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Abstract

We consider projected equations for approximate solution of high-dimensional fixed point problems within low-

dimensional subspaces. We introduce an analytical framework based on an equivalence with variational inequalities,

and a class of iterative algorithms that may be implemented with low-dimensional simulation. These algorithms

originated in approximate dynamic programming (DP), where they are collectively known as temporal difference

(TD) methods. Even when specialized to DP, our methods include extensions/new versions of TD methods, which

offer special implementation advantages and reduced overhead over the standard LSTD and LSPE methods. We discuss

deterministic and simulation-based versions of our methods and we show a sharp qualitative distinction between them:

the performance of the former is greatly affected by direction and feature scaling, yet the latter asymptotically perform

identically, regardless of scaling.
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I. INTRODUCTION

We consider the approximation of a fixed point of a mapping T : <n 7→ <n by solving the projected equation

x = ΠT (x), (1)

where Π denotes projection onto a closed convex subset Ŝ of <n. The projection is with respect to a weighted

Euclidean norm ‖ · ‖Ξ, where Ξ is a positive definite symmetric matrix (i.e., ‖x‖2Ξ = x′Ξx).1 We assume that Ŝ is

contained in a subspace S spanned by the columns of an n× s matrix Φ, which may be viewed as basis functions,

suitably chosen to match the characteristics of the underlying problem:

S = {Φr | r ∈ <s}. (2)

Implicit here is the assumption that s << n, so we are interested in low-dimensional approximations of the high-

dimensional fixed point. The convex set Ŝ may be equivalently represented as a convex subset R̂ ⊂ <s, where

R̂ = {r | Φr ∈ Ŝ}, Ŝ = {Φr | r ∈ R̂}, (3)

so solving the projected equation (1) is equivalent to finding r that satisfies

Φr = ΠT (Φr), r ∈ R̂. (4)

Note that our choice of a fixed point format is not strictly necessary for our development. Any equation of the form

F (x) = 0, where F : <n 7→ <n, can be converted into the fixed point problem x = x− F (x).

The approximation framework just described has a long history for the case where Ŝ = S and R̂ is the entire

space <s. To set the stage for subsequent developments, we will describe its connection with two important contexts,

approximate DP and Galerkin approximation. We will then describe a new connection with a more general context,

related to approximate solution of variational inequalities (VI), where R̂ is allowed to be a strict subset of <s.

A. Approximate DP

Here T is a DP/Bellman operator, and x has the interpretation of the optimal cost vector or the cost vector

of a policy. An example is policy evaluation in a discounted finite-state problem where T is linear of the form

T (x) = Ax + b, with A = αP , where P is a given transition probability matrix corresponding to a fixed policy,

b is a given cost vector of the policy, and α ∈ (0, 1) is a discount factor. Other cases where α = 1 include the

classical average cost and stochastic shortest path problems; see e.g., Bertsekas [Ber07], Puterman [Put94]. An

approximate/projected solution of Bellman’s equation can be used to generate an (approximately) improved policy

through an (approximate) policy iteration scheme. This approach is described in detail in the literature, has been

extensively tested in practice, and is one of the major methods for approximate DP (see the books by Bertsekas and

Tsitsiklis [BeT96], Sutton and Barto [SuB98], and Powell [Pow07]; Bertsekas [Ber07] provides a recent textbook

treatment and up-to-date references).

For problems of very high dimension, classical matrix inversion methods cannot be used to solve the projected

equation, and temporal differences methods are one of the principal alternatives; see [BeT96], [SuB98], [Ber07].

1In our notation <s is the s-dimensional Euclidean space, all vectors in <s are viewed as column vectors, and a prime denotes transposition.
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These are iterative simulation-based methods that produce a sequence {rk} converging to a solution of the projected

Bellman’s equation Φr = Π(AΦr + b). They generate a sequence of indices {i0, i1, . . .} using the Markov chain

associated with P , and they use the temporal differences (TD) defined by

qk,t = φ(it)′rk − αφ(it+1)′rk − bit , t ≤ k, (5)

where φ(i)′ denotes the ith row of the matrix Φ. The original method known as TD(0), due to Sutton [Sut88], is

rk+1 = rk − γkφ(ik)qk,k, (6)

where γk is a stepsize sequence that diminishes to 0.2 It may be viewed as a stochastic approximation/Robbins-

Monro scheme for solving the equation Φ′Ξ(Φr−AΦr− b) = 0 (which is a necessary and sufficient condition for

r to solve the projected equation). Indeed, using Eqs. (5)-(6), it can be seen that the direction of change φ(ik)qk,k

is a sample of the left-hand side Φ′Ξ(Φr −AΦr − b) of the equation. Because TD(0) is often slow and unreliable

(this is well-known in practice and typical of stochastic approximation schemes; see also the analysis by Konda

[Kon02]), alternative iterative methods have been proposed. One of them is the Fixed Point Kalman Filter (FPKF,

proposed by Choi and Van Roy [ChV06]) and given by

rk+1 = rk − γkD−1
k φ(ik)qk,k, (7)

where Dk is a positive definite symmetric scaling matrix, selected to speed up convergence. It is a scaled (by the

matrix Dk) version of TD(0), so it may be viewed as a type of scaled stochastic approximation method. The choice

Dk =
1

k + 1

k∑

t=0

φ(it)φ(it)′ (8)

is suggested in [ChV06] and some favorable computational results are reported, albeit without theoretical proof of

convergence rate superiority over TD(0).

Another alternative to TD(0) is the Least Squares Policy Evaluation algorithm (LSPE, proposed by Bertsekas and

Ioffe [BeI96]; see also Nedić and Bertsekas, [NeB03], Bertsekas, Borkar, and Nedić [BBN04], Yu and Bertsekas

[YuB06]) and given by

rk+1 = rk −
1

k + 1
D−1
k

k∑

t=0

φ(it)qk,t, (9)

where Dk is given by Eq. (8). While this method resembles the FPKF iteration (7), it is different in a fundamental

way because it is not a stochastic approximation method. Instead it may be viewed as the fixed point/projected

value iteration xk+1 = ΠT (xk), where the mapping ΠT is approximated by simulation (see the discussion in

Sections III and IV). Compared with TD(0) and FPKF, it does not require the stepsize γk, and uses the time average

(k+1)−1
∑k
t=0 φ(it)qk,t of the TD term in its right-hand side in place of φ(ik)qk,k, the latest sample of the TD term

2There are “λ-versions” of TD(0) and other TD methods, which use a parameter λ ∈ (0, 1) and aim to solve the “weighted-multistep” version

of Bellman’s equation, where T is replaced by

T (λ) = (1− λ)

∞∑

`=0

λ`T `+1.

The best known example is TD(λ) [Sut88]. In this paper, we mostly focus on λ = 0, but our algorithms and qualitative conclusions apply to

general λ ∈ [0, 1) (see [Ber07] and [Ber09] for further discussion, and Section IV.F).
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[cf. Eqs. (6) and (7)]. This results in reduced simulation noise within the iteration, and much improved theoretical

rate of convergence and practical reliability, as verified by computational studies and convergence rate analysis (see

[BeI96], [Kon02], and [YuB06]).

The validity of all these algorithms depends on ΠT being a contraction mapping with respect to the norm ‖ · ‖Ξ,

where Ξ is the diagonal matrix whose diagonal components are the steady-state probabilities of the Markov chain.

When these algorithms are extended to solve nonlinear versions of Bellman’s equation, they become unreliable

because in the nonlinear context, ΠT need not be a contraction [BeT96], [DFV00] (a notable exception is optimal

stopping problems, as shown by Tsitsiklis and Van Roy [TsV97], [TsV99b]; see also Yu and Bertsekas [YuB07]).

B. Galerkin Approximation

This is an older methodology, which is widely used for approximating the solution of linear operator equations,

including integral and partial differential equations, and their finely discretized versions. Here we are given a fixed

point problem x = Ax + b, where A is an n × n matrix and b ∈ <n is a vector, a subspace S ⊂ <n of the form

(2), and a (possibly weighted) Euclidean projection operator Π from <n to S. Then we approximate a fixed point

with a vector Φr ∈ S that solves the projected equation Φr = Π(AΦr + b) (see e.g., [Kra72], [Fle84]). Thus the

projected equation framework of approximate DP is a special case of Galerkin approximation. This connection,

which is potentially significant, does not seem to have been mentioned in the literature.

Another related approach uses two subspaces, S and U , and a least squares formulation. The vector that minimizes

‖x−Ax− b‖2 is approximated by an x ∈ S such that the residual (x−Ax− b) is orthogonal to U (this is known

as the Petrov-Galerkin condition [Saa03]). If U = ΞS, where Ξ is a positive definite symmetric matrix, then the

orthogonality condition is written as y′Ξ(x−Ax− b) = 0 for all y ∈ S, which together with the condition x ∈ S,

is equivalent to the projected equation Φr = Π(AΦr + b). Alternatively, if U = (I − A)S, then the orthogonality

condition is written as y′(I − A)′(x − Ax − b) = 0 for all y ∈ S, which together with x ∈ S, is the optimality

condition for minimization of ‖x−Ax−b‖2 over x ∈ S. This condition is in turn equivalent to the projected equation

Π(I −A)′(x−Ax− b) = 0, where Π denotes projection on S with respect to the standard (unweighted) Euclidean

norm. This approach to deriving a projected equation can be applied to general linear least squares problems, where

A is not necessarily a square matrix. It has also been applied in approximate DP under the name Bellman error

method, for approximating the solution of the linear Bellman’s equation discussed in Section 1A.

Note that the Galerkin methodology, as currently practiced in scientific computation, does not use the Monte-

Carlo simulation ideas that are central in approximate DP. Instead, the projected equation is solved by standard

direct or iterative methods. Thus the methodology can be applied only to problems of dimension small enough, so

that the linear algebra calculations to obtain the exact form of the projected equation are feasible. This motivates the

extension of simulation-based approximate DP methods to more general non-DP contexts where n can be extremely

large.

C. Approximate Solution of Variational Inequalities

This context is more general than the preceding two because R̂ may be a strict subset of <s. In fact it is equivalent

to the projected equation (1), as we will shortly explain. This equivalence has not been noticed earlier and is the
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x− x∗ x∗ x∗ − T (x∗) T (x∗)

Subspace S Set Ŝ

1

x− x∗ x∗ x∗ − T (x∗) T (x∗)

Subspace S Set Ŝ

1

x− x∗ x∗ x∗ − T (x∗) T (x∗)

Subspace S Set Ŝ

1

x− x∗ x∗ x∗ − T (x∗) T (x∗) x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ

1

x− x∗ x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ

1

x− x∗ x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ

x = Φr

1

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ

x = Φr

1

Fig. 1. Equivalence of a projected equation x∗ = ΠT (x∗) with the variational inequality f(Φr∗)′Φ(r − r∗) ≥ 0, ∀ r ∈ R̂, where

f(x) = Ξ
(
x − T (x)

)
and R̂ = {r | Φr ∈ Ŝ}. By the properties of projection, we have x∗ = ΠT (x∗) if and only if x∗ ∈ Ŝ and the inner

product
(
x∗ − T (x∗)

)′
Ξ(x− x∗) is nonnegative for all x ∈ Ŝ.

starting point for the developments of this paper.

By the properties of projection, x∗ satisfies x∗ = ΠT (x∗) if and only if x∗ ∈ Ŝ and the vector x∗−T (x∗) forms

a nonnegative inner product with all vectors x− x∗ with x ∈ Ŝ, i.e.,

(
x∗ − T (x∗)

)′Ξ(x− x∗) ≥ 0, ∀ x ∈ Ŝ; (10)

here Ξ is the positive definite symmetric matrix that defines the projection norm ‖ · ‖Ξ and the associated inner

product x′1Ξx2 of any two vectors x1, x2; see Fig. 1. This can be equivalently written as the VI f(x∗)′(x−x∗) ≥ 0

for all x ∈ Ŝ or as the VI3

f(Φr∗)′Φ(r − r∗) ≥ 0, ∀ r ∈ R̂, (11)

where f : <n 7→ <n is the function defined by

f(x) = Ξ
(
x− T (x)

)
. (12)

and R̂ = {r | Φr ∈ Ŝ} [cf. Eq. (3)]. In conclusion, projected equations of the form x = ΠT (x) and VIs of the

form (11)-(12) are equivalent, so analytical and algorithmic methods for solving one of the two problems may be

used to solve the other.

There are several interesting problems from optimization and game theory that can be modeled by VIs (see e.g.,

[BeT89], [PaF03]), and the connection with projected equations can be used as a basis for an approximate solution

approach; see Section V.

3The standard VI problem is to find a vector r∗ ∈ R̂ such that

F (r∗)′(r − r∗) ≥ 0, ∀ r ∈ R̂,

where R̂ is a closed convex set and F : <s 7→ <s is a given function. The VI (11) corresponds to F (r) = Φ′f(Φr).
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D. New TD Algorithms

The starting point of this paper is a classical (deterministic) iterative projection algorithm for monotone VIs of

the form (11). This algorithm has the form

rk+1 = PD,R̂
[
rk − γD−1Φ′f(Φrk)

]
, (13)

where γ is a positive constant stepsize, D is a positive definite symmetric matrix, and PD,R̂[·] denotes projection

on R̂ with respect to the norm ‖r‖D =
√
r′Dr. One of the focal points of this paper is to propose and analyze a

new class of TD methods that are simulation-based versions of this iteration, transcribed to the projected equation

framework. When specialized to approximate DP (with simulation done in the manner described in Section 1A),

our methods take the form

rk+1 = PDk,R̂

[
rk −

γ

k + 1
D−1
k

k∑

t=0

φ(it)qk,t

]
, (14)

where Dk is a sequence of positive definite symmetric matrices and qk,t is the TD of Eq. (5). This is similar to the

LSPE method (8)-(9) but is more general in two ways:

1) The constraint set R̂ may be a strict subset of <s. This is useful in cases where some prior information

on the fixed point of T can be translated into useful constraints on r (in certain contexts one may wish to

replace R̂ by an approximation to facilitate the projection operation PDk,R̂
[·]; see the discussion on constrained

optimization applications in [Ber09]).

2) A general scaling matrix Dk may be used rather than the special choice (8). For example, Dk may be the

identity or a diagonal approximation of the matrix (8), thereby avoiding the associated matrix inversion, and

substantially reducing the associated overhead. Yet we will see that there is no rate of convergence penalty

for doing so, with a net gain in algorithmic efficiency resulting.

Aside from these generalizations within the approximate DP context, our methods apply to general (nonDP-related)

projected equations, and generalize similarly a corresponding LSPE-type algorithm given in [BeY09].

The paper is structured as follows. In Section II, we establish the conditions that we need for iteration (13) to be

applicable to projected equations. In particular, the associated VI must have certain monotonicity properties, which

are in turn related to contraction properties of the projected equation. In Section III we apply the iteration (13) to

projected equations and we focus on the case where T is linear. We interpret the role of the scaling matrix D in the

context of subspace approximation and we show that it is related to feature scaling, i.e., alternative representations of

the subspace S using different sets of basis functions. In Section IV we develop simulation-based algorithms, which

require low (s-dimensional) calculations only. In the process we recover the existing TD methods for approximate

DP, including LSPE [through the more general form (14)], and the Least Squares Temporal Differences method

(LSTD; proposed by Bradtke and Barto [BrB96], and followed up by Boyan [Boy02], and Nedić and Bertsekas

[NeB03]). We also derive the connections to TD(0) and FPKF. Generally, in simulation-based implementations,

the slower speed of simulation dominates, and based on this, we prove an interesting fact: all simulation-based

algorithms in our framework converge at the same rate asymptotically, regardless of the scaling used (although

the short-term convergence rate may be significantly affected by scaling). Finally in Section V, we discuss some

simulation-based optimization applications of our VI framework.
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As a byproduct of our analysis we prove a new result: Φ need not have full rank for convergence of iterative

TD-type methods (unless this is required for invertibility of Dk). This full rank assumption has been universally

made in the convergence analyses of TD(0) and related methods thus far. As a special case, we show that when Φ

is rank-deficient and hence the projected equation admits multiple solutions, TD(0) converges to the projection of

the initial iterate on the manifold of solutions.

II. ITERATIVE METHODS FOR VARIATIONAL INEQUALITIES

Given a mapping F : <s 7→ <s, a closed convex set R̂, and the VI

F (r∗)′(r − r∗) ≥ 0, ∀ r ∈ R̂, (15)

let us consider the iteration (13):

rk+1 = PD,R̂
[
rk − γD−1F (rk)

]
.

Equivalently, using the definition of projection with respect to ‖ · ‖D, the iteration can be written in terms of a

quadratic program:

rk+1 = arg min
r∈R̂

{
F (rk)′(r − rk) +

1
2γ

(r − rk)′D(r − rk)
}
. (16)

This method has a long history, and contains as a special case the class of (scaled by D) gradient projection methods

for minimizing a cost function whose gradient is F over a constraint set R̂ (see sources in nonlinear programming

or [BeT89], Ch. 3).

The properties of this method are closely linked with monotonicity properties of F (see e.g., Pang and Facchinei

[PaF03] for a detailed account). We say that F is monotone (strongly monotone) over R̂ if for some β ≥ 0 (β > 0,

respectively) we have
(
F (r1)− F (r2)

)′(r1 − r2) ≥ β‖r1 − r2‖2, ∀ r1, r2 ∈ R̂,

(here ‖ · ‖ can be any norm, e.g., the standard Euclidean norm). If F is strongly monotone, the VI (15) has a

unique solution r∗. If F is the gradient of a differentiable function H , then (strong) monotonicity of F over <s is

equivalent to (strong) convexity of H over <s.
If F is linear of the form F (r) = Cr − d, then F is monotone (strongly monotone) over <n if and only if C is

a positive semidefinite (positive definite, respectively) matrix in the sense that r′Cr ≥ 0 for all r ∈ <s (r′Cr > 0

for all r 6= 0, respectively); see [PaF03]. When R̂ = <s, the VI is equivalent to the linear system Cr = d.

The standard convergence result for the projection method (13) (see e.g., [BeT89], Section 3.5.3, or [PaF03],

Section 12.1.1) is that if F is Lipschitz continuous and strongly monotone over R̂, with unique solution denoted

by r∗, there exists γ̄ > 0 such that rk → r∗ linearly for each constant stepsize γ in the range (0, γ̄] (i.e., ‖rk − r∗‖
converges to 0 at least as fast as a geometric progression). The strong monotonicity assumption is essential for this

- just monotonicity (i.e., β = 0) may result in divergence (see e.g., [BeT89], p. 270).

Let now F have the special form [cf. Eq. (11)]

F (r) = Φ′f(Φr),
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where Φ is an n×s matrix, and f : <n 7→ <n is Lipschitz continuous and strongly monotone over the set Ŝ = ΦR̂.

Then F is Lipschitz continuous, but it may not be strongly monotone, so the solution of the corresponding VI may

not be unique, and the convergence of the corresponding iteration [cf. Eq. (13)]

rk+1 = PD,R̂
[
rk − γD−1Φ′f(Φrk)

]
,

comes into doubt. However, despite the lack of strong monotonicity of F , it turns out that this iteration is convergent

in a way similar to the case where F is strongly monotone. In particular, the paper [BeG82] has shown that there

exists γ̄ > 0 such that rk → r∗ linearly for each γ ∈ (0, γ̄], where r∗ is some solution of

f(Φr∗)′Φ(r − r∗) ≥ 0, ∀ r ∈ R̂,

provided f is strongly monotone over ΦR̂ and R̂ is a polyhedral set (the polyhedral assumption is essential).

We next show that contraction properties of T or ΠT imply that f is strongly monotone over Ŝ, which is a

prerequisite for the convergence of the method (13).

Proposition 1. Assume that T is a contraction with respect to the norm ‖ · ‖Ξ over the set Ŝ. Then the function f

of Eq. (12) is strongly monotone over Ŝ.

Proof: Let α ∈ [0, 1) be the modulus of contraction of T . For any two vectors x1, x2 ∈ Ŝ,

(
f(x1)− f(x2)

)′(x1 − x2)

=
(
x1 − T (x1)− x2 + T (x2)

)′Ξ(x1 − x2)

= (x1 − x2)′Ξ(x1 − x2)−
(
T (x1)− T (x2)

)′Ξ(x1 − x2)

≥ ‖x1 − x2‖2Ξ − ‖T (x1)− T (x2)‖Ξ ‖x1 − x2‖Ξ

≥ ‖x1 − x2‖2Ξ − α‖x1 − x2‖2Ξ

= (1− α)‖x1 − x2‖2Ξ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from the

contraction property of T . Since α ∈ [0, 1), this shows that f is strongly monotone on Ŝ.

In the special case where Ŝ = S (i.e., r is unconstrained) and Π is projection on the subspace S, it is sufficient

that ΠT rather than T be a contraction. The origin of the following proposition can be traced to the convergence

proof of TD(λ) in [TsV97] (Lemma 9); see also [BeY09], Prop. 5.

Proposition 2. Assume that Ŝ = S and that ΠT is a contraction with respect to the norm ‖ · ‖Ξ over the subspace

S. Then the function f of Eq. (12) is strongly monotone over S.

Proof: Let α ∈ [0, 1) be the modulus of contraction of ΠT , and note that we have

(
T (x)−ΠT (x)

)′Ξx̄ = 0, ∀ x, x̄ ∈ S, (17)
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since vectors of the form x − Πx are orthogonal (with respect to the norm ‖ · ‖Ξ) to vectors in S. We use this

equation as an intermediate step in the proof of the preceding proposition to obtain the desired conclusion.

We have for any two vectors x1, x2 ∈ S,

(
f(x1)− f(x2)

)′(x1 − x2)

=
(
x1 − T (x1)− x2 + T (x2)

)′Ξ(x1 − x2)

= (x1 − x2)′Ξ(x1 − x2)−
(
T (x1)− T (x2)

)′Ξ(x1 − x2)

= ‖x1 − x2‖2Ξ −
(
ΠT (x1)−ΠT (x2)

)′Ξ(x1 − x2)

≥ ‖x1 − x2‖2Ξ − ‖ΠT (x1)−ΠT (x2)‖Ξ ‖x1 − x2‖Ξ

≥ ‖x1 − x2‖2Ξ − α‖x1 − x2‖2Ξ

= (1− α)‖x1 − x2‖2Ξ,

where the first equation follows from Eq. (17), the first inequality follows from the Cauchy-Schwarz inequality, and

the second inequality follows from the contraction property of ΠT . This shows that f is strongly monotone on S.

There are well-known cases in approximate DP where ΠT is a contraction with respect to ‖·‖Ξ, with Ξ a diagonal

matrix (see [BeT96], [TsV97], [TsV99a], [Ber07], [YuB06]). An example is discounted or average cost DP, where

T (x) = αPx + b, with α ∈ (0, 1], P is a transition probability matrix of an ergodic Markov chain, and Ξ is a

diagonal matrix with the steady-state probabilities of the chain along the diagonal. Reference [BeY09] provides

several general criteria for verifying that ΠT is a contraction, beyond the DP context.

III. DETERMINISTIC ITERATIVE METHODS FOR PROJECTED EQUATIONS AND LINEAR MAPPINGS

We now discuss the iteration (13) as applied to the case where T is linear of the form

T (x) = Ax+ b,

where A is an n × n matrix and b is a vector in <n. To be able to use the convergence result given in Section

II, we assume that R̂ is a polyhedral set, and that the mapping f(x) = Ξ
(
x − T (x)

)
of the underlying VI [cf.

Eqs. (11)-(12)] is strongly monotone over Ŝ (this is guaranteed under contraction assumptions on T or ΠT , as per

Props. 1 and 2).

We have Φ′f(Φr) = Φ′Ξ(Φr −AΦr − b), so that

Φ′f(Φr) = Cr − d, (18)

with

C = Φ′Ξ(I −A)Φ, d = Φ′Ξb. (19)

Since f is strongly monotone over Ŝ, the VI f(x∗)′(x − x∗) ≥ 0 for all x ∈ Ŝ, and its equivalent projected

equation x = ΠT (x) have a unique solution x∗ ∈ Ŝ. In the low-dimensional space <s, this VI is written as
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N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

Limit of {rk}
x = Φr

1

N(Φ) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

r0 + D−1Ra(C)

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

Limit of {rk}
x = Φr

1

N(Φ) = N(C) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

r0 + D−1Ra(C)

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

Limit of {rk}
x = Φr

1

N(Φ) = N(C) Ra(Φ′) = N(Φ)⊥ R∗ = {r | Φr = x∗} r̂0

x− x∗ = Φ(r − r∗) x∗ x∗ − T (x∗) T (x∗) ΠT (x∗) = x∗ = Φr∗ {rk}

r0 + D−1Ra(C)

Subspace S = {Φr | r ∈ #s} Set Ŝ 0

Limit of {rk}
x = Φr

1

Fig. 2. Illustration of the convergence process of the iteration (22) in the case where Φ does not have full rank. The iteration converges to the

intersection of the solution set R∗ with the linear manifold r0 +D−1Ra(C). If D = I , the iteration converges to r̂0, the orthogonal projection

of r0 on R∗.

f(Φr∗)′Φ(r − r∗) ≥ 0 for all r ∈ R̂, or [cf. Eqs. (18)-(19)]

(Cr∗ − d)′(r − r∗) ≥ 0, ∀ r ∈ R̂, (20)

and is equivalent to the projected equation Φr = ΠT (Φr). The set of its solutions is R∗ = {r ∈ R̂ | Φr = x∗},
and if Φ has full rank, R∗ consists of a single point. The iteration (13) takes the form

rk+1 = PD,R̂
[
rk − γD−1(Crk − d)

]
, (21)

and is convergent to some r∗ ∈ R∗, under the conditions discussed in Section II.

In the case where Ŝ = S and r is unconstrained, the algorithm (21) takes the form

rk+1 = rk − γD−1(Crk − d), (22)

and the geometry of the convergence process is illustrated in Fig. 2. The set of solutions R∗ is parallel to N(Φ), the

nullspace of Φ, while since d belongs to Ra(C), the range space of C, the sequence {rk} generated by iteration (22)

lies in the linear manifold r0+D−1Ra(C). This manifold has a unique intersection point with R∗, so {rk} converges

to that point.4 In the special case where D = I , {rk} converges to r̂0, the orthogonal projection of r0 onto R∗,

since rk − r0 belongs to Ra(C) ⊂ Ra(Φ′) [cf. Eq. (19)], so it is orthogonal to N(Φ) and hence to R∗.

Iteration (22) converges if and only I − γD−1C is a contraction, so the choice of γ is critical for convergence.

However, there is an important special case, where a proper choice of γ is known, namely

D = Φ′ΞΦ, γ = 1.

4To see this, note that Ra(C) is contained in Ra(Φ′) [cf. Eq. (19)]. Thus the subspaces D−1Ra(C) and N(Φ) intersect at just the origin [if

r ∈ D−1Ra(C)∩N(Φ), we have r = D−1Φ′v for some v and also r′Φ′v = 0, so that r′Dr = 0 and r = 0]. Since R∗ is parallel to N(Φ),

it intersects D−1Ra(C) at a unique point.



10

Then it can be shown (see [Ber07], [BeY09]) that when iteration (22) is multiplied by Φ, it becomes the projected

Jacobi method

xk+1 = ΠT (xk)

which converges when ΠT is a contraction.

Another special case of iteration (22) is when D is the identity:

rk+1 = rk − γ(Crk − d). (23)

An intermediate possibility between the preceding two cases is a matrix D, which is a diagonal approximation to

Φ′ΞΦ, thereby simplifying the matrix inversion in Eq. (22). Then one may expect that a stepsize γ close to 1 will

often lead to I − γD−1C being a contraction, thereby facilitating the choice of γ.

The three special cases just discussed admit interesting simulation-based approximate implementations, as we will

show in Section IV.

A. Effects of Feature Scaling

The iteration

rk+1 = PD,R̂
[
rk − γD−1(Crk − d)

]
(24)

[cf. Eq. (21)] involves two different types of scaling: one is direction scaling embodied in the choice of the matrix

D, and the other is feature scaling embodied in the choice of the matrix Φ, which defines C and d via Eq. (19).

We will now show that these two types of scaling are related, and that the algorithmic effect induced by a change

in feature scaling can also be induced by a change in direction scaling, and reversely.

To this end, we represent the subspace S with two different matrices Φ and Ψ, related by

Φ = ΨB,

where B is an s̄ × s matrix such that the range spaces of Φ and Ψ coincide (and are equal to S). 5 We compare

the corresponding high-dimensional sequences

xk,Φ = Φrk, xk,Ψ = Ψvk,

where rk and vk are generated by corresponding iterations of the form (24), written in the quadratic programming

form (16):

rk+1 = arg min
Φr∈Ŝ

{
f(Φrk)′Φ(r − rk) +

1
2γ

(r − rk)′DΦ(r − rk)
}

or

xk+1,Φ = arg min
x∈Ŝ

{
f(xk,Φ)′(x− xk,Φ) +

1
2γ

min
Φr=x

(r − rk)′DΦ(r − rk)
}
, (25)

5Given matrices Φ and Ψ with equal range spaces, it is always possible to write Φ = ΨB for a suitable matrix B (form a basis for the

common range space by using a maximal linearly independent set of columns of Ψ, and express the columns of Φ in terms of that basis). Given

matrices Φ and Ψ such that Φ = ΨB, it can be shown that the range spaces of Φ and Ψ are equal if and only if the range space of B contains

the range space of Ψ′. In particular, if the rank of B is s̄, the range spaces of Φ and Ψ are equal.
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and

vk+1 = arg min
Ψv∈Ŝ

{
f(Ψvk)′Ψ(v − vk) +

1
2γ

(v − vk)′DΨ(v − vk)
}

or

xk+1,Ψ = arg min
x∈Ŝ

{
f(xk,Ψ)′(x− xk,Ψ) +

1
2γ

min
Φr=x

(v − vk)′DΨ(v − vk)
}
. (26)

A straightforward quadratic programming duality argument shows that

1
2

min
Φr=x

(r − rk)′DΦ(r − rk) = max
µ∈<n

{
−1

2
µ′ΦD−1

Φ Φ′µ+ µ′(Φrk − x),
}

so from Eq. (25), we have

xk+1,Φ = arg min
x∈Ŝ

{
f(xk,Φ)′(x− xk,Φ) +

1
γ

max
µ∈<n

{
−1

2
µ′ΦD−1

Φ Φ′µ+ µ′(xk,Φ − x)
}}

.

Similarly, from Eq. (26),

xk+1,Ψ = arg min
x∈Ŝ

{
f(xk,Ψ)′(x− xk,Ψ) +

1
γ

max
µ∈<n

{
−1

2
µ′ΨD−1

Ψ Ψ′µ+ µ′(xk,Ψ − x)
}}

.

A comparison of the preceding two equations, shows that if the scaling matrices satisfy ΦD−1
Φ Φ′ = ΨD−1

Ψ Ψ′, or

equivalently using the equation Φ = ΨB,

D−1
Ψ = BD−1

Φ B′, (27)

the two scaled iterations (25) and (26) produce identical results within the high-dimensional space (xk,Φ = xk,Ψ for

all k, assuming that x0,Φ = x0,Ψ). In conclusion, alternative choices of feature scaling correspond to alternative

choices of direction scaling.

Another observation is that given a matrix Φ that has full rank, the entire class of iterations (24) can be derived

from the simple special case where D = I ,

rk+1 = arg min
Φr∈Ŝ

{
f(Φrk)′Φ(r − rk) +

1
2γ

(r − rk)′(r − rk)
}
, (28)

by using scaling matrices of the form

D−1 = BB′

corresponding to square invertible feature scaling matrices B [cf. Eq. (27)].

IV. SIMULATION-BASED METHODS

In this section, we consider simulation-based versions of the deterministic methods of the preceding section. We

focus on the VI

(Cr∗ − d)′(r − r∗) ≥ 0, ∀ r ∈ R̂, (29)

[cf. Eq. (20)], and the associated iteration

rk+1 = PD,R̂
[
rk − γD−1(Crk − d)

]
(30)

[cf. Eq. (21)]. We will assume for the remainder of this section that Ξ is a diagonal matrix and that the vector of

its (positive) diagonal elements

ξ = (ξ1, . . . , ξn)
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is a probability distribution over the set of indices {1, . . . , n}.
We consider a simulation process introduced in [BeY09]. We generate a sequence of indices {i0, i1, . . .} (row

sampling), and a sequence of transitions between indices
{

(i0, j0), (i1, j1), . . .
}

(column sampling). Any probabilistic

mechanism may be used for this, subject to the following two requirements:

• Row Sampling Condition: The sequence {i0, i1, . . .} is generated according to the distribution ξ, which defines

the projection norm ‖ · ‖ξ, in the sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i)
k + 1

= ξi, i = 1, . . . , n,

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has occurred and δ(E) = 0 otherwise].

• Column Sampling Condition: The sequence
{

(i0, j0), (i1, j1), . . .
}

is generated according to a certain stochastic

matrix P with transition probabilities pij which satisfy

pij > 0 if aij 6= 0,

in the sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i, jt = j)
∑k
t=0 δ(it = i)

= pij ,

i, j = 1, . . . , n.

Then Ck and dk are computed as

Ck =
1

k + 1

k∑

t=0

φ(it)
(
φ(it)−

aitjt
pitjt

φ(jt)
)′
, (31)

and

dk =
1

k + 1

k∑

t=0

φ(it)bit , (32)

where we denote by φ(i)′ the ith row of Φ. It can be shown using simple law of large numbers arguments that

Ck → C and dk → d with probability 1 (see [BeY09]).

A. Equation Approximation Approach

A simulation-based noniterative approach to solve the VI (29) is to generate the matrix Ck and vector dk using

Eqs. (31)-(32), and approximate the high-dimensional solution Φr∗ by Φr∗k, where r∗k satisfies

(Ckr∗k − dk)′(r − r∗k) ≥ 0, ∀ r ∈ R̂. (33)

Generally, the existence of a solution of the above VI may need to be verified separately. On the other hand, if

Φ has full rank, the VI (29) is strongly monotone, and since Ck → C and dk → d with probability 1, it follows

that for sufficiently large k, the VI (33) is also strongly monotone, and therefore has a unique solution. In the case

where Ŝ = S, strong monotonicity is equivalent to positive definiteness of Ck, in which case the unique solution is

r∗k = C−1
k dk.
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In the context of approximate DP, the preceding equation is the well-known LSTD algorithm due to [BrB96] (also

described in [Ber07]). We have the following proposition, where we assume that the corresponding VIs of the form

(33) are monotone for all k.

Proposition 3. The high-dimensional sequence obtained from the simulation process of Eqs. (31)-(32) is scale-

free in the following sense: if {Ck,Φ, dk,Φ} is the sequence generated by these equations and {Ck,Ψ, dk,Ψ} is the

corresponding sequence generated when Φ is replaced by Ψ, where Φ = ΨB and B is an s× s invertible matrix,

then the set of solutions of the corresponding VIs,

R∗k =
{
r∗k | Φr∗k ∈ Ŝ, (Ck,Φr∗k − dk,Φ)′(r − r∗k) ≥ 0, ∀ r with Φr ∈ Ŝ

}
,

and

V ∗k =
{
v∗k | Ψv∗k ∈ Ŝ, (Ck,Ψv∗k − dk,Ψ)′(v − v∗k) ≥ 0, ∀ v with Ψv ∈ Ŝ

}
,

are in one-to-one correspondence via the transformation V ∗k = BR∗k, so the corresponding sets of high-dimensional

solutions ΦR∗k and ΨV ∗k are equal.

Proof: Let ψ(i)′ denote the rows of Ψ, so that

φ(i)′ = ψ(i)′B, i = 1, . . . , n.

Using Eqs. (31)-(32), we have

Ck,Φ =
1

k + 1

k∑

t=0

φ(it)
(
φ(it)−

aitjt
pitjt

φ(jt)
)′

=
1

k + 1

k∑

t=0

B′ψ(it)
(
ψ(it)′B −

aitjt
pitjt

ψ(jt)′B
)

= B′Ck,ΨB,

and similarly

dk,Φ = B′dk,Ψ.

We have that r∗k ∈ R∗k if and only if

(Ck,Φr∗k − dk,Φ)′(r − r∗k) ≥ 0, ∀ r with Φr ∈ Ŝ,

or equivalently

(B′Ck,ΨBr∗k −B′dk,Ψ)′(r − r∗k) ≥ 0, ∀ r with Φr ∈ Ŝ,

or equivalently, by introducing v = Br and v∗k = Br∗k,

(Ck,Ψv∗k − dk,Ψ)′(v − v∗k) ≥ 0, ∀ v with Φv ∈ Ŝ.

It follows that V ∗k = BR∗k.

Note that the preceding proposition depends on using the specific simulation process of Eqs. (31)-(32), so that

the equations Ck,Φ = B′Ck,ΨB, and dk,Φ = B′dk,Ψ hold. For a different simulation process that satisfies the

consistency property Ck → C, dk → d, the scale-free property can be guaranteed to hold only in the limit as

k →∞.
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B. Approximate Solution for Nearly Singular Cases

Let us consider the VI (33) for the unconstrained case where R̂ = <s:

Ckr = dk. (34)

If C is nonsingular, the same is true for Ck, for sufficiently large k, but if C is nearly singular, the solution C−1
k dk

will be highly sensitive to the simulation noise errors Ck−C and dk−d. This is a well-known phenomenon from the

theory of nearly singular linear equations, whose solution is highly sensitive to roundoff error in the problem data.

To reduce this type of sensitivity, we may use a regularization approach, which is well-known in the algorithmic

theory of monotone variational inequalities. In particular, we replace Eq. (34) with the equivalent equation

Σ−1Ckr = Σ−1dk, (35)

where Σ is some positive definite symmetric matrix. We then approximate this equation by

(Σ−1Ck + βI)r̂ = Σ−1dk + βr̄, (36)

where β is a positive scalar and r̄ is some guess of the solution r∗ = C−1d. In the more general case of the VI (33),

where R̂ 6= <s, the preceding equation should be replaced by the VI

(
Σ−1(Ckr̂ − dk) + β(r̂ − r̄)

)′(r − r̂) ≥ 0, ∀ r ∈ R̂, (37)

which can be shown to be strongly monotone if Ck is a positive definite matrix.

In the case R̂ = <s, we may also start with Eq. (36) with r̄ = r̂k and iterate using a variable matrix Σk:

r̂k+1 = (Σ−1
k Ck + βI)−1(Σ−1

k dk + βr̂k).

This algorithm can also be written as

r̂k+1 = r̂k − (Σ−1
k Ck + βI)−1Σ−1

k (Ckr̂k − dk), (38)

and bears similarity to the iterative method (40), to be presented in the next subsection. In the case where Ck is

replaced by the positive definite matrix C and dk is replaced by d, the algorithm is a special case of the proximal

point algorithm applied to monotone VIs (see Martinet [Mar70] and Rockafellar [Roc76]). A similar iteration based

on Eq. (37) can be used in the more general case where R̂ 6= <s.
Another type of regularization approach for the case R̂ = <s, is to replace the system Ckr = dk with the

equivalent system

C ′kΣ−1
k Ckr = C ′kΣ−1

k dk,

where Σk is some positive definite symmetric matrix. The corresponding iterative algorithm, which is analogous to

Eq. (38), is given by

r̂k+1 = r̂k − (C ′kΣ−1
k Ck + βI)−1C ′kΣ−1

k (Ckr̂k − dk). (39)

If Ck → C, dk → d, and {Σ−1
k } is bounded, this algorithm can be shown to converge to r∗ = C−1d, assuming

that C is nonsingular. The reason is that the matrix

(C ′Σ−1C + βI)−1C ′Σ−1C
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has eigenvalues in the interval (0, 1) for any β > 0. To see this, let λ1, . . . , λs be the eigenvalues of C ′Σ−1C and

let UΛU ′ be its singular value decomposition, where Λ = diag{λ1, . . . , λs} and U is a unitary matrix (UU ′ = I).

We also have C ′Σ−1C + βI = U(Λ + βI)U ′, so

(C ′Σ−1C + βI)−1C ′Σ−1C =
(
U(Λ + βI)U ′

)−1
UΛU ′ = U(Λ + βI)−1ΛU ′.

It follows that the eigenvalues of the above matrix are λi/(λi+β), i = 1, . . . , s, and lie in the interval (0, 1), so the

convergence of iteration (39) follows for the case where Σ is constant. The proof for the case where Σ is variable

is similar.

C. Simulation-Based Iterative Methods

Let us now consider a simulation-based version of the deterministic iteration (21). It is given by

rk+1 = PDk,R̂

[
rk − γD−1

k (Ckrk − dk)
]
, (40)

where Ck and dk are the simulation-based estimates of Eqs. (31)-(32), Dk is chosen so that Dk → D, and D is a

positive definite symmetric scaling matrix. Using Eqs. (31)-(32) it can be written as

rk+1 = PDk,R̂

[
rk −

γ

k + 1

k∑

t=0

φ(it)qk,t

]
, (41)

where

qk,t = φ(it)′rk −
aitjt
pitjt

φ(jt)′rk − bit , t ≤ k,

is a generalized form of TD [cf. Eq. (5)].

One possibility is a simulation-based approximation Dk to D = Φ′ΞΦ:

Dk =
1

k + 1

k∑

t=0

φ(it)φ(it)′, (42)

or

Dk =
1

k + 1

(
βI +

k∑

t=0

φ(it)φ(it)′
)
, (43)

where βI is a positive multiple of the identity (to ensure that Dk is positive definite). When Ŝ = S, this is the

approximate projected Jacobi method given in [BeY09], which in the case of an approximate DP/policy evaluation

problem, reduces to the LSPE method.

Another possibility is to let Dk be a diagonal approximation to Φ′ΞΦ, obtained by discarding the off-diagonal

terms of the matrix (42) or (43). This facilitates the stepsize choice, since a stepsize γ close to 1 usually works

well.

The simple special case of iteration (40), where Ŝ = S and Dk is the identity,

rk+1 = rk − γ(Ckrk − dk), (44)

can be written as [cf. Eqs. (31)-(32)]

rk+1 = rk −
γ

k + 1

k∑

t=0

φ(it)qk,t. (45)
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This algorithm is simple and is reminiscent of the TD(0) method of approximate DP [cf. Eq. (6)], which when

extended for solution of general linear fixed point problems, takes the form

rk+1 = rk − γkφ(ik)qk,k, (46)

where γk is a stepsize that diminishes to 0 at an appropriately fast rate [such as γk = γ/(k+ 1)]; see [BeY09]. The

difference is that the preceding TD(0)-like method (46) uses only the last TD term, whereas the iteration (45) uses

a time average of all the preceding TD terms. Just like the simple deterministic iteration (23), both the multiple

sample iteration (44) and its single sample TD(0)-like version (46) generate iterates that lie in the manifold

r0 + Ra(Φ′),

and converge to the projection of r0 onto the manifold R∗ = {r | Φr = x∗}, regardless of the choice of Φ (cf.

Fig. 2). As a special case, this behavior is also exhibited by TD(0) for approximate DP: its convergence does not

depend on Φ having full rank, as is universally assumed in the literature.

Let us also mention the FPKF algorithm [ChV06], which may be viewed as a scaled version of the preceding

TD(0)-like method. When extended to our more general setting, it has the form

rk+1 = rk − γkD−1
k φ(ik)qk,k,

where Dk is a positive definite symmetric matrix, which may be generated by Eqs. (42) or (43). Similar to the

preceding TD(0)-like method (46), it is reminiscent of the simulation-based iteration (40), but uses only the last

simulation sample.

D. Rate of Convergence Issues

Let us now discuss a practically important property regarding asymptotic convergence rate. It can be shown that

all the simulation-based iterations of the form (40) perform identically in the long run, as long as they converge.

The reason is that the corresponding deterministic method (21) has a linear convergence rate, which is fast relative

to the slow convergence rate of the simulation-generated Dk, Ck, and dk. As a result the iteration (40) operates on

two time scales (see, e.g., Borkar [Bor08], Ch. 6): the slow time scale at which Dk, Ck, and dk change, and the

fast time scale at which rk adapts to changes in Dk, Ck, and dk. As a result, essentially, there is convergence in the

fast time scale before there is appreciable change in the slow time scale. Roughly speaking, rk “sees Dk, Ck, and

dk as effectively constant,” so that for large k, rk is essentially equal to the corresponding limit of iteration (40)

with Dk, Ck, and dk held fixed. This limit is a vector r∗k that satisfies

(Ckr∗k − dk)′(r − r∗k) ≥ 0, ∀ r ∈ R̂.

Assuming that Φ has full rank, it can be shown that the high-dimensional sequence Φrk generated by iteration (40)

“tracks” the sequence Φr∗k in the sense that for any norm ‖ · ‖,

‖Φrk − Φr∗k‖ << ‖Φrk − Φr∗‖, for large k, (47)
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independent of the choice of the scaling matrix D that is approximated by Dk. The proof uses a two-time scale

argument, which is long but very similar to one used in [YuB06] for the approximate DP context and LSPE (see

also [BBN04]). It will not be given in this paper. Some illustrative computational results can be found in [Ber09].

Since for a given subspace S and any Φ that generates S, the high-dimensional sequence Φr∗k does not depend on

Φ (by Prop. 3), for any Dk and γ that lead to convergence the simulation-based iteration (40) produces asymptotically

the same high-dimensional sequence Φrk, regardless of the choices of Φ, Dk, and γ! By this we mean that for

different choices of Φ, Dk, and γ, the sequences Φr∗k and Φrk (for all Φ, Dk, and γ) converge onto each other

faster than they converge to their common limit Φr∗ (the unique solution of the projected equation).

When Φ does not have full rank a similar analysis of the convergence rate issues is possible, but the details are

considerably more complex and are beyond the scope of the present paper.

E. Computational Experimentation

The algorithms of this paper have been validated by computational experiments involving the three test problems

of [YuB06]. Our main conclusions regarding convergence, and the contrasting role of the scaling matrix D and

the feature matrix Φ in deterministic versus simulation-based algorithms were verified. In particular, the high-

dimensional sequences produced by various simulation-based iterations exhibited substantially different behavior in

the early iterations where the deterministic character of the algorithm dominates, and the choice of Dk and Φ makes

a substantial difference. After the early iterations, however, the sequences produced with different choices of Dk

and Φ converged onto each other much faster than they converged to their eventual limit [cf. Eq. (47)]. This is

similar to the behavior observed in the tests of [YuB06] that compare LSPE and LSTD.

We show some typical computational results obtained with problem 3 of [YuB06] using simulation-based methods.

This is a DP average cost policy evaluation problem involving a “slow-mixing” Markov chain with 100 states (the

matrix A here is the transition probability matrix of the Markov chain, and the vector ξ is the steady-state distribution

of the chain). We used two different 100× 3 randomly generated matrices Φ and Ψ, having the same range space

S, we run a single simulation trajectory involving 10000 samples, and we calculated Ck,Φ, Ck,Ψ, dk,Φ, dk,Ψ using

Eqs. (31)-(32). For this problem, T does not have a unique fixed point, but ΠT does (according to the results of

[YuB06]). We also verified that ΠT is a contraction with respect to the norm ‖ · ‖ξ, which guarantees convergence

of the algorithms tested. We compared four different simulation-based algorithms. These are:

• The equation approximation method, which calculates

rk,Φ = C−1
k,Φdk,Φ, rk,Ψ = C−1

k,Φdk,Ψ.

• The approximate Jacobi/LSPE method, which calculates r̂k,Φ and r̂k,Ψ using the iteration (40), and direction

scaling matrices D = Φ′ΞΦ and D = Ψ′ΞΨ, respectively, approximated by Dk as computed by the simulation

formula (42). The stepsize was γ = 1.

• The diagonal approximation to the Jacobi/LSPE method, which calculates r̃k,Φ and r̃k,Ψ using direction scaling

matrices obtained from Φ′ΞΦ and Ψ′ΞΨ by setting to 0 the off-diagonal components [again computed by the

simulation formula (42)]. The stepsize was γ = 1.
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Fig. 3. First component of low-dimensional sequences corresponding to Φ.

• The simple iteration (40), where Dk = I , and a stepsize γ = 0.1 when both Φ and Ψ were used. The iterates

are denoted r̄k,Φ and r̄k,Ψ, respectively.

In all these algorithms, the initial matrices C0,Φ, C0,Ψ were formed with a batch of 50 samples, to ensure that

they are invertible. The graphs in the following five figures give some typical results. In Figs. 3 and 4 only the first

components of the corresponding vector sequences are shown.

Figures 3 and 4 show the low-dimensional sequences generated by the four methods, for the two feature scaling

matrices Φ and Ψ, respectively. These are asymptotically identical (very close to each other for k > 100 for the

first three methods, and for k > 1000 for the fourth method), as predicted by the theory. The sequences and their

limits depend on whether Φ or Ψ is used (compare Figs. 3 and 4).

Figures 5, 6, and 7 compare the high-dimensional sequence {Φrk,Φ} with each of {Φr̂k,Φ}, {Φr̃k,Φ}, {Φr̄k,Φ},
{Ψr̂k,Ψ}, {Ψr̃k,Ψ}, {Ψr̄k,Ψ}. Again these six sequences coincide asymptotically with {Φrk,Φ} (which itself co-

incides with {Ψrk,Ψ}, as shown in Prop. 3). In particular, all sequences {Φr̂k,Φ}, {Φr̃k,Φ}, {Φr̄k,Φ}, {Ψr̂k,Ψ},
{Ψr̃k,Ψ}, and {Ψr̄k,Ψ} converge to {Φrk,Φ} faster than they converge to their limit, as shown in the figures.

The results indicate that the simple iteration (40), where Dk = I is a little slower than the others, but not

dramatically so. This is due to the fact that the deterministic version of the iteration tends to be slower than the

others.
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scale-free.



20

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k

 

 

1∥∥∥Φ(rk,Φ−r∗Φ)

∥∥∥
∞

∥∥∥Φ(rk,Φ − r̃k,Φ)
∥∥∥
∞

1∥∥∥Ψ(rk,Ψ−r∗Ψ)

∥∥∥
∞

∥∥∥Ψ(rk,Ψ− r̃k,Ψ)
∥∥∥
∞

Fig. 6. Convergence behavior of the diagonal approximation of the simulation-based projected Jacobi iteration.
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F. Multistep Simulation-Based Implementations

One may consider replacing T with a multistep version that has the same fixed points. One possibility is to use T `,

the `th power of T , with ` > 1, or to use T (λ) given by

T (λ) = (1− λ)
∞∑

`=0

λ`T `+1,

where λ ∈ (0, 1) is such that the preceding infinite series is convergent, i.e., λA has eigenvalues strictly within the

unit circle. We will focus on T (λ), and consider applying variants of the preceding simulation algorithms to find

a fixed point of T (λ) in place of T . This idea is inherent in the TD(λ), LSTD(λ), and LSPE(λ) methods, and its

motivation is extensively discussed in the approximate DP literature (see also [BeY08] for the nonDP case).

The methods developed so far correspond to λ = 0, but can be extended to λ > 0. In particular, it is straightforward

to verify that the mapping T (λ) can be written as

T (λ)x = A(λ)x+ b(λ),

where

A(λ) = (1− λ)
∞∑

`=0

λ`A`+1, b(λ) =
∞∑

`=0

λ`A`b.

By analogy to the case λ = 0, the projected equation is

Φr = ΠT (λ)x = C(λ)r − d(λ),

where

C(λ) = Φ′Ξ
(
I −A(λ)

)
Φ, d(λ) = Φ′Ξb(λ).

Similar to the earlier simulation approach, we may construct simulation-based approximations C(λ)
k and d(λ)

k to

C(λ) and d(λ), respectively. A method for doing so is described in [BeY08], and requires a restriction in the row and

column sampling schemes [the row index sequence {i0, i1, . . .} is generated using a Markov chain with transition

matrix P , the same as the one used for generating the transition sequence {(i0, j0), (i1, j1), . . .}]. Given C(λ)
k and

d
(λ)
k , the solution of the projected equation may be approximated by

(
C

(λ)
k

)−1
d

(λ)
k ;

this is a generalization of the LSTD(λ) method of approximate DP. Similarly, the iterative method

rk+1 = rk − γD−1
k

(
C

(λ)
k rk − d(λ)

k

)
,

is a multistep variant of the iterative method (40), and contains as a special case the LSPE(λ) method of approximate

DP. The convergence and convergence rate analysis given earlier for the case λ = 0 generalizes in straightforward

manner to the case λ > 0.
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V. ADDITIONAL OPTIMIZATION APPLICATIONS

In earlier sections we focused on exploiting the connection of VI and projection equations for solving approximately

linear fixed point and DP-related optimization problems. In this section we provide some examples of alternative

(nonDP) optimization contexts where this connection may be useful.

Example 1 (Optimization over a Convex Set). Consider the minimization of a differentiable convex function H :

<n 7→ < over a convex set Ŝ, and the following low-dimensional approximation:

min
Φr∈Ŝ

H(Φr).

This problem is equivalent to solving the necessary and sufficient condition for optimality:

∇H(Φr∗)′Φ(r − r∗) ≥ 0, ∀ r ∈ R̂ ≡ {r | Φr ∈ Ŝ},

which is a VI of the form (11). We may convert it to the projected equation x = ΠT (x), where Π is the projection

on R̂ with respect to ‖ · ‖Ξ and

T (x) = x− Ξ−1∇H(x)

[cf. Eq. (12)]. Note that if H is a positive definite quadratic function, then T can be shown to be a contraction

mapping provided the norm of Ξ−1 is sufficiently small.

When the problem is unconstrained, i.e., Ŝ = <n, the projected equation is equivalent to the system of equations

Φ′∇H(Φr) = 0.

One possibility, noted in [BeY09], is to solve this system iteratively, using Newton’s method. In this method rk+1

is determined from rk by solving the linear system

(
Φ′∇2H(Φrk)Φ

)
(rk+1 − rk) + Φ′∇H(Φrk) = 0,

which may be done with simulation-based methods that use s-dimensional operations only. In particular, for an

n× n matrix M , the matrix

Φ′MΦ =
n∑

i=1

n∑

j=1

mijφ(i)φ(j)′

can be estimated as

Φ′MΦ ≈ 1
k + 1

k∑

t=0

mitjt

ζitjt
φ(it)φ(jt)′

where k is a large number and:

• ζij , i, j = 1, . . . , n, are probabilities satisfying
n∑

i=1

n∑

j=1

ζij = 1, ζij > 0 if mij 6= 0.

•
{

(i0, j0), (i1, j1), . . .
}

is an independent random sequence of pairs taking the value (i, j) with probability ζij .

Similarly, for a vector b ∈ <n, the vector

Φ′b =
n∑

i=1

n∑

j=1

φ(i)bj
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can be estimated as

Φ′b ≈ 1
k + 1

k∑

t=0

1
ζitjt

φ(it)bjt .

When the problem is constrained, a potentially serious difficulty is that the set R̂ = {r | Φr ∈ Ŝ} may

be hard to handle because it may involve a large number (order n) of inequalities. For example when Ŝ is the

nonnegative orthant {x | x ≥ 0}, the set R̂ involves the n inequalities φ(i)′r ≥ 0, where φ(i)′ are the rows of

Φ. In this case, one may consider approximations of R̂, involving for example constraint sampling (dropping some

of the constraints), constraint generation (dynamically adding and/or dropping constraints), constraint aggregation

(combining constraints), exploitation of special problem structure, and special types of basis functions that implicitly

take into account the constraints; see [CaC05], [DFV04], [GKP03], [GrH91], [MoK99], [PaT00], [ScP01], [TrZ93],

[TrZ97], for related methods, analysis, and discussion of this issue in the context of approximate linear programming

methods in DP and beyond.

A possible alternative is to eliminate the constraint x ∈ Ŝ by using a penalty or interior point method, leading to

a sequence of unconstrained optimization problems. These problems may be addressed by using Newton’s method,

possibly in combination with a constraint sampling or constraint generation scheme. This may be an interesting

subject for further investigation.

Example 2 (Optimization Subject to Linear Constraints). Consider the problem of minimizing a differentiable

convex function H(x) subject to x ∈ Ŝ and the linear constraints Ax ≤ b. Under a standard condition (Ŝ is convex

and contains a feasible solution in its relative interior), the problem is equivalent to solving the necessary and

sufficient condition for optimality:
(
∇H(x∗) +A′µ∗

)′(x− x∗) ≥ 0, (Ax∗ − b)′(µ− µ∗) ≥ 0,

for all x ∈ Ŝ and µ ≥ 0, where µ∗ ≥ 0 is a Lagrange multiplier. This is a VI in (x, µ). We may introduce

low-dimensional representations Φr for x and Wv for µ, thereby obtaining a low-dimensional VI, which is in turn

equivalent to a projected equation, as discussed in Example 1. This VI may be addressed using appropriate algorithms:

if H is linear or quadratic, one may use linear or quadratic programming methods, or iterative methods such as the

extragradient method ([PaF03], Section 12.1.2) or penalty and interior point methods. Again this formulation suffers

from the difficulty of a possibly intractable number of constraints for (r, v), so for large-dimensional problems, some

scheme for dealing with these constraints may be needed, such as the ones mentioned in the preceding example.

From the preceding two examples and the equivalence between projected equations and VIs of the form (11)-(12),

we may obtain an interesting insight for approximate DP: methods that are alternative to TD, and are based on

linear cost function approximation, such as approximate linear programming, the Bellman equation error method,

or aggregation methods, can be classified as projected equation methods, just like TD. Thus the projected equation

methodology can be viewed as a general framework, encompassing all the principal simulation-based approaches

currently available in approximate DP.

Example 3 (Noncooperative Games). Consider a game with m players, each choosing a strategy xi belonging to

a closed convex set Xi ⊂ <ni . Player i has a cost function Hi(x1, . . . , xm), where Hi : <ni 7→ < is convex and
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differentiable. The problem is to find an equilibrium strategy x∗ = (x∗1, . . . , x
∗
m) ∈ X1 × · · · ×Xm, i.e., one that

satisfies

Hi(x∗1, . . . , x
∗
m) ≤ Hi(x∗1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m),

for all xi ∈ Xi, i = 1, . . . ,m. A low-dimensional approximation is the game problem where each xi is replaced

by Φiri with ri ∈ Ri ≡ {r | Φiri ∈ Xi}. This problem is equivalent to solving the player-by-player optimality

condition

∇iHi(Φ1r
∗
1 , . . . ,Φmr

∗
m)′Φi(ri − r∗i ) ≥ 0, ∀ ri ∈ Ri, i = 1, . . . ,m,

where ∇iHi is the gradient of Hi with respect to xi. This is a VI of the form (11). Similar to Example 1, we may

convert this VI to the projected equation

xi = ΠiTi(x1, . . . , xm), i = 1, . . . ,m,

where Πi is the projection on Ri with respect to the standard Euclidean norm and

Ti(x1, . . . , xm) = xi − α∇Hi(x1, . . . , xm)

with α being a positive scalar.

VI. CONCLUSIONS

In this paper we have considered the solution of projected equations that are derived from large-scale fixed point

problems by using low-dimensional subspace approximation. We have proposed a unifying framework, based on a

new connection with VIs, for a broadly applicable methodology that uses simulation and low-order calculations.

Prominent within our framework are iterative algorithms that generalize TD methods for approximate DP. New

algorithms of this type offer benefits such as implementation convenience (a matrix Φ that need not have full rank),

reduced overhead (no matrix inversion at each iteration), and the ability to use projection on a restricted polyhedral

subset of the approximation subspace.

We have investigated both deterministic iterative methods and simulation-based versions that use low-dimensional

calculations. There is a sharp distinction between the two types of methods in terms of the choices of the direction

matrix D and the atrix Φ that represents the approximation subspace S. The convergence rate of the deterministic

methods is profoundly affected by D and Φ. By contrast, the convergence rate of the simulation-based versions is

largely unaffected by D and Φ, but instead depends on the choice of the row and column sampling mechanisms

in ways that are not fully understood at present. Various mathematical convergence issues, extensions to nonlinear

special cases of the mapping T , and related optimization applications are interesting subjects for further investigation.
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