signs occurring in that column satisfies 
the requirements shown in Figure 4. Note that a column whose index is red is never 
compatible. The requirements for a compatible row are analogously shown in Figure 5. 

The Painted Index algorithm takes any painting of the index set J and any initial 
Tucker tableau and performs a sequence of pivoting steps to arrive at a final tableau 
that contains either a compatible column or a compatible row. More explicitly, for any 
given index s that is black or white, the algorithm produces a final tableau having 
either a compatible column "using" s or a compatible row "using" s (we say that a 
column (row) uses s if s is either the index of the column (row) or the index of some 
row (column) whose entry in that column (row) is nonzero). We describe the algorithm 
below: 

Painted Index algorithm ([8, Chapter 10]). Start with any Tucker tableau. Let s be 
a white or black index that corresponds to either a row or a column (s will be called 
the lever index). 

If s corresponds to a row, check whether this row is compatible. If yes, we terminate 
the algorithm. Otherwise there is an entry in the s row that fails the compatibility test. 
Let j be the index of any column containing such an entry, and check whether this 
column is compatible. If yes, we terminate the algorithm. Otherwise, there is an entry 
in column j that fails the compatibility test. Let k be the index of any row containing 
such an entry. Pivot on (k, j) (i.e. make j basic and k nonbasic) and return to the 

beginning of the procedure. 
If s corresponds to a column, we act analogously to the above, with the word 

"column" and "row" interchanged. 

The Tucker tableau can be recursively updated after each pivot in a manner similar 
to that in the simplex method. This updating procedure is described in Appendix A. 
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When the algorithm terminates, either a compatible row using s is found or a 
compatible column using s is found. The number of distinct Tucker tableaus is finite, 
thus implying that the number of distinct compatible columns or rows is also finite. 
Finite termination of the algorithm is guaranteed when Bland's priority rule is used 
[8]: Give to the elements of J distinct numbers (priorities), and whenever there is more 
than one index that can be selected as j or k, select the one whose priority is highest. 

3. Dual descent directions and the modified Painted Index algorithm. For a given 
price vector p and a direction u, the directional derivative of q at p in the direction of 
u is given by [cf. (12)] q'(p; u) = g'(t; v) where v = ETu and by definition 

'(p;u) =lim q( + Xu) - q(p) , g'(; ) = lim g( + ) - g(t) 
Ux0 ) 

= 
IX 

Since g is separable we obtain [cf. (13)] 

g'(t; v) = E gj-(tj)v + E gj+(tj)v 
j3Dv<0 jy3vi> 

where gj and gj respectively denote the right and the left derivative of gj. Therefore 
the work in evaluating directly q'(p; u) is roughly proportional to the size of the 
support of v. Thus we see that by using the elementary vectors of C as descent 
directions we are in part minimizing the effort required to evaluate q'(p; u). Since each 
gi has the form (14), then gj- and gj have the form 

Ij if j inactive, 
gj ( ) \cj if j active or if j balanced, 

I if j inactive or if j balanced, 
g t) = cj ifjactive, 

from which it follows that q'(p; u) = C(v, t) where t = ETp, v = ETu, and 

C(v, t) = E lvj + E cjvj + E I,vj + E cjvj. (19) 
vi <O vi<O vi >O vi>O 
aj >- tJ a < > 

tj aj < t 

It follows that q'(p; u) < 0 if and only if C(v, t) < 0. Furthermore since q(p) is a 
piecewise linear convex function we have the following result: 

PROPOSITION 2. For a given vector (p, t) in C ' and a direction (u, v) in C ' there 
holds q(p + Xu) = q(p) + XC(v, t) VA E [0, a) where a is given by 

=ai - tj I aj- . a - t, l ( ) a min = min = inf min , min (20) , (,-tj ^) > o0 [ VyJ v. < 0 j active Vj vj > 0 j inactive v 

(a is the stepsize at which some column index becomes balanced). 

PROOF. For a fixed v, the quantity C(v, t) depends only on the following four 
index sets 

{ jlaj > t, vj O}, { jlay < tj, vi 0 }, {jla = tj, v >0 , jlaj = tj, vj < 0 

as can be seen from (19). By our choice of a it can be easily verified that these four 
index sets do not change for all tension vectors on the line segment between t and 
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t + av, excluding the end point t + av. It follows that C(v, t + Tv) = C(v, t) VT E 
[0, a). This combined with the fact 

q( u)q(p) + + u) () +; u) dT 
io 

=q(p) + oC(v,t + Tv)dT VX e [0, a) 

give the desired result. Q.E.D. 
An alternative formula for C(v, t) that turns out to be particularly useful for 

network problems [2] is obtained as follows. Let x be a primal vector satisfying CS 
with p. Then by first expanding the terms in C(v, t) and then using the definition of 
(CS) we obtain 

C(u,t)= E ljj + E cjj + E Ijuj E cjVj 
vi<O vy<O v>O vy>O 
aj >tj aj<tj aj> tj aj <tj 

aj<tj Uj<O UJ>> 

x,v + E ,jvj + , c v, 
aj- tj vj < 0 vj > 0 

aj = tj aj = tj 

m 

=Y x^v + E (I, - x) v, + E (cy - x1) v. 
j= l vj<O uj>O 

aj=tj aj=t 

Let d be the deficit vector corresponding to x (i.e. d = Ex). Then using the identity 
UTd = vTX we obtain 

C(v, t) = dTu + E (- x)v + E (c- xj)v (21) 
v <O vi >O 

j: balanced j: balanced 

In a practical implementation it is possible to use a data structure which maintains the 
set of balanced indices j. Since the number of balanced indices is typically around n or 
less, it follows that C(v, t) can be typically evaluated using (21) in O(n) arithmetic 
operations. This represents a substantial improvement over the O(m) arithmetic 
operations required to evaluate C(v, t) using (19), particularly if m > n. In the case 
where E is sparse, the use of (21) may allow further economies as for example in 
network flow problems (see [2]). 

We now describe a particular way to apply the Painted Index algorithm to determine 
if a price vector p is dual optimal, and if p is not dual optimal to either (a) generate an 
elementary vector (u, v) of C ' such that u is a dual descent direction of q at p, or (b) 
change the primal vector x so as to reduce the total deficit. 

Modified Painted Index algorithm. Let x E Rm satisfy (CS) with p and let d = Ex. 
If d = 0, then (x, p) satisfies the optimality conditions and p is then dual optimal. If 
d # 0, then we select some index s with d += 0. In the description that follows we 
assume that ds < 0. The case where d0 > 0 may be treated in an analogous manner. 

We apply the Painted Index algorithm, with s as the lever index and using Bland's 
anticycling rule, to the extended linear homogeneous system 

1,2, n+,..., n + ...n m 

[-I E ] [] =0, (22) 
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where index i (corresponding to w,), i = 1, 2,..., n, is painted 

white if di> 0, 
black if d < 0, 
red if d = 0, 

and index j + n (corresponding to zj), j = 1, 2,..., m, is painted 

green if j balanced and lj < xj < c. 
black if j balanced and Ij = x < cj 
white if j balanced and lj < xj = Cj 
red if j not balanced 

or if j balanced and Ij = xj = cj. 

Furthermore, we (i) use as the initial tableau one for which s is basic (one such choice 
is E for which the indexes n + 1 to n + m are basic); (ii) assign the lowest priority to 
index s (this ensures that s is always basic, see Appendix B for proof of this fact). The 
key feature of the algorithm is that at each intermediate tableau we check to see if a 
dual descent direction can be obtained from the tableau row corresponding to s. This 
is done as follows: 

We denote 

asj = entry in s row of tableau corresponding to column variable zj. 
asi = entry in s row of tableau corresponding to column variable wi. 

Applying (17) to the extended linear homogeneous system (22) we obtain that the 
elementary vector (u, v) of C using s that corresponds to this tableau is given by 

1 if i =s, 

ui = -ai if wi is a column variable, (23) 
0 otherwise, 

f 
= aj if zj is a column variable, (24) 

0 otherwise. 

For this choice of (u, v) we obtain (using (21)) that 

C(v, t) = ds - Easidi + E (c - xj)aj + E (lj- xj)asj. 
i> aj> as (25) 

j + n green j + n green 
or black or white 

If C(v, t)< 0 then the direction u is a dual descent direction and the algorithm 
terminates. Note from (25) that if the tableau is such that the sth row is compatible, 
then u is a dual descent direction since our choice of index painting and the definition 
of a compatible row implies that 

d< < 0 and asidi > 0 for all i such that wi is a column variable and 
Xj = Cj for all j such that z; is a column variable, j + n green or black, and asi > 0 

and 

Xj = Ii for all j such that zi is a column variable, j + n green or white, and asi < 0 
which in view of (25) implies that C(v, t) < 0. 

We know that the Painted Index algorithm terminates with either a compatible row 
using s or a compatible column using s. Thus we must either terminate by finding a 
dual descent direction corresponding to a tableau for which C(v, t) < 0 [cf. (25)] or 
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else terminate with a compatible column using s. In the latter case, an incremental 

change towards primal feasibility is performed as follows: 
Let r* denote the index of the compatible column. 
Let air* denote the entry in the compatible column corresponding to row variable wi 

and let ajir denote the entry in the compatible column corresponding to row variable 

Zj. 
Case 1. If r* = i for some i E {1,..., n and r* is black then set 

1 if i = r*, 

wi* <-- a ir if i is basic, 
0 else, 

* 1,aj* if n + j is basic, 
j \O0 else. 

Case 2. If r* = n + j for some j e {1,..., m} and r* is black then set 

air* if i is basic, 
0 else, 

1, ifn +j=r*, 
z* <- ajr*, if n + j is basic, 

0, else. 

Case 3. If r* = i for some i E {1,..., n) and r* is white then set 

-1I if i = r*, 
W* -- {air* if i is basic, 

0 else, 

*z -{a r* if n +j is basic, 

J O0 else. 

Case 4. If r* = n + j for some j E {1,..., m} and r* is white then set 

* -aai if 
i 

is basic, 
l 0 else, 

--1 if n +j = r*, 

Z 
* - air* if n + j is basic, 

\0 else. 

That w* and z* so defined satisfy w* = Ez* follows from applying (16) to the 
extended linear homogeneous system (22). Furthermore, our choice of index painting, 
together with column compatibility of the column indexed by r*, guarantees that, for 

A > 0 sufficiently small, x + ,tz* satisfies (CS) with p and that x + ,uz* has strictly 
smaller total deficit than x. 

Given the above discussion, we see that the modified Painted Index algorithm will 
either produce a dual descent direction u given by (23) that can be used to improve the 
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dual cost, or produce a primal direction z* as defined above that can be used to reduce 
the total deficit. 

The special case where the initial tableau is E and its sth row yields a dual descent 
direction is of particular interest and leads to the coordinate descent interpretation of 
our method. In this case the dual descent direction is [cf. (23)] 

I1 if i= s, 
i= 0 otherwise, 

so the algorithm will improve the dual cost by simply increasing the sth price 
coordinate while leaving all other coordinates unchanged. If the dual cost were 
differentiable then one could use exclusively such single coordinate descent directions. 
This is not true in our case as illustrated in Figure 1. Nonetheless the method to be 
described in the next section generates single coordinate descent directions very 
frequently for many classes of problems. This appears to contribute substantially to 
algorithmic efficiency since the computational overhead for generating single coordi- 
nate descent directions is very small. Indeed computational experimentation (some of 
which reported in [1], [2]) indicates that the use of single coordinate descent direction is 
the factor most responsible for the efficiency of the relaxation method for minimum 
cost network flow problems. 

4. The relaxation algorithm for linear programs. Based on the discussions in ??2 
and 3, we can now formally describe our algorithm. The basic relaxation iteration 
begins with a primal dual pair (x, p) satisfying (CS) and returns another pair (x', p') 
satisfying (CS) such that either (i) q(p') < q(p) or (ii) q(p') = q(p) and (total deficit 
of x') < (total deficit of x). 

Relaxation iteration. 
Step 0. Given (-d, x) E C and (p, t) E C such that (x, p) satisfy (CS). 
Step 1. If d = 0 then x is primal feasible and we terminate the algorithm. 

Otherwise choose a row index s such that ds is nonzero. For convenience we assume 
that ds < 0. The case where ds > 0 may be analogously treated. 

Step 2. We apply the modified Painted Index algorithm with s as the lever index to 
the extended system 

[-I E][ = 0 

as described in ?3. If the algorithm terminates with a dual descent direction u we go to 
Step 4. Otherwise the algorithm terminates with a compatible column using s, in which 
case we go to Step 3. 

Step 3 (Primal Rectification Step). Compute: 

c. - x. . - xi - di 
t = mmin min xj min min 

Z >o z? Z *<o z w Wi* o Wi 

where z*, w* are described in ?3. Set x - x + ,Lz*, d - d + tw* and go to the next 
iteration. (The choice of #t above is the largest for which (CS) is maintained and total 
deficit is strictly decreased.) 

Step 4 (Dual Descent Step). Determine a stepsize X* such that 

q(p + A*u) = min q(p + hu)}. X>O 
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Set (p, t) *- (p, t) + A*(u, v), update x to maintain (CS) with p, and go to the next 
iteration. 

Validity and finite termination of the relaxation iteration. We will show that all steps 
in the relaxation iteration are executable, that the iteration terminates in a finite 
number of operations, and that (CS) is maintained. Since the modified Painted Index 
algorithm (with the priority pivoting rule) is finitely terminating, the relaxation 
iteration then must terminate finitely with either a primal rectification step (Step 3) or 
a dual descent step (Step 4). Step 3 is clearly executable and finitely terminating. Step 4 
is executable since a dual descent direction has been found. If Step 4 is not finitely 
terminating then there does not exist a stepsize X* achieving the line minimi7ation in 
the direction of u. It follows from the convexity of q that q'(p + Xu; u) < 0 for all 
X > 0 which implies that 

?E juj + E cjvj < o 
v<0 vij>O 

in which case the assumption that (LP) is feasible is violated. (CS) is trivially 
maintained in Step 4. In Step 3, the only change in the primal or dual vectors comes 
from the change in the value of some primal variables whose indexes are balanced. 
Since the stepsize ut is chosen such that these primal variables satisfy the capacity 
constraints (2) we see that (CS) must be maintained. 

Implementation of the line search in Step 4. It appears that usually the most efficient 
scheme for implementing the line search of Step 4 is to move along the breakpoints of 
q, in the descent direction u, until the directional derivative becomes nonnegative. This 
scheme also allows us to efficiently update the value of C(v, t). Algorithmically it 
proceeds as follows: 

Step 4a. Start with p and u such that C(v, t) < 0. 
Step 4b. If C(v, t) > 0 then exit (line search is complete). Else compute a using 

(20) (a is the stepsize to the next breakpoint of q from p in the direction u). Then 
move p in the direction u using stepsize a and update t and x as follows: 

Increase p, by aui Vi. 
Set xj 1j V balanced j such that vj < 0. 
Set x. c V balanced j such that v > 0. 
Increase tj by avj Vj. 
Update C(v, t) by 

C(v, t) t C(v, t) - E (xj - Ij)vj - E (xj - cj)vj. 
aj =tj aj tj 
vi<O vi>O 

Return to Step 4b. 
It is straightforward to check that the updating equation for C(v, t) is correct and 

that (CS) and the condition t = ETp are maintained. 

Numerical example. We now give a numerical example for the relaxation algorithm 
just described. To simplify the presentation we will make no explicit use of Bland's 
Priority pivoting rule. Consider the following linear program: 

Min xl + x2 - x3+ 2x4 - x5 

subject to 0 1 - 1 0 1 x= 
0 < xl < 1, 1 < x2 < 2, 1 ?< x3 < 2, 1 < x4 S 2, -1 < x5 < 0. 
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The cost vector for this example is a = (1, 1, -1, 2, -1). Let the initial price vector 
be the zero vector. We obtain the following sequence of relaxation iterations: 

Iteration 1. 

p= (0,0), t=ETp=(0,0,0,0,0), a-t=(,,-1,,-2,-1), 

x=(0,1,2,1,0), d= (0,-1). 

Initial Tucker tableau. 

Z1 Z2 
r r 

W1 
lever row -> w2 

r 2 
b 0 

-1 
1 

Z3 
r 

0 
-1 

z4 
r 

1 
0 

Z5 r = red 
r w = white 
0 b = black 
1 g = green 

Row 2 is compatible, so a dual descent step is possible with descent direction given by: 
u = (0,1), v = (0,1, -1, 0,1), and stepsize given by: 

a - min{(a2 - t2)/2, (a3 - t3)/v3} = 1. 

x is unchanged. The new price vector and tension vector are: p - p + au = (0,1), 
t - t + av =(0,1, -1,0,1). 

Iteration 2. 

= (0,1), t=ETp= (0,1,-1,0,1), a- t= (1,0,0,2,-2), 

x=(0,1,2,1,0), d=(0,-1). 

Initial Tucker tableau. 

Z2 Z3 Z4 Z5 
b w r r 

W1 

lever row -> w2 

r 
b 

2 -1 0 1 0 
0 1 -1 0 1 

Row 2's compatibility is violated in columns 2 and 
Next Tucker tableau. 

Z1 

Z2 
lever row -* w 

b 
b 

W1 

3. We pivot on row 1, column 2: 

Z3 Z4 Z5 

r r w r r 

2 -1 0 1 0 
2 -1 -1 1 1 

Row 2's compatibility is violated in column 3 and column 3 is compatible. The primal 
rectification direction is then given by: z* = (0,0, -1,0,0), w* = (0,1) and the 
capacity of rectification is given by: 

*- min{(13 
- X3)/3*, -d/w*} = 1 

p and t are unchanged. The new primal vector and deficit vector are: 
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The algorithm then terminates. The optimal price vector is (0,1). The optimal primal 
vector is (0, 1, 1, 1, 0). 

5. Finite convergence of the relaxation algorithm. The relaxation algorithm that 
consists of successive iterations of the type described in the previous section is not 
guaranteed to converge to an optimal dual solution when applied to general linear 
programs due to the following difficulties: 

(a) Only a finite number of dual descent steps may take place because all iterations 
after a finite number end up with a primal rectification step. 

(b) An infinite number of dual descent steps takes place, but the generated sequence 
of dual costs does not converge to the optimal cost. 

Difficulty (a) may be bypassed by choosing an appropriate priority assignment in the 
relaxation algorithm and showing that the number of primal rectification steps between 
successive dual descent steps is finite under the chosen assignment. 

PROPOSITION 3. If in the relaxation algorithm the green indexes are assigned the 
highest priorities and the black and white indexes belonging to {1, 2,..., n }, except for 
the lever index, are assigned the second highest priorities, then the number of primal 
rectification steps between successive dual descent steps is finite. 

PROOF. See Appendix C. 
Proposition 3 is similar to Rockafellar's convergence result for his primal rectifica- 

tion algorithm ([8, Chapter 10]). However his algorithm is an out-of-kilter implementa- 
tion and requires, translated into our setting, that each row index once chosen as the 
lever index must remain as the lever index at successive iterations until the correspond- 
ing deficit reaches zero value. We do not require this in our algorithm. 

Difficulty (b) above can occur as shown in an example given in [9]. To bypass 
difficulty (b) we employ the c-complementary slackness idea which we introduced in [2] 
for network flow problems. For any fixed positive number c and any tension vector t 
define each column index j E {1, 2,..., m } to be 

E-inactive if tj < ai - E, 
E-balanced if aj - e < tj < ai + E, 
E-active if tj > ai + E. 

Then for a given primal dual pair (x, p) and t = ETp we say that x and p satisfy 
E-complementary slackness if 

xj = li V-inactive arcs j, 

Ij < xj < cj Vc-balanced arcs j, (E-CS) 

xj = cj Ve-active arcs j. 

When c = 0 we recover the definition of (CS). Define 

C'(, t) = E livi + E livi + E civ + E civ. 
j: e-inactive vj < 0 j: c-active Vj > 0 

j: E-balanced j: E-balanced 

For computational purposes we may alternately express C'(v, t) in a form analogous 
to (21): For a given p let x satisfy E-CS with p and let d = Ex. Then using an 
argument similar to that used to derive (21) we obtain 

Cc(v, t) = dTu + E ( - xi)vj + E (ci - xj)vj. (26) 
vi <0 i >O 

j: E-balanced j: e-balanced 
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We note that, for a fixed v and t, C'(v, t) is monotonically increasing in E and that 
C(v, t) = C(v, t). 

PROPOSITION 4. If in the relaxation iteration of ?4 we replace (CS) by (c-CS) and 
C(v, t) by C'(v, t) then the number of dual descent steps in the relaxation algorithm is 
finite. 

PROOF. First we will show that each iteration of the modified relaxation algorithm 
is executable. Let (x, p) denote the primal dual pair that satisfies c-CS at the beginning 
of the iteration and let t = ETp. It is straightforward to verify, using (26), that with 
(CS) replaced by (c-CS) in the painting of the indexes every compatible row yields a 
(u, v) [cf. (23), (24)] that satisfies C'(v, t) < 0. Therefore the iteration must terminate 
with either a compatible column or a (u, v) such that C'(v, t) < 0. In the former case 
we can perform a primal rectification step identical to that described in ?4. In the latter 
case, since C(v, t) = C?(v, t) < C'(v, t), it follows that u is a dual descent direction 
at p so that the dual descent step (Step 4) can be executed. 

Next we will show that the line minimization stepsize in the dual descent step is 
bounded from below. Using the definition of C'(v, t) we have that a dual descent is 
made when 

C(v, t) E ljvj l+ + E cj + E cvj < . (27) 
aj- tj > < O a- tj<- > O 

! 
aj- tjI.<II la - tjl < E 

Let 

-= maxjvIl (28) 

and let p' = p + 'u, t' = t + c'v. Let x' be a primal vector satisfying (CS) with p'. 
Then (28) implies that 

aj - tj > aj - tj > O and aj 
- 

tj < - = aj 
- 

tj < O 

so that 

ai 
- 

tj > e xj 
= l and aj 

- 
tj < -e xj 

= 
cj. (29) 

Using (29) and (19) we obtain that 

C(v, t') = E ljuj + x'j + EE Cvj + + E xj. (30) 
aj -tj > < 0 aj-tj< -c vj>O 

laj- til X laj - tjl < e 

Subtracting (27) from (30) we obtain that 

C(, t') - C'(v, t) = E (xJ - i)vu + + (x' - cj)v. (31) 
vi<O v0>O 

laj-tjl<e laj-tj\<E 

Since the right-hand side of (31) is nonpositive it follows that C(v, t') < C'(v, t) < 0 
so that u is a dual descent direction at p + C'u, implying that the line minimization 
stepsize is bounded from below by c'. 

Consequently the line minimization stepsize at each dual descent step is bounded 
from below by cL where L is a positive lower bound for l/max{ v i Ej e {(1, 2,..., m } 
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as v ranges over the finite number of elementary vectors (u, v) of C ' that can arise in 
the algorithm. Since the rate of dual cost improvement over these elementary vectors is 
bounded in magnitude from below by a positive number we see that the cost 
improvement associated with a dual descent (Step 4) is bounded from below by a 
positive scalar (which depends only on e and the problem data). It follows that the 
algorithm cannot generate an infinite number of dual descent steps. Q.E.D. 

Using Proposition 4 we obtain the following convergence result: 

PROPOSITION 5. If the conditions of Propositions 3 and 4 are satisfied, then the 
relaxation algorithm terminates finitely with a primal dual pair (x, p) satisfying E-com- 
plementary slackness and Ex = 0. 

PROOF. That the relaxation algorithm terminates finitely follows from Propositions 
3 and 4 (note that the introduction of c-CS does not destroy the validity of Proposition 
3). That the final primal dual pair satisfies c-complementary slackness follows from the 
observation that e-complementary slackness is maintained at all iterations of the 
relaxation algorithm. That the final primal vector satisfies the flow conservation 
constraints (1) follows from the observation that the relaxation algorithm terminates 
only if the deficit of each row index is zero. Q.E.D. 

The next proposition provides a bound on the degree of suboptimality of a solution 
obtained based on e-CS. 

PROPOSITION 6. If (x, p) satisfies e-complementary slackness and Ex = 0 then 

m 

0 f(x) + q(p) E c (cj - l). 
j=1 

PROOF. Let t = ETp. Since Ex = 0 we have that 

aTx = (a -t)TX. (32) 

Using (32) and the definition of c-complementary slackness we obtain 

aTx = ( a- ti)l + (a - tj)ci + E (a - ti)xj. (33) 
aj - tj> aj -tj< -( - < aj- tj < 

On the other hand we have [cf. (12), (13), and (14)] 

q(p) = - E (aj- t)lj + E (aj- tj)cj. (34) 
aj- tj> O aj-tj < O 

Combining (33) with (34) we obtain 

aTx + q(P) = E (aj- tj)(xj- j) + E (a- tj)(x - 
cj) 

0< aj- tj< -aj- tj <0 

from which it follows that 

m 

aTx + q(p) K< eE (cj- Ij) 
j-1 

and the right-hand inequality is established. To prove the left-hand inequality we note 
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that by definition 

-q(p) =Minimize (a-t)rT subject to < <c 

from which it follows that -q(p) < (a - t)Tx = aTx where the inequality holds since 
1 < x < c and the equality holds since Ex = 0. Q.E.D. 

A primal dual pair satisfying the conditions of Proposition 6 may be viewed as an 
optimal solution to a perturbed problem where each cost coefficient ai is perturbed by 
an amount not exceeding E. Since we are dealing with linear programs, it is easily seen 
that if E is sufficiently small then every optimal solution of the perturbed primal 
problem is also an optimal solution of the original primal problem. Therefore, for 
sufficiently small E, the modified relaxation algorithm based on E-CS terminates in a 
finite number of iterations with an optimal primal solution. It is not difficult to see that 
the required size of e for this to occur may be estimated by 

min{ arx - aTx*lx a basic feasible solution of (LP), arx - aTx* 0} 

divided by sum of ci - li's, where x* is any optimal primal solution. However such an 
estimate is in general not computable a priori. 

6. Computational experience. To assess the computational efficiency of the relaxa- 
tion algorithm we have written three relaxation codes in FORTRAN and compared 
their performances to those of efficient FORTRAN primal simplex codes. The three 
relaxation codes are: RELAX for ordinary network flow problems, RELAXG for 
positive gain network flow problems, and LPRELAX for general linear programming 
problems. All three codes accept as input problems in the following form 

m 

Minimize E ajxj 
j=1 

m 

subject to $' eijxj 
= bi, i = 1,2,..., n, 

j=l 

0 < x< c, j=1,2,...,m. 

For RELAXG, the matrix E is required to have in each column exactly one entry of 
+1, one negative entry, while the rest of the entries are all zeroes. For RELAX, the 
negative entries are further required to be -1. Three primal simplex codes-RNET 
[11] for ordinary network flow problems, NET2 [10] for positive gain network flow 
problems, and MINOSLP (Murtagh and Saunders) for general linear programming 
problems-were used to provide the basis for computational comparison. The 
test problems were generated using three random problem generators-NETGEN [13] 
for ordinary network problems, NETGENG [12] (an extended version of NETGEN) 
for positive gain network problems, and LPGEN for general linear programming 
problems. NETGEN and NETGENG are standard public domain generators, while 
LPGEN is a generator that we wrote specifically for the purpose of testing LPRELAX 
and MINOSLP. All codes were written in standard FORTRAN and, with the 
exception of RNET, were compiled on a VAX11/750 (operating system VMS 4.1). 
They were all ran under identical system load conditions (light load, sufficient incore 
memory to prevent large page faults). For RNET we only obtained an object code that 
was compiled under an earlier version of VMS. The timing routine was the VAX11/750 
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system time routine LIB$INIT_TIMER and LIB$SHOW_TIMER. The solution times 
did not include the time to set up the problem data structure. In both RELAX, 
RELAXG, and LPRELAX, the initial price vector was set to the zero vector. 

RELAX is an ordinary network flow code that uses a linked list to store the network 
topology. It implements the modified Painted Index algorithm by means of a labeling 
technique similar to Ford-Fulkerson labeling. Detailed description of RELAX is given 
in [2]. RNET is a primal simplex code developed at Rutgers University over a span of 
many years. In RNET the FRQ parameter was set at 7.0 as suggested by its authors. 
Preliminary testing with RELAX and RNET showed that RELAX performs about as 
well as RNET on uncapacitated transhipment problems but outperforms RNET on 
assignment problems, transportation problems, and capacitated transhipment prob- 
lems (up to 3 to 4 times faster). Here we give the times for the first 27 NETGEN 
benchmark problems in Table 1 (computational experience with other NETGEN 
problems is reported in [2] and [9]). The superiority of RELAX over RNET is less 
pronounced on very sparse problems where the ratio m/n is less than 5. This may be 
explained by the fact that sparsity implies a small number of basic feasible solutions. 
Although the results presented are only for those problems generated by NETGEN we 
remark that similar results were obtained using a problem generator that we wrote 
called RANET. Since RANET uses a problem generating scheme quite different from 
that used by NETGEN, our computational results seem to be robust with respect to 
the type of problem generator used. Typically, the number of single coordinate descent 
steps in RELAX is from 2 to 5 times that of the number of multi-coordinate descent 
steps while the contribution made by the single coordinate descent steps in improving 
the dual cost is anywhere from 9 (for tightly capacitated transhipment problems) to 20 
(for uncapacitated transportation problems) times that made by the multi-coordinate 
descent steps (see [9, Tables 2.2 and 2.3]). Yet the single coordinate descent step is 
computationally very cheap. In the range of problems tested, the average number of 
coordinates involved in a multi-coordinate descent is found to be typically between 4 
and 8 implying that even in the multi-coordinate descent steps the computational effort 
is small. Furthermore this number seems to grow very slowly with the problems size. 

RELAXG is a positive gain network code developed from RELAX. It implements 
the modified Painted Index algorithm by means of a labeling technique similar to that 
used by Jewell [5]. The total storage requirement for RELAXG is: five m-length 
INTEGER*4 arrays, five n-length INTEGER*4 arrays, five m-length REAL*4 arrays, 
four n-length REAL*4 arrays, and two LOGICAL*1 arrays. Line minimization in the 
dual descent step is implemented by moving along successive breakpoints in the dual 
functional. Labeling information is discarded after each iteration. When the number of 
nodes (corresponding to row indexes) of nonzero deficit falls below a prespecified 
threshold TP, RELAXG switches to searching for elementary descent direction of 
"maximum" rate of descent and using as stepsize that given by (20), but with "active", 
"inactive" replaced by "E-active", "E-inactive" respectively. 

To measure the efficiency of the gain network algorithm we compared RELAXG 
with the code NET2 of Currin [10]. NET2 is a FORTRAN primal simplex code 
developed on a CDC Cyber 170/175 computer operating under NOS 1.4 level 
531/528. In the computational study conducted by its author [10]-experimenting 
with different data structures, initial basis schemes, potential updating and pivoting 
rules-NET2 was found to be on average the fastest (NET2 uses forward star 
representation). In addition to NETGENG we also tested RELAXG and NET2 on 
problems generated by our own random problem generator RANETG-an extension 
of RANET for generalized networks. The times with RANETG are roughly the same 
as with NETGENG-which shows that our computational results are robust with 
respect to the type of problem generator used. Table 2 contains the specification of the 
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TABLE 1 

Times for Benchmark NETGEN Problems With Arc Cost E [1,100]. Time In CPU Seconds. 
RELA X Compiled Under VMS4.1. RNET Compiled Under An Earlier Version of VMS. 

Both Methods Ran Under Identical Conditions. 

No. No. 
nodes arcs RELAX RNET 

Transportation 200 1300 1.79 3.24 
Problems 200 1500 1.87 3.76 

200 2000 1.67 4.43 

200 2200 2.22 5.05 

200 2900 2.48 7.25 

200 3150 3.73 9.34 

200 4500 4.53 12.59 

200 5155 4.63 15.10 

200 6075 5.45 18.65 

200 6300 3.73 16.76 

Assignment 400 1500 1.11 4.82 
Problems 400 2250 1.27 6.57 

400 3000 1.69 8.80 

400 3750 2.29 9.82 

400 4500 2.50 9.94 

Uncapacitated 400 1306 2.44 2.82 
& Lightly 400 2443 2.48 3.42 
Capacitated 
Problems 400 1306 2.15 2.62 

400 2443 2.38 3.61 

400 1416 3.00 3.06 

400 2836 3.03 4.50 

400 1416 2.82 2.86 

400 2836 4.57 4.56 

400 1382 1.17 2.69 

400 2676 1.83 5.95 

400 1382 1.98 2.53 

400 2676 1.93 3.58 

NETGENG benchmark problems described in [10] and [12] and the corresponding 
solution times from RELAXG and NET2. The fourth benchmark problem turned out 
to be infeasible in our case (as verified by both NET2 and RELAXG)-perhaps 
because we used a slightly different version of NETGENG or because the random 
number generator in NETGENG is machine dependent, as was the case with NETGEN. 
Table 3 contains the specification and the solution time for additional NETGENG 
problems. The solution times quoted for both NET2 and RELAXG do not include the 
time to read the input data and the time to initialize the data structures (these times 
were in general less than 8% of the total solution time). 

Initial testing shows that out of the 18 benchmark problems RELAXG (with TP set 
to (# sources + #sinks)/2) is faster than NET2 on 11 of them. However out of the 7 
problems where RELAXG performed worse, it sometimes performed very badly (see 
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TABLE 2 

Problem Specifications For NETGENG Benchmark Problems (Random Number Seed = 13502460, Percent High Cost = 0). 
Times (In Seconds) For RELAXG And NET2 On NETGENG Benchmark Problems. *TP = (#Sources + #Sinks)/2. 

Percent 
Transhipment Percent Pro- raspmeMultiplier Total Capaci- Bound Optimal 

blem Nodes Sources Sinks Sources Sinks Arcs Range Supply tated Range Value RELAXG* NET2 

1 200 100 100 0 0 1500 .5-1.5 100000 0 - 1887171 12.46 15.38 

2 200 100 100 0 0 2000 .5-1.5 100000 100 1000-2000 1871263 18.25 18.50 

3 200 5 195 0 0 4000 .5-1.5 100000 100 1000-2000 2295799 7.73 8.09 

4 200 15 50 10 20 6000 .25-95 100000 100 1000-2000 - infeasible infeasible 

5 300 150 150 0 0 1500 .5-1.5 100000 0 - 2407775 18.88 23.37 

6 300 5 295 0 0 2000 .5-1.5 100000 0 - 2617790 23.62 17.93 

7 300 135 165 135 130 4000 .5-1.5 100000 0 - 2197394 31.36 43.22 
8 300 10 40 5 15 6000 .5-1.5 100000 0 - 2637187 27.48 15.79 

9 300 2 50 1 20 7000 .5-1.5 100000 0 - 2970418 72.26 8.02 

10 400 200 200 0 0 2000 .5-1.5 2.00 0 - 4554 22.47 36.28 

11 400 3 397 0 0 4000 .2-1.4 100000 0 - 4471458 52.33 19.89 

12 400 20 100 5 50 5000 .3-1.7 100000 0 - 3102228 23.65 24.52 

13 400 25 70 10 20 6000 .5-1.5 100000 100 1000-2000 4171243 41.30 70.17 

14 400 30 50 0 0 7000 .5-1.5 100000 100 1000-2000 3292428 38.71 100.59 

15 1000 5 995 0 0 4000 .2-6.0 200000 100 4000-6000 6812918 357.9 144.68 

16 1000 20 100 5 20 6000 .4-1.4 200000 100 4000-6000 17413428 229.23 91.50 

17 1000 20 50 20 50 6500 .5-1.5 200000 0 - 15072130 40.06 71.99 

18 1000 30 400 10 30 7000 .7-1.2 200000 0 - 11602427 654.06 171.41 

L,n 
00 
00 

3 

0- PA 

2: 
- 

I?eI 

,. 

C) 

90 

_ 

[0., 
PO 

vl 



RELAXATION METHODS FOR LINEAR PROGRAMS 

TABLE 3 

Times (In Seconds) For RELAXG and NET2. Problems Are Created Using NETGENG with 
SEED = 13502460, Arc Gains E [.5,1.5], Supply = 500 x (No. Nodes), 

andArc Cost e [1,1000]. *TP = (No. Nodes)/2. 

No. No. Optimal 
nodes arcs Value RELAXG* NET2 

Symmetric No. 400 2000 72244687 20.93 63.90 
Capacitated nodes 400 6000 40627756 42.82 132.60 
Transhipment fixed 
cap E [500,1000] 400 8000 35215416 75.85 180.95 

400 10000 28376690 103.14 166.21 

Symmetric No. 400 7000 36574188 54.88 155.77 
Capacitated arcs 600 7000 72651152 77.12 244.74 
Transhipment fixed 
cap E [500,1000] 800 7000 109997296 128.55 369.09 

1200 7000 205287424 229.34 656.09 

Symmetric No. 400 2000 47332000 25.08 36.19 
Uncapacitated nodes 400 6000 22869084 45.76 56.04 
Transportation fixed 

400 8000 17202804 53.90t 70.99 

400 10000 16052708 130.27t 72.96 

Symmetric No. 400 7000 18789882 49.74 60.21 
Uncapacitated arcs Uncapacitated arcs 600 7000 43720964 75.35 110.67 
Transportation fixed 

800 7000 64200112 97.98 164.52 

1200 7000 128071952 218.57t 336.72 

Number of page faults exceeds 2500. 
*Number of page faults exceeds 10000. 

problem 9 of Table 2). Overall it appears that RELAXG tends to perform worse than 
NET2 on lightly capacitated asymmetric (the number of sources is either much greater 
or much smaller than the number of sinks) problems while RELAXG outperforms 
NET2 considerably on symmetric transportation and capacitated transhipment prob- 
lems (see Tables 2 and 3). However it should be noted that NET2 was written on a 
different machine and under a different operating system. Computational experience 
with RELAXG and NET2 on other NETGENG problems is reported in [9]. 

LPRELAX is the relaxation code for general linear programming problems. 
LPRELAX does not use any sparsity information and is therefore more suited to dense 
problems with a small number of rows. At each iteration, LPRELAX first checks if the 
lever index corresponds to a single coordinate descent direction and performs a dual 
descent step with line search accordingly. It then applies the Painted Index algorithm 
to find either a compatible row or a compatible column using the lever index. In the 
former case a dual descent step, with stepsize given by (20) where "active" is replaced 
by "c-active" and "inactive" is replaced by "c-inactive", is performed. In the latter case 
a primal rectification step is performed. Experimentation showed that using the tableau 
left from the previous iteration as the initial tableau for the current iteration (an 
additional pivot may sometimes be required to make the lever index basic) is computa- 
tionally beneficial and this was implemented in LPRELAX. To avoid unnecessary 
computation LPRELAX works with the reduced linear homogeneous system 

[-I E'][ Z=0 
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where E' consists of the columns of E whose indexes are E-balanced and z' consists of 
the entries of z whose indexes are E-balanced. The only time that the columns that are 
not E-balanced are used is during a dual descent step to compute vj (vj given by (24)) 
for all j not E-balanced. However this computation can be done at the beginning of 
the dual descent step using the fact that 

n 

Vj = 
eijui, 

i=1 

1 if i = s, 

ui-= -ai if i s and i is nonbasic, 
0 otherwise, 

where aSi denotes the entry in the s row of the Tucker tableau (representing the above 
reduced system) corresponding to row variable wi; and s is the lever index. 

The most critical part of the code, both in terms of numerical stability and efficiency, 
is the procedure for Tucker tableau updating. The current version attempts to identify 
numerical instability by checking, after every pivot, for unusually large entries appear- 
ing in the tableau and then backtracking if such an entry is identified. The backtrack- 
ing scheme requires storing the set of indexes that were basic in the previous tableau. 
The threshold value for determining whether a tableau entry is zero was set at 0.0005 
(it was found that if the threshold value was set too low then the pivots can cycle). For 
sparse problems some technique for preserving and exploiting the sparsity structure 
during pivoting would be needed to make the code efficient. LPRELAX has a total 
storage requirement of one n X m REAL*4 array (to store the constraint matrix), one 
n X 2n REAL*4 array (to store the reduced Tucker tableau), 5 m-length REAL*4 

arrays, 4 n-length REAL*4 arrays, and 2 n-length INTEGER*4 arrays. 
MINOSLP is a primal simplex code for linear programs developed by B. A. Murtagh 

and M. A. Saunders at the Systems Optimization Laboratory of Stanford University as 
a part of the FORTRAN package called MINOS for solving linear programming and 
nonlinear programming problems (the 1985 version of MINOS has MINOSLP in a 
module by itself). To generate the test problems we wrote a problem generator called 
LPGEN. Given a number of rows and columns, LPGEN generates the entries of the 
constraint matrix, the cost coefficients, the right-hand side, and the upper bound on the 
variables randomly over a prespecified range. Since MINOSLP has a sparsity mecha- 
nism that LPRELAX does not have, in the tests we generated only dense problems so 
that the times will more accurately reflect the relative efficiency of the algorithms 
themselves. Note that since the relaxation algorithm uses tableau pivoting it can readily 
adopt any sparsity technique used by the primal simplex method. In both LPRELAX 
and MINOSLP we count the time from when the first iteration begins to when the last 
iteration ends (the time to read in the problem data is not counted). 

Initial testing shows that LPRELAX is roughly 10% faster than MINOSLP on 

problems where the ratio m/n is greater than 10 but two to three times slower if m/n 
is less than 5 (see Table 4 for problem specifications and solution times). On the larger 
problems MINOSLP experienced severe problems with page faults-the reason of 
which is not yet understood. We also considered other measures of performance-in 
columns nine and twelve of Table 4 we give the total number of pivots executed by 
LPRELAX and MINOSLP respectively. However since LPRELAX does not work 
with the full n x m tableau we considered another measure, denoted by PB. For 
LPRELAX, PB is simply the number of columns in the reduced tableau summed over 
all pivots (so that PB x n is the total number of times that LPRELAX updates a 
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TABLE 4 

Times (In Seconds) For LPRELA X and MINOSLP 

Bound LPRELAX MINOSLP 
Bound 

Problem n m Cost Range RHS Range Range Optimal Value CPU Time # Pivots PB CPU Time # Pivots PB 

1 30 200 -1000-1000 -100-100 100-500 -11739484 151.33 1581 18309 76.68 318 9540 

2 30 300 -1000-1000 -100-100 100-500 -19901881 232.58 4171 47028 138.36 447 13410 

3 30 400 -1000-1000 -100-100 100-500 -25056870 188.81 1382 16171 213.32 580 17400 

4 30 500 -1000-1000 -100-100 100-500 -32402651 266.90 2535 29545 296.14 670 20100 

5 30 200 1-1000 -200-200 100-500 55695 58.31 972 11255 26.28 112 3360 

6 30 300 1-1000 -200-200 100-500 24817 37.29 236 3759 35.01 115 3450 

7 30 400 1-1000 -200-200 100-500 20034 48.05 476 6162 43.82 119 3570 

8 30 500 1-1000 -200-200 100-500 11207 66.09 750 7523 64.57 150 4500 

9 30 200 1-1000 -200-200 large 55695 58.10 975 11327 26.57 112 3360 

10 30 300 1-1000 -200-200 large 24817 36.56 236 3759 34.90 115 3450 

11 30 400 1-1000 -200-200 large 20034 49.09 476 6162 44.18 119 3570 

12 30 500 1-1000 -200-200 large 1249 46.86 487 5962 52.43 118 3540 

13 40 200 -100-100 -200-200 100-500 -1018866 298.45 2268 40218 115.53 343 13720 

14 40 300 -100-100 -200-200 100-500 -1680779 393.68 3920 66388 217.93 498 19920 

15 40 400 -100-100 -200-200 100-500 -2570187 278.08 4400 69986 301.48t 690 27600 

16 40 500 -100-100 -200-200 100-500 -3497055 439.58 3064 55516 557.24t 786 31440 

Number of page faults exceeds 5000. 
tNumber of page faults exceeds 100,000. Entries of constraint matrix are randomly generated in the range [- 5,5]. 
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tableau entry). For MINOSLP, PB is the number of iterations times n (so that PB x n 
is roughly the total number of times that the revised primal simplex method updates a 
tableau entry). In essence PB provides us with a measure of the relative efficiency of 
relaxation and revised primal simplex, assuming that tableau updating is the most time 
consuming task in either method. The cost of the primal solutions generated by 
LPRELAX and MINOSLP always agreed on the first six digits and on capacitated 
problems the cost of the dual solution generated by LPRELAX (with c = 0.1) agreed 
with the primal cost on the first four or five digits (i.e. duality gap is less than 0.1%). 
However on uncapacitated problems, even with E taken very small (around 0.01) this 
dual cost is typically very far off from the primal cost which is somewhat surprising 
given that the corresponding primal cost comes very near to the optimal cost. 
Decreasing E sometimes increases the solution time and sometimes decreases the 
solution time. The total dual cost improvement contributed by the single coordinate 
descent steps is between 50 to 75 percent of the total on the set of problems tested (n 
between 20 and 50, m between 80 and 500)-a significant reduction from the 93 to 96 
percent observed for the ordinary network code RELAX. 

In terms of alternate implementations for LPRELAX, we may consider working 
with only a subset of the rows in the Tucker tableau (for example, the rows of green 
indexes may be ignored in the modified Painted Index algorithm and be subsequently 
reconstructed only when a primal rectification step is made), or checking the lever row 
in the Tucker tableau every few pivots for a dual descent direction, or using line search 
in a multi-coordinate descent step if the number of coordinates involved in the descent 
is below a certain threshold. There is also freedom in selecting the lever index at each 
iteration of the relaxation algorithm-for example, we may choose to use the previous 
lever index if the previous iteration terminated with a dual descent step. 

Our computational experience can be summarized as follows: on ordinary network 
problems the relaxation method is superior to the primal simplex method; on gain 
network problems the relaxation method is at least as efficient as the primal simplex 
method except for asymmetric lightly capacitated problems; on dense linear program- 
ming problems the relaxation method is at least as efficient as the primal sim- 
plex method for problems where m > 5n. However given that both RELAXG and 
LPRELAX are codes still in the initial stage of development we have hopes that their 
solution times will be reduced further with improved coding and data structure. 

Appendix A. In this appendix, we explain and describe the rule for Tucker tableau 
pivoting, as given in [8, Chapter 10]. Tucker tableau pivoting is similar to simplex 
tableau pivoting-we partition the linear homogeneous system of full row rank Tx = 0 
into BxB + NxN = 0 where B is invertible. The Tucker tableau given by this particular 
partitioning is - B- N where XB is called the row variable and xN is called the column 
variable. Let ai, denote the (i, j)th entry of the above tableau. If the pivoting column 
is 1 and the pivoting row is k (akl is necessarily nonzero) then the new tableau after 
the pivoting operation has xk as a column variable and x, as a row variable. 

Let a,i denote the (i, j)th entry of the old tableau -B-1N and let bij denote the 
(i, j)th entry of the new tableau. Then the entries in the new tableau are obtained from 
those in the old tableau by the following pivoting rule: 

1/akl if i= k, j = 1, 

ai/akl if i z k, j = l, 
ij -^/akjakl if i= k, j l, 

aij - ai,akj/akl if i k, j - 1. 
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In other words, the new tableau is obtained by performing row operations to -B- N 
to make the (k, I)th entry of the tableau a 1 and all other entries in the Ith column of 
the tableau O's, and then replacing the Ith column of the resulting tableau by the kth 
column of the identity matrix to which the same row operations have been performed. 

Appendix B. In this appendix, we show that if (i) the lever index s is painted black 
or white and (ii) s is in the row of the initial Tucker tableau and (iii) s is assigned the 
lowest priority (in the context of Bland's priority pivoting rule), then the (modified) 
Painted Index algorithm with Bland's pivoting rule either (a) keeps s in the row of the 
Tucker tableau throughout the algorithm or (b) produces a compatible column using s 
immediately after pivoting s into the column of the Tucker tableau. 

PROOF. If s remains in the row of the Tucker tableau throughout the algorithm 
then we have case (a). Else we examine the Tucker tableau just before s is pivoted into 
the column for the first time. Let j denote the index of the pivoting column. By the 
pivoting rule, j must be green (if j is black or white, then j can be chosen as a 
pivoting column index only if the sign of aji violates the row compatibility of row s, in 
which case s cannot be chosen as the pivoting row index since the sign of a,i then does 
not violate the column compatibility of column j). Then by our assignment of lowest 
priority to s, the row entries of column j whose indices are red, white, or black (except 
for the entry indexed by s) must all have zero value. Therefore the tableau must have 
the following form (asj denotes the entry in column j and row s of the tableau) 

Green 

s Black or White column j 
row s asj 0 

Red 0 
White 0 
Black 0 
Green arb 

The next tableau, after pivoting on asj, is then of the form 

Black or White 

j Green column s i Green 
row j - 

Red 
White 
Black 
Green 

D 1\< /a5 
0 
0 
0 

~ arb 

where the shaded areas indicate those entries whose value have been changed during 
the pivot. In this tableau, column s is clearly compatible and therefore we have case 
(b). Q.E.D. 

Appendix C. In this appendix we prove Proposition 3: that the number of primal 
rectification steps between successive dual descent steps is finite in the relaxation 
algorithm if the green indexes are assigned the highest priorities and the black and 
white indexes belonging to {1, 2,..., n are assigned the second highest priorities. 
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Before beginning the main body of the proof it would be helpful to briefly review 
how each primal rectification step comes about. At the beginning of the relaxation 
iteration we have on hand a primal vector x satisfying complementary slackness with 
p. We pick a row s such that d, - 0 as the lever index and apply the modified Painted 
Index algorithm, using Bland's priority pivoting rule, to the following linear homoge- 
neous system (we index the columns of [-I E] from 1 to n + m) 

1,2,..., n + 1,..., n + m 

[-I E ][] =0. (C.I) 

The initial Tucker tableau is chosen such that s is initially basic and the index 
colouring rule is: 

For 1 < i n, i red if di=0, 
i white if d > 0, 
i black if d < 0. 

For 1 < j < m, j + n red if j is not balanced, 
j + n white if j is balanced and xj cj, 
j + n black if j is balanced and xj = lj, 
j+n green if j is balanced and i < j <ci, 

and the priority assignment is: the green indexes are given the highest priorities, the 
white or black indexes belonging to {1, 2,..., n } except for s are given the next highest 
priorities, s is given the lowest priority. A primal rectification step is taken when the 
modified Painted Index algorithm terminates with a Tucker tableau that contains a 
compatible column using the lever index, in which case a primal rectification direction, 
say z*, is computed from the compatible column [cf. discussion at the end of ?3] and 
z* satisfies 

Wi* <0 di > 0, zi* < 0 x > ii, 
w* > O di < 0, > O = xi < c, 

where w* = Ez*. The primal rectification step is then effected by setting x <- x + yz*, 
d .- d + tw*, where the capacity /t is given by 

, = min m in -din 
z*<0zj z? z>0 z wr*0 Wi 

The deficit vector d (d = Ex) is monotonically decreased in magnitude during the 
primal rectification step. 

We now proceed to prove that the number of primal rectification steps between 
successive dual descent steps is finite: We will argue by contradiction. Suppose that 
there exists an infinite succession of relaxation iterations each of which terminates with 
a primal rectification step. In what follows we will be considering only these iterations. 
We first note that the set of red indexes is fixed (since index i is red either because 
i < n and d, = O, in which case i will remain red during primal variable changes; or 
because i = j + n and j is not balanced, in which case i will remain red since j does 
not become balanced during the primal rectification steps). Also we note that if i < n 
and i is white (black) then after a while i always remains white (black). This is true 
because if i changes colour, i must become red first (corresponding to di = 0), in 
which case i will remain red from then on. 

Now, each primal rectification direction z* has either (i) j + n green for all j such 
that zj* 0 O, or (ii) j + n black or white for some j such that zj* # O. 
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PROPOSITION C.1. Case (ii) can occur in only a finite number of primal rectification 
steps. 

PROOF. Suppose that the modified Painted Index algorithm generates a primal 
rectification direction z* such that, for some j, index j + n is black or white and 

zi* # 0. Since the initial tableau (namely E) has j + n nonbasic, this implies that 
j + n must be the pivoting column in some intermediate Tucker tableau T. Then, given 
that the black and white indexes in {1,2,..., n} and the green indexes all have 
priorities higher than that of j + n, T must have the following sign pattern (without 
loss of generality we will assume that the lever index, say s, is white): 

black or white green index white index black index 
index of the form of the form of the form of the form 

j + n,j 1,2,..., m} j + n, j {1,2,..., m} i, i {1,2,.n} i,i 1,2,.n} redindex 

(lever - -- 

row) - any sign 000i 0 0.... 0 s >0> ... >00 i any sign 
I_ -- - -- - .....- - - -.. 

swhite 
Tucker tableau T 

Denote the entry in T corresponding to row s and column index k by a,k. Then 

d = askxj + askdi + E akdi+ akxj 
k=j+n k=i k=i k=j+n 

k black or white k white k black k red 

or equivalently 

d, + E -askdi + -askdi 
= askxj + askxj. (C.2) 

k=i k=i k=j+n k=j+n 
k white k black k black or white k red 

Since xj = ci if j + n is coloured white, xj = li if j + n is coloured black, and xj = cj 
or Ij if j + n is coloured red, then the right-hand side of (C.2) can assume only a finite 
number of distinct values. The left-hand side of (C.2) however is strictly decreased 
after each primal rectification step with s as the lever index (also note that since s is 
white, every term on the left hand side of (C.2) is nonnegative and is nonincreasing). 
Therefore the number of primal rectification steps in which case (ii) occurs must be 
finite. Q.E.D. 

Proposition C.1 says that if the number of primal rectification steps is infinite, then 
after a while only primal rectification directions of the form (i) can appear. In other 
words, the relaxation method must produce an infinite sequence of successive primal 
rectification directions { ztt=o 1, such that, for t = 0,1,..., zt = 0 and j + n is 
green for all j such that zJ = 0. However this is not possible since in this sequence, 
after each primal rectification step, some green index of the form j + n (j e 
{1, 2,..., m }) must become white or black (since after a while no index of the form i, 
i {1, 2,..., n }, changes colour). This index then cannot be involved in any subse- 
quent primal rectification steps. So in at most m primal rectification steps, every index 
of the form j + n, j e {1, 2,..., m }, must be coloured black or white, implying that 
the following primal rectification direction z (z = 0) cannot have j + n green for all j 
such that zi - 0, a contradiction. Q.E.D. 
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