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Temporal Difference Methods for
General Projected Equations

Dimitri P. Bertsekas

Abstract—We consider projected equations for approximate
solution of high-dimensional fixed point problems within low-di-
mensional subspaces. We introduce an analytical framework based
on an equivalence with variational inequalities, and algorithms
that may be implemented with low-dimensional simulation. These
algorithms originated in approximate dynamic programming
(DP), where they are collectively known as temporal difference
(TD) methods. Even when specialized to DP, our methods include
extensions/new versions of TD methods, which offer special im-
plementation advantages and reduced overhead over the standard
LSTD and LSPE methods, and can deal with near singularity in
the associated matrix inversion. We develop deterministic iterative
methods and their simulation-based versions, and we discuss a
sharp qualitative distinction between them: the performance of
the former is greatly affected by direction and feature scaling, yet
the latter have the same asymptotic convergence rate regardless of
scaling, because of their common simulation-induced performance
bottleneck.

Index Terms—Approximation methods, dynamic programming,
Markov decision processes, reinforcement learning, temporal dif-
ference methods.

I. INTRODUCTION

W E consider the approximation of a fixed point of a map-
ping by solving the projected equation

(1)

where denotes projection onto a closed convex subset of
. The projection is with respect to a weighted Euclidean norm

, where is a positive definite symmetric matrix (i.e.,
).1 We assume that is contained in a subspace

spanned by the columns of an matrix , which may be
viewed as basis functions, suitably chosen to match the charac-
teristics of the underlying problem:

(2)
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1In our notation � is the �-dimensional Euclidean space, all vectors in �
are viewed as column vectors, and a prime denotes transposition.

Implicit here is the assumption that , so we are inter-
ested in low-dimensional approximations of the high-dimen-
sional fixed point. The convex set may be represented as a
convex subset , where

(3)

so solving the projected equation (1) is equivalent to finding
that satisfies

(4)

Note that our choice of a fixed point format is not strictly
necessary for our development, since any equation of the form

, where , can be converted into the
fixed point problem .

The approximation framework just described has a long his-
tory for the case where and is the entire space . To
set the stage for subsequent developments, we will describe its
connection with two important contexts, approximate DP and
Galerkin approximation. We will then describe a new connec-
tion with a more general context, related to approximate solution
of variational inequalities (VI), where is a strict subset of .

A. Approximate DP

Here is a DP/Bellman operator, and has the interpretation
of the optimal cost vector or the cost vector of a policy. Further-
more in the literature thus far it has been assumed that ,
so is unconstrained and the projected equation (4)
is linear. An example is policy evaluation in a discounted fi-
nite-state problem where is linear of the form ,
with , where is a given transition probability matrix
corresponding to a fixed policy, is a given cost vector of the
policy, and is a discount factor. Other cases where

include the classical average cost and stochastic shortest
path problems; see e.g., Bertsekas [1], Puterman [2]. An approx-
imate/projected solution of Bellman’s equation can be used to
generate an (approximately) improved policy through an (ap-
proximate) policy iteration scheme. This approach is described
in detail in the literature, has been extensively tested in practice,
and is one of the major methods for approximate DP (see the
books by Bertsekas and Tsitsiklis [3], Sutton and Barto [4], and
Powell [5]; Bertsekas [1] provides a recent textbook treatment
and up-to-date references).

For problems of very high dimension, classical matrix inver-
sion methods cannot be used to solve the projected equation,
and temporal differences methods are one of the principal alter-
natives; see [1], [3], [4]. These are simulation-based methods
that can be divided in two categories: iterative and matrix inver-
sion (also called equation approximation).
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The iterative methods produce a sequence converging to
a solution of the projected Bellman’s equation

, with defined by the diagonal matrix that has the steady-
state distribution of along the diagonal. They generate a se-
quence of indexes using the Markov chain associ-
ated with , and they use the temporal differences (TD) defined
by

(5)

where denotes the th row of the matrix . The original
method known as TD(0), due to Sutton [6], is

(6)

where is a stepsize sequence that diminishes to 0.2 It may be
viewed as a stochastic approximation/Robbins-Monro scheme
for solving the equation (the necessary
and sufficient condition for to solve the projected equation).
Indeed, using (5), (6), it is seen that is a sample of the
left-hand side of the equation.

Because TD(0) is often slow and unreliable (this is
well-known in practice and typical of stochastic approximation
schemes; see also the analysis by Konda [10]), alternative
iterative methods have been proposed. One of them is the Fixed
Point Kalman Filter (FPKF), proposed by Choi and Van Roy
[11] and given by

(7)

where is a positive definite symmetric scaling matrix, se-
lected to speed up convergence. It is a scaled (by the matrix )
version of TD(0), so it may be viewed as a stochastic approxi-
mation-type method. The choice

(8)

is suggested in [11] and some favorable computational results
are reported, albeit without theoretical proof of convergence rate
superiority over TD(0).

An alternative to TD(0) is the Least Squares Policy Evalua-
tion algorithm (LSPE, proposed by Bertsekas and Ioffe [12]; see
also Nedić and Bertsekas, [13], Bertsekas, Borkar, and Nedić
[14], Yu and Bertsekas [15], [33]):

(9)

2There are “�-versions” of TD(0) and other TD methods, which use a param-
eter � � ��� �� and aim to solve the “weighted-multistep” version of Bellman’s
equation, where � is replaced by

� � ��� �� � � �

The best known example is ����� [6]. Our algorithms and qualitative con-
clusions apply to general � � ��� ��. For our purposes in this paper, how-
ever, we focus primarily on � � �, and briefly summarize the case � � �
in Section IV-E. For the unconstrained case � 	� � �� and � � �, analogs of
�����, 
��
���, and 
������ for general projected equations and their
convergence properties are discussed in [8] and [9].

where is given by (8). While this method resembles the
FPKF iteration (7), it is different in a fundamental way be-
cause it is not a stochastic approximation method. Instead it may
be viewed as the fixed point/projected value iteration

, where the mapping is approximated by simula-
tion (see the discussion in Sections III and IV). Compared with
TD(0) and FPKF, it does not require the stepsize , and uses
the time average of the TD term in its
right-hand side in place of , the latest sample of the TD
term [cf. (6) and (7)]. This results in reduced simulation noise
within the iteration, and much improved theoretical rate of con-
vergence and practical reliability, as verified by computational
studies and convergence rate analysis (see [10], [12], and [15],
[33]).

The validity of all these iterative algorithms depends on
being a contraction mapping with respect to the norm ,
where is the diagonal matrix whose diagonal components
are the steady-state probabilities of the Markov chain. When
these algorithms are extended to solve nonlinear versions of
Bellman’s equation, they become unreliable because in the non-
linear context, need not be a contraction [3], [16] (a notable
exception is optimal stopping problems, as shown by Tsitsiklis
and Van Roy [17], [18]; see also Yu and Bertsekas [19]).

The alternatives to iterative methods are matrix inversion
methods, a prime example of which is the Least Squares Tem-
poral Differences method (LSTD, proposed by Bradtke and
Barto [20], and followed up by Boyan [21], and Nedić and Bert-
sekas [13]). It writes the projected equation (4) in an equivalent
linear form , where is an matrix, and ,
then uses the type of simulation described earlier to compute a
matrix and a vector , and approximates the solu-
tion with (cf. Section IV-A). This method can also
be implemented using temporal differences: the vector
is the vector that solves the equation ,
where is the number of samples obtained from the simulation
[cf. (5), (9) and Section IV-C].

B. Galerkin Approximation

This is an older methodology, which is widely used for ap-
proximating the solution of linear operator equations, including
integral and partial differential equations, and their finely dis-
cretized versions. Here we are given a fixed point problem

, where is an matrix and is a vector,
a subspace of the form (2), and a (possibly weighted)
Euclidean projection operator from to . Then we ap-
proximate a fixed point with a vector that solves the
projected equation (see e.g., [22], [23]).
Thus, the projected equation framework of approximate DP is a
special case of Galerkin approximation. This connection, which
is potentially significant, does not seem to have been mentioned
in the literature.

Another related approach uses two subspaces, and , and a
least squares formulation. The vector that minimizes

is approximated by an such that the residual
is orthogonal to (this is known as the Petrov-Galerkin

condition [24]). If , where is a positive definite
symmetric matrix, then the orthogonality condition is written
as for all , which together with
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the condition , is equivalent to the projected equation
. Alternatively, if , then the or-

thogonality condition is written as
for all , which together with , is the optimality con-
dition for minimization of over . The op-
timality condition is in turn equivalent to the projected equation

, where denotes projection on
with respect to the standard (unweighted) Euclidean norm. This
approach to deriving a projected equation can be applied to gen-
eral linear least squares problems, where is not necessarily a
square matrix. It has also been applied in approximate DP under
the name Bellman error method, for approximating the solution
of the linear Bellman’s equation discussed in Section I-A.

Note that the Galerkin methodology, as currently practiced
in scientific computation, does not use the Monte Carlo sim-
ulation ideas that are central in approximate DP. Instead, the
projected equation is solved by standard matrix inversion or it-
erative methods. Thus, the methodology can be applied only to
problems of small dimension or to problems where the basis
matrix is favorably chosen, so that the linear algebra calcu-
lations to obtain and to solve the exact form of the projected
equation are feasible. This motivates our extension of simula-
tion-based approximate DP methods to more general non-DP
contexts where is extremely large and cannot be chosen fa-
vorably.

C. Approximate Solution of Variational Inequalities

This context is more general than the preceding two because
may be a strict subset of . In fact it is equivalent to the

projected equation (1) as we will explain shortly. This equiva-
lence has not been noticed earlier, to our knowledge, and is the
starting point for the developments of this paper.

By the properties of projection, satisfies if
and only if and the vector forms a nonneg-
ative inner product with all vectors with , i.e.,

(10)

Here is the positive definite symmetric matrix that defines the
projection norm and the associated inner product
of any two vectors ; see Fig. 1. We can equivalently write
(10) as the VI for all or as the VI3

(11)

where is the function defined by

(12)

and [cf. (3)]. In conclusion, projected equa-
tions of the form and VIs of the form (11), (12) are

3The standard VI problem is to find a vector � � �� such that

� �� � �� � � � � �� �� � ��

where �� is a closed convex set and � � � �� � is a given function. The VI
(11) corresponds to � ��� � � �����. The textbook by Facchinei and Pang
[25] provides an extensive account of the associated theory.

Fig. 1. Equivalence of a projected equation � � �� �� �with the variational
inequality ���� � ���� � � � �, �� � ��, where ���� � 	���� ���� and
�� � ��	�� � ��
. By the properties of projection, we have � � �� �� � if
and only if � � �� and the inner product �� � � �� �� 	���� � is nonneg-
ative for all � � ��.

equivalent, so analytical and algorithmic methods for solving
one of the two problems may be used to solve the other.

There are several interesting problems from optimization and
game theory that can be modeled by VIs (see e.g., [25], [26]),
and the connection with projected equations can be used as a
basis for an approximate solution approach. We discuss these
connections in the report [7], which is in effect an extended ver-
sion of the present paper.

D. New TD Algorithms

The starting point of this paper is a classical (deterministic) it-
erative projection algorithm for monotone VIs of the form (11).
This algorithm has the form

(13)

where is a positive constant stepsize, is a positive definite
symmetric matrix, and denotes projection on with re-
spect to the norm . One of the focal points of
this paper is to propose and analyze a new class of TD methods
that are simulation-based versions of this iteration, transcribed
to the projected equation framework. When specialized to ap-
proximate DP (with simulation done in the manner described in
Section I-A), our methods take the form

(14)

where is a sequence of positive definite symmetric matrices
and is the TD of (5). This is similar to LSPE [cf. (8), (9)]
but is more general in two ways:

1) The constraint set may be a strict subset of . This
is useful in cases where some prior information on the
fixed point of can be translated into useful constraints
on . Also, in certain contexts one may wish to replace
by an approximation to facilitate the projection operation

; see the discussion on constrained optimization
applications in [7].

2) A general scaling matrix may be used rather than the
special choice (8). For example, may be the identity or a
diagonal approximation of the matrix (8), thereby avoiding
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the associated matrix inversion, and substantially reducing
the associated overhead. Yet we will see that there is no
rate of convergence penalty for doing so, with a potential
net gain in algorithmic efficiency resulting.

Aside from these generalizations within the approximate DP
context, our methods apply to general (nonDP-related) pro-
jected equations, and generalize similarly a corresponding
LSPE-type algorithm given in [8].

E. Summary of the Paper

The paper is structured as follows. In Section II, we establish
the conditions that we need for iteration (13) to be applicable to
projected equations. In particular, the associated VI must have
certain monotonicity properties, which are in turn related to con-
traction properties of the projected equation. In Section III we
focus on the case where is linear, and we apply the iteration
(13) to projected equations. We interpret the role of the scaling
matrix in the context of subspace approximation and we show
that it is related to feature scaling, i.e., alternative representa-
tions of the subspace using different sets of basis functions.

The main algorithmic contributions of the paper are contained
in Section IV. We develop new simulation-based algorithms
for general projected equations, which require low ( -dimen-
sional) calculations only, and we investigate their properties. In
the process we recover the existing TD methods for approximate
DP, including LSPE and LSTD. We introduce iterative regular-
ization algorithms that work well when the projected equation
is nearly singular, and/or does not involve a contraction. These
algorithms provide a connecting link between iterative and ma-
trix inversion methods. We also consider rate of convergence
issues, and we derive an important qualitative result: in simu-
lation-based implementations, the slower speed of simulation
dominates, and all simulation-based algorithms in our frame-
work converge at the same rate asymptotically, regardless of the
scaling used (although the short-term convergence rate may be
significantly affected by scaling).

As a byproduct of our analysis, we clarify the significance
of rank conditions on the matrix . The assumption that has
full rank has been universally made in previous convergence
analyses of TD(0) and related methods. We show that need
not have full rank for convergence of iterative TD-type methods
(unless this is required for invertibility of ). As a special case,
we show that when is rank-deficient and hence the projected
equation admits multiple solutions, TD(0) converges to the pro-
jection of the initial iterate on the manifold of solutions.

II. ITERATIVE METHODS FOR VARIATIONAL INEQUALITIES

Given a mapping , a closed convex set , and
the VI

(15)

let us consider the iteration (13):

which can also be written as a quadratic program:

(16)
This iteration has a long history, and contains as a special case
the class of (scaled by ) gradient projection methods for mini-
mizing a cost function whose gradient is over a constraint set

(see sources in nonlinear programming or [26], Ch. 3).
The properties of this method are closely linked with mono-

tonicity properties of (see e.g., Facchinei and Pang [25] for a
detailed account). We say that is monotone (strongly mono-
tone) over if for some ( , respectively) we have

(here can be any norm, e.g., the standard Euclidean norm).
If is strongly monotone, the VI (15) has a unique solution .
If is the gradient of a differentiable function , then (strong)
monotonicity of over is equivalent to (strong) convexity
of over .

If is linear of the form , then is mono-
tone (strongly monotone) over if and only if is a positive
semidefinite (positive definite, respectively) matrix in the sense
that for all ( for all , respec-
tively); see [25]. When , the VI (15) is equivalent to the
linear system .

The standard convergence result for the projection method
(13) (see e.g., [26], Section 3.5.3, or [25], Section 12.1.1) is
that if is Lipschitz continuous and strongly monotone over ,
with unique solution denoted by , there exists such that

linearly for each constant stepsize in the range
(i.e., converges to 0 at least as fast as a geometric pro-
gression). The strong monotonicity assumption is essential for
this—just monotonicity (i.e., ) may result in divergence
(see e.g., [26], p. 270).

Let now have the special form [cf. (11)]

where is an matrix, and is Lipschitz
continuous and strongly monotone over the set . Then

is Lipschitz continuous, but it may not be strongly monotone,
so the solution of the corresponding VI may not be unique, and
the convergence of the corresponding iteration [cf. (13)]

comes into doubt. However, despite the lack of strong mono-
tonicity of , it turns out that this iteration is convergent in a
way similar to the case where is strongly monotone. In par-
ticular, in a paper devoted to the case [27], it
was shown that there exists such that linearly
for each , where is some solution of

provided is strongly monotone over and is a polyhedral
set (the polyhedral assumption is essential).
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We next show that contraction properties of or imply
that is strongly monotone over , which is a prerequisite for
the convergence of the method (13). The properties of the next
two propositions can be easily inferred from existing results
on variational inequalities, but for completeness we provide the
proofs.

Proposition 1: Assume that is a contraction with respect
to the norm over the set . Then the function of (12) is
strongly monotone over .

Proof: Let be the modulus of contraction of .
For any two vectors

where the first inequality follows from the Cauchy-Schwarz in-
equality, and the second inequality follows from the contraction
property of . Since , this shows that is strongly
monotone on .

In the special case where (i.e., is unconstrained) and
is projection on the subspace , it is sufficient that rather

than be a contraction. The origin of the following proposi-
tion can be traced to the convergence proof of in [17]
(Lemma 9); see also [8], Prop. 5.

Proposition 2: Assume that and that is a contrac-
tion with respect to the norm over the subspace . Then
the function of (12) is strongly monotone over .

Proof: Let be the modulus of contraction of ,
and note that we have

(17)

since vectors of the form are orthogonal (with respect to
the norm ) to . We use this equation as an intermediate step
in the proof of the preceding proposition to obtain the desired
conclusion.

We have for any two vectors

where the third equation follows from (17), the first inequality
follows from the Cauchy-Schwarz inequality, and the second
inequality follows from the contraction property of . This
shows that is strongly monotone on .

There are well-known cases in approximate DP where is
a contraction with respect to , with a diagonal matrix

(see [1], [3], [15], [17], [28], [33]). An example is discounted
or average cost DP, where , with ,

is a transition probability matrix of an ergodic Markov chain,
and is a diagonal matrix with the steady-state probabilities
of the chain along the diagonal. Reference [8] provides several
general criteria for verifying that is a contraction, beyond
the DP context.

III. DETERMINISTIC ITERATIVE METHODS FOR PROJECTED

EQUATIONS AND LINEAR MAPPINGS

For the remainder of the paper, we assume that is linear of
the form

where is an matrix and is a vector in . To be able to
use the convergence result given in Section II, we assume that
is a polyhedral set, and that the mapping
[cf. (11), (12)] is strongly monotone over (this is guaranteed
under contraction assumptions on or , as per Props. 1 and
2). As a result, the VI

has a unique solution .
In the low-dimensional space , this VI is written as

and is equivalent to the projected equation (cf.
Section I-C). We have , or

(18)

where

(19)

so the VI is equivalent to

(20)

Its solution set is , and if has full
rank, consists of a single point. The iteration (13) takes the
form

(21)

and is convergent to some , under the conditions dis-
cussed in Section II.

A. The Unconstrained Case

When is unconstrained , the algorithm (21) takes
the form

(22)

and the geometry of the convergence process is illustrated in
Fig. 2. The set of solutions is parallel to , the nullspace
of , while since belongs to , the range space of , the



BERTSEKAS: TEMPORAL DIFFERENCE METHODS FOR GENERAL PROJECTED EQUATIONS 2133

Fig. 2. Illustration of the convergence process of the iteration (22) in the case
where � does not have full rank. The iteration converges to the intersection of
the solution set � with the linear manifold � �� �����. If � � � , the
iteration converges to �� , the orthogonal projection of � on � .

sequence generated by iteration (22) lies in the linear man-
ifold . This manifold has a unique intersection
point with , so converges to that point.4 In the special
case where , converges to , the orthogonal projec-
tion of onto , since belongs to
[cf. (19)], so it is orthogonal to and hence to .

Iteration (22) converges if and only is a con-
traction, so the choice of is critical for convergence. However,
there is an important special case, where a proper choice of is
known, namely

Then it can be shown (see [1], [8]) that when iteration (22) is
multiplied by , it becomes the projected Jacobi method

which converges when is a contraction.
Another special case of iteration (22) is when is the iden-

tity:

(23)

An intermediate possibility between the preceding two cases is a
matrix , which is a diagonal approximation to , thereby
simplifying the matrix inversion in (22). Then one may expect
that a stepsize close to 1 will often lead to being
a contraction, thereby facilitating the choice of .

The three special cases just discussed admit interesting sim-
ulation-based approximate implementations, as we will discuss
in Section IV.

B. Effects of Feature Scaling

The iteration

(24)

4To see this, note that����� is contained in���� � [cf. (19)]. Thus, the sub-
spaces� ����� and	��� intersect at just the origin [if � � � ������
	���, we have � � � � � for some � and also � � � � 
, so that � �� �

 and � � 
]. Since� is parallel to	���, it intersects� ����� at a unique
point.

[cf. (21)] involves two different types of scaling: one is direction
scaling embodied in the choice of the matrix , and the other is
feature scaling embodied in the choice of the matrix , which
defines and via (19). We will now show that these two types
of scaling are related, and that the algorithmic effect induced by
a change in feature scaling can also be induced by a change in
direction scaling, and reversely.

To this end, we represent the subspace with two different
matrices and , related by

where is an matrix such that the range spaces of and
coincide (and are equal to ).5 We compare the corresponding
high-dimensional sequences

where and are generated by corresponding iterations of
the form (24), written in the quadratic programming form (16):

or

(25)

and

or

(26)

A straightforward quadratic programming duality argument
shows that

5Given matrices � and � with equal range spaces, it is always possible to
write � � �� for a suitable matrix � (form a basis for the common range
space by using a maximal linearly independent set of columns of�, and express
the columns of � in terms of that basis). Given matrices � and � such that
� � ��, it can be shown that the range spaces of � and � are equal if and
only if the range space of � contains the range space of � . In particular, if the
rank of � is ��, the range spaces of � and � are equal.
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so from (25), we have

Similarly, from (26),

A comparison of the preceding two equations, shows that if the
scaling matrices satisfy , or equivalently
using the equation

(27)

the two scaled iterations (25) and (26) produce identical results
within the high-dimensional space ( for all , as-
suming that ). In conclusion, alternative choices
of feature scaling correspond to alternative choices of direction
scaling.

Another observation is that given a matrix that has full rank,
the entire class of iterations (24) can be derived from the simple
special case where

(28)
by using scaling matrices of the form

corresponding to square invertible feature scaling matrices
[cf. (27)].

IV. SIMULATION-BASED METHODS

In this section, we consider simulation-based versions of the
deterministic methods of the preceding sections. We focus on
the VI

(29)

[cf. (20)], and the associated iteration

(30)

[cf. (21)]. We will assume for the remainder of this section that
is a diagonal matrix and that the vector of its (positive) diagonal
elements

is a probability distribution over the set of indexes .

We consider a simulation process introduced in [8]. We gen-
erate a sequence of indexes (row sampling), and a
sequence of transitions between indexes
(column sampling). Any probabilistic mechanism may be used
for this, subject to the following two requirements:

• Row Sampling Condition: The sequence is
generated according to the distribution , which defines the
projection norm , in the sense that with probability 1

where denotes the indicator function [ if the
event has occurred and otherwise].

• Column Sampling Condition: The sequence
is generated according to a

certain stochastic matrix with transition probabilities
which satisfy

in the sense that with probability 1

.
Then and are computed as

(31)

and

(32)

where we denote by the th row of . It can be shown
using simple law of large numbers arguments that and

with probability 1 (see [8]). In the case where
with , we have

, which is a familiar formula in TD methods applied to
-discounted finite-state DP problems (cf. [1], [3], [4]).

A. Simulation-Based VI Approximation Approach

We now discuss a simulation-based noniterative approach to
solve the VI (29), which generalizes the LSTD method of ap-
proximate DP. We generate the matrix and vector using
(31), (32), and approximate the high-dimensional solution
by , where satisfies

(33)

Generally, the existence of a solution of the above VI may need
to be verified separately. If has full rank and the VI (29) is
strongly monotone, then since and with
probability 1, it follows that for sufficiently large , the VI (33)
is also strongly monotone, and therefore has a unique solution.
In the unconstrained case ( and ), the unique
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solution is . In the context of approximate DP, the
preceding equation is the well-known LSTD algorithm due to
[20] (also described in textbooks such as [1]).

It is important to note, however, that the VI (29) is equiva-
lent to the projected equation regardless of its
monotonicity properties, so the VI (33) approximates the pro-
jected equation, regardless of whether it is monotone. In par-
ticular, when and is invertible, is also invert-
ible for sufficiently large , and converges to the unique
solution of the projected equation. Thus, while iterative
methods may require monotonicity and contraction assumptions
for their validity, the noniterative/matrix inversion approach that
uses simulation-based approximation of the projected equation
is less restricted, although it still requires invertibility of (in
Section IV-C we will develop an iterative method for the case

that also does not rely on monotonicity and contraction
assumptions, and does not require invertibility of ).

We have the following proposition, where we assume that the
corresponding VIs of the form (33) are monotone for all .

Proposition 3: The high-dimensional sequence obtained
from the simulation process of (31), (32) is scale-free in the
following sense: if is the sequence generated
by these equations and is the corresponding
sequence generated when is replaced by , where
and is an invertible matrix, then the set of solutions of
the corresponding VIs,

and

are in one-to-one correspondence via the transformation
, so the corresponding sets of high-dimensional solutions
and are equal.

Proof: Let denote the rows of , so that

Using (31), (32), we have

and similarly

We have that if and only if

or equivalently

or equivalently, by introducing and ,

It follows that .
Note that the preceding proposition depends on using the

specific simulation process of (31), (32), so that the equations
, and hold. For a different

simulation process that satisfies the consistency property
, , the scale-free property can be guaranteed to hold

only in the limit as .

B. Simulation-Based Iterative Methods

Let us now consider a simulation-based version of the deter-
ministic iterative method (21). It is given by

(34)

where and are the simulation-based estimates of (31),
(32), is chosen so that , and is a positive definite
symmetric scaling matrix. Using (31), (32) it can be written as

where

is a generalized form of TD [cf. (5)].
One possibility is a simulation-based approximation to

:

(35)

or

(36)

where is a positive multiple of the identity (to ensure that
is positive definite). In the unconstrained case , this
is the approximate projected Jacobi method given in [8], which
for an approximate DP/policy evaluation problem, reduces to
the LSPE method.

Another possibility is to let be a diagonal approximation
to , obtained by discarding the off-diagonal terms of the
matrix (35) or (36). This facilitates the stepsize choice, since a
stepsize close to 1 usually works well.

The special case of iteration (34), where and is
the identity

(37)
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can be written as [cf. (31), (32)]

(38)

This algorithm is simple and is reminiscent of the TD(0) method
of approximate DP [cf. (6)], which when extended for solution
of general linear fixed point problems, takes the form

(39)

where is a stepsize that diminishes to 0 at an appropriately
fast rate [such as ]; see [8]. The difference is
that the preceding TD(0)-like method (39) uses only the last
TD term, whereas the iteration (38) uses a time average of all
the preceding TD terms. Just like the simple deterministic iter-
ation (23), both the multiple sample iteration (37) and its single
sample TD(0)-like version (39) generate iterates that lie in the
manifold

and converge to the projection of onto the manifold
, regardless of the choice of (cf. Fig. 2). As a

special case, this behavior is also exhibited by TD(0) for ap-
proximate DP: its convergence does not depend on having
full rank, as is universally assumed in the literature.

Let us also mention the FPKF algorithm [11], which may be
viewed as a scaled version of the preceding TD(0)-like method.
When extended to our more general setting, it has the form

where is a positive definite symmetric matrix, which may be
generated by (35) or (36). Similar to the preceding TD(0)-like
method (39), it is reminiscent of the simulation-based iteration
(34), but uses only the last simulation sample.

C. Regularization Methods for the Nearly Singular Case

Let us consider the VI (33) for the unconstrained case where
and

(40)

If is nonsingular but is “nearly singular” (has a very large
ratio of largest to smallest singular value), will be invertible
for sufficiently large , but the solution will be highly
sensitive to the simulation noise errors and . This
is a well-known phenomenon from the theory of nearly singular
linear equations, whose solution is highly sensitive to roundoff
error in the problem data.

To get a rough sense of the effect of the simulation error, con-
sider the one-dimensional case and a nearly singular .
For , the equation approximation approach can be viewed
as a process of approximate inversion of a small nonzero number

, which is estimated with simulation error . The absolute and

relative errors are

By a first order Taylor series expansion around , we obtain
for small

Thus for the estimate to be reliable, we must have
. If independent samples are used to estimate , the

variance of is proportional to , so for a small relative error,
must be much larger than . Thus, as approaches 0,

the amount of sampling required for reliable simulation-based
inversion increases very fast.

To reduce this type of sensitivity, we may use a regularization
approach, which is well-known in the theory of the proximal
point algorithm for monotone variational inequalities (see Mar-
tinet [29], Rockafellar [30], or the text by Facchinei and Pang
[25], Section 12.3). In particular, we approximate the equation

by

(41)

where is a positive scalar and is some guess of the solution
.

We may also start with (41) with and iterate, thereby
obtaining the iteration

which can also be written as

(42)

The convergence of this iteration can be proved, assuming that
is positive definite, based on the fact and conver-

gence results for the proximal point algorithm

for solving the equation .6

We may also use an alternative regularization approach,
based on a conversion to a least squares problem (also used
in a related simulation-based equation approximation context
by Wang, Polydorides, and Bertsekas [31]). We introduce a

6In the more general case of the VI (33), where �� �� � , (41) should be
replaced by the problem of finding �� � �� that solves the VI

�� �� � � � ���� � ���� �� � ��� � �� �� � ���

This VI is strongly monotone if � � �� is a positive definite matrix. If �
is positive definite, asymptotically � � �� becomes positive definite for all
� 	 �, since � � � . The algorithm (42) should be replaced by the algorithm
that solves for � � �� the VI

�� � � � � ��� � � �� �� � � � � �� �� � ���

cf. [25], Section 12.3.
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positive definite symmetric matrix and replace the equation
with minimization of

over . We then iterate according to

(43)
or equivalently

(44)

where is a positive scalar (a regularization parameter). If
, , and is bounded, this iteration can

be shown to converge to , assuming that is
nonsingular. The reason is that the matrix

(45)

has eigenvalues in the interval (0,1) for any . To see this,
let be the eigenvalues of and let be
its singular value decomposition, where
and is a unitary matrix . We also have

so

It follows that the eigenvalues of the above matrix are
, , and lie in the interval (0,1), so the eigenvalues

of lie within the unit circle and
the convergence of iteration (44) follows for the case where is
constant. The proof for the case where is variable is similar.
Note that the preceding convergence argument does not require
positive definiteness of , only that is nonsingular so that

is positive definite.
Actually, the deterministic version of iteration (44)

(46)

converges to a solution of the equation even if is sin-
gular, as long as has a solution. The reason is that the it-
eration is a special case of the proximal point algorithm for min-
imizing [cf. (43)]. From known results
about this algorithm (see [29], [30]) it follows that the iteration
(46) converges to a minimizing point of

. Whether the simulation-based approximation (44) has simi-
larly strong convergence properties is a plausible conjecture that
merits investigation.

D. Rate of Convergence Issues

We will now discuss a practically important property re-
garding asymptotic convergence rate. It can be shown that
all the iterative simulation-based iterations of the form (34),

(42), and (44) perform identically in the long run, as long
as they converge (a phenomenon first described for the LSPE
context in the paper [14]). The reason is that the corresponding
deterministic methods (21) and (46) have a linear convergence
rate, which is fast relative to the slow convergence rate of the
simulation-generated , , and . As a result the iterations
(34), (42), and (44) operate on two time scales (see, e.g., Borkar
[32], Ch. 6): the slow time scale at which , , and
change, and the fast time scale at which adapts to changes
in , , and . It follows that there is convergence in the
fast time scale before there is appreciable change in the slow
time scale. Roughly speaking, “sees , , and as
effectively constant”, so that for large , is essentially equal
to the corresponding limit of iterations (34), (42), and (44) with

, , and held fixed. This limit is a vector that satisfies

Assuming that has full rank, it can be shown that the high-
dimensional sequence generated by iterations (34), (42),
and (44) “tracks” the sequence in the sense that for any
norm ,

(47)

independent of the choice of the scaling matrix that is ap-
proximated by . The proof uses a two-time scale argument,
which is long but very similar to the one of [15], [33] for the
approximate DP context and LSPE. It will not be given in this
paper.

Since for a given subspace and any that generates , the
high-dimensional sequence does not depend on (by Prop.
3), the simulation-based iterations (34), (42), and (44) (for any

and that lead to convergence) produce asymptotically the
same high-dimensional sequence , regardless of the choices
of , , and ! By this we mean that for different choices
of , , and , the sequences and (for all , ,
and ) converge onto each other faster than they converge to
their common limit (the unique solution of the projected
equation). Some illustrative computational results can be found
in [7].

Of course the preceding description refers to the long-term
convergence behavior of the methods. In various contexts
involving limited simulation, such as DP applications involving
policy iteration, the short-term convergence behavior of the
methods is also important (one may use few samples per policy,
as in optimistic policy iteration methods), and this behavior
depends on and . Moreover, in practice it may be desirable
to trade off extra overhead in the computation of the matrix
multiplying [e.g., the matrix with as
given by (35), (36), or the matrix as in (42), or
the matrix as in (44)] with the
convenience of knowing a suitable stepsize value that guaran-
tees convergence (e.g., ). By comparison, the short-term
convergence of the simple iteration (37) may be
slow, and a suitable value of for its convergence may be hard
to find.
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When does not have full rank, a similar analysis of the
convergence rate issues may be attempted. Even in the uncon-
strained case where , this analysis, as an initial step,
must deal with the difficulty of defining the analog of the high-
dimensional sequence , for example by using the pseu-
doinverse of in place of its inverse. The details are consid-
erably more complex and are beyond the scope of the present
paper.

E. Multistep Simulation-Based Implementations

Let us now consider the algorithms of the preceding sections,
with replaced by a multistep version that has the same fixed
points. One possibility is to use , the th power of , with

, or to use given by

where is such that the preceding infinite series is con-
vergent, i.e., has eigenvalues strictly within the unit circle.
We will focus on , and consider applying variants of the
preceding simulation algorithms to find a fixed point of in
place of . This idea is inherent in the , , and

methods, and its motivation is extensively discussed
in the approximate DP literature (see also [8] for the nonDP
case).

To extend the methods developed so far to , we note
that the mapping can be written as

where

In the unconstrained case ( and ), given and
, by analogy to the case , the projected equation is

where

Similar to the earlier simulation approach, we may con-
struct simulation-based approximations and to

and , respectively. A method for doing so is de-
scribed in [8], and requires a restriction in the row and column
sampling schemes [the row index sequence is
generated using a Markov chain with transition matrix , the
same as the one used for generating the transition sequence

]. The solution of the projected equation
may be approximated by

this is a generalization of the method of approximate
DP. Similarly, the iterative method

is a multistep variant of the iterative method (34), and contains
as a special case the method of approximate DP. The
convergence and convergence rate analysis given earlier for the
case generalizes in straightforward manner to the case

. Analogs for the constrained case are similarly
obtained.

V. CONCLUSIONS

In this paper we have considered the solution of projected
equations that are derived from large-scale fixed point problems
by using low-dimensional subspace approximation. We have
proposed a unifying framework, based on a new connection with
VIs, for a broadly applicable methodology that uses simulation
and low-order calculations. Prominent within our framework are
iterative algorithms that generalize TD methods for approximate
DP. New algorithms of this type offer benefits such as imple-
mentation convenience (a matrix that is rank-deficient), re-
duced overhead (no matrix inversion at each iteration), and the
ability to use projection on a polyhedral subset of the approxi-
mation subspace.

We have investigated both deterministic iterative methods
and simulation-based versions that use low-dimensional cal-
culations. There is a sharp distinction between the two types
of methods in terms of the choices of the direction matrix ,
the stepsize , and the matrix that represents the approxi-
mation subspace . The convergence rate of the deterministic
methods is profoundly affected by , , and . By contrast, the
asymptotic convergence rate of the simulation-based versions
is largely unaffected by , , and , but instead depends on the
choice of the row and column sampling mechanisms in ways
that are not fully understood at present. Various mathematical
convergence issues, extensions to nonlinear special cases of
the mapping , and related optimization applications are inter-
esting subjects for further investigation.
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