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Gamkrelitze's and Boltyanskii's  results appear to  entail  the same where T P  E E" and UJ; E Em denote  for all k the  state  and  control of 
degree of difficulty in  computing the optimal parameter vect,or in the system, wk denotes a stochastic  disturbance vector, and  the ma- 
the general nonlinear casej(tJ2,w). However, if pis linear with respect. trices d and B are given. The problem that Re are concerned wit.h is 
to w and of the form finding a feedback cont.ro1 law (p0,pl,. . .} ,  ul~ = p&), which 

P(t,2,w) = &(t,2b + i 1 W  (7) 
minimizes the cost functional 

where LO is an (n + 1) X m mat.rix valued function and is an (n + 
1) vector-valued funct.ion, Gamkrelitze's results have a definite 
advantage over Boltyanskii's. Indeed, Bolt.yamkii's conditions (3) 
or (4) in the linear case (7) result in a set of implicit equations  for 
w*, while Gamkrelitze's maximum principle (2) may give an explicit. 
form for it. This is shown in the following proposition. 

Proposdion 2: Let s2 be the closed unit hypercube in R m  and con- 
sider the system 

w = ho(t,x)w + hl(t,X), 1 E I, (8) 

with w E 12. If w* is an optimal parameter vector in n, transferring 
t,he st.ate of (8) from x0 E R" t.o XI E R" in minimum time, then w* 
(if it. exists) d be of the form 

where $ is a nontrivial  solution of the  adjoint system corresponding 
to (8), and system (8) is assumed to be ncwmuZ in the sense t.hat. 

lof' hoT(t,z*)+(t) dt # 0. 

Proof: The proof  follows from Proposit.ion 1. 
Remark: The two-point. boundary-value problem t.hat, results from 

substitution of (9) int.0 (8) and  its  adjoint appeaw to be of t.he antici- 
pative type! However, the opt.ima1 parameter can be found by solv- 
ing 2'" equations of t,ype (8), one for each of t,he vertices of the 
hypercube. 
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Linear  Convex  Stochastic  Control  Problems  Over 
an Infinite Horizon 

DIMITRI P. BERTSEKAS 

Abstract-A stochastic  control problem over an infinite horizon 
which involves a linear system and a convex cost  functional is 
analyzed. We prove the convergence of the dynamic programming 
algorithm  associated with the problem, and  we show the existence of 
a stationary Borel measurable optimal control law. The approach 
used  illustrates how results on infinite time reachability [l]  can be 
used  for  the  analysis of dynamic  programming algorithms over an 
infinite horizon subject to state constraints. 

I. PROBLEM FORMULATION 
Consider  a constant linear discrete  system 

where a is  a scalar discount. factor 0 < a < 1, g is a convex function 
of (T,u), and E(  ) denotes t,he expectation operator. 

Such  problems are oft.en  encountered in pract.ice [4]-[6]  and, in 
lack of special structure,  they  must be solved numerically by dy- 
namic programming  (DP). A question of practical  importance is 
whether t.he D P  algorit.hm converges to a steady-state solution. 
It is also of interest t.0 examine t,he question of existence of an 
optimal  control law. A recent  int,eresting paper  [4]  has considered the 
problem  in a framework which required  somewhat  rest,rict,ive 
assumptions  in order  to  msert existence. The  aim of this  note is to 
offer an alternat,ive problem formdat,ion which is  nat.ural, suitable  to 
a D P  solution, and which provide a framework wit.hin which both 
the convergence and t.he existence  questions  can be answered in the 
affirmative. 

In  the  formulation  that we consider me assume  t.hat. the  random 
vector wk takes values  for  all k in a Borel subset R of E* and  is 
characterized by a probability  measure P defined on t.he a-algebra of 
Borel subsets of W. The class of admissible contxol laws  consists of 
all sequences ( m,p1, . .}  of Borel measurable  functions p~ defined on 
a set. X c En such  that. ut = pe(z) E C ( x )  c En for all k and x E X .  
The  set X is a state  constraint.  set  and  the  set U(z)  is a stat.e de- 
pendent cont,rol  constraint. set. It. is assumed that  the  sets X and 
:If = { (J ,u ) (u  E [{(x), z E X} are convex and compact. It is further 
demanded that t.he control law ( po,pl, . . . } be such that.  the  st.ate zk of 
the closed-loop system xk+l = Aze + B p e ( x n )  + u'k belongs to X for 
all k and for  all  values wk E W ;  i.e., it. is demanded that  the  control 
law {m,pl,. . . ] achieve  infinite time  reachability of the  set X ac- 
cording to the  terminoloB of [I] .   In  the next. section we prove  the 
existence of a stationary cont.ro1 law wit.hin the admissible class 
which minimizes the  cost  functional ( Z ) ,  and we show the uniform 
convergence of the associated D P  algorithm. 

11. THE DYKAMIC PROORAXIJIIXG ALGORITHX 

Prior t,o the  formulation of the D P  algorithm it. is necessary t,hat 
the issues associated with  the  domain of definition of this algorit.hm 
be clarified. The presence of the  state  constraint x E X complicates 
matters since given any  point xk E X there  may not. exist any  control 
U I  E U(zt) such that  the  st.ate of the  system at  the next st.age zht = 
A x e  + Bur; + wk is guaranteed to belong to X for all values wk E W.  
Thus  the state-space region of infinite time feasibility R*(X)  (the 
set of initial  stat.=  starting  from which there exists an admissible 
control  law  resulting  in sat.isfaction of all the  constraints of the 
problem) may  be (and usually d l  be) only  a proper  subset of the  set 
X .  Since t.he region of feasibility R*(X)  is the  domain of definition of 
the  DP algorithm, it  is necessary to demonst.rat,e that  this region 
can be characterized effectively. 

Using t.he results of [ 11 and  [a] , we have  that  for  the problem of this 
note 

where the  function R" mapping  subsets of E" into subsets of E" is the 
composition R.  R e  . . . . R(n times) of the  function R defined by 

R ( Z )  = E U(X) s.t. Ax + Bu + W C Z) fl Z. (4) 

It is shown  in [ll and 121 that Rn(X) converges to  the convex, com- 
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laws { p o , p ~ ,  . * . } for which pi is Borel measurable and 
m 

n=l 

where the convex and  compact  sets Cn(X)  are defined by 

C n ( X )  = { (x,u)~z E Rn- l (X) ,  u E U b ) ,  AX + Bu 

+ W c R n - l ( X ) ] .  (6) 

It has been shorn also [l], [2] that, for  the problem of this note, 

R * ( X )  is the projection on the  state  space of the  set fl C n ( x ) ,  Le., 
m 

n = l  

R*(x)  = P, n cn(x) . 
[n : ,  1 

We  assume that n C n ( X )  is nonempty. We can prove now that  the 

class 0 of admissible cont.rol laws  is nonempty. TO show this, con- 
sider  the  multivalued  mapping A :   R * ( X )  - E" defined by 

m 

n = l  

n = l  
m 

the  graph of which is n Cn(X). Now for every closed set S E Em 

the  set 
n= 1 

A-W = (Z E R * ( X ) ~ A ( X )  n s # 44 

= P, [ ii cn(x) n ( R * ( x )  x s)]  
n = l  

m 

is compact by  the compactness of n Cn(X) .  Hence the  mapping A 

is Borel measurable according to  the definition of [7 ] .  By using a 
theorem of Kuratowski  and  Rul-Nardzewski (see [7, corollary 1.11) 
i t  follows that  there exists a Borel measurable function p: R*(X)+E" 

such  that [x,p(x)] E fl C,,(X) for all z E R * ( X ) .  Hence  the st,a- 

tionary  control law{ p , p , .  . - 1 is Borel measurable  and achieves reach- 
ability of X .  The conclusion is that  the class Q of admissible control 
laws is nonempty  and  that,  by using any control  law  in this class, the 
state of the closed-loop system will belong to t,he set R*(X)  for  all 
times. Hence any DP algorithm used for solving  t,he  problem need 
only be defined over the  set R * ( X ) .  

Consider now the cost functional  (2).  We have, by  the  continuity 
of 9, 

n=l  

m 

n = l  

m 

21 I g(z,u) I rt, Vb,u )  E fl Cn(X) 

for some scalars rl and rp. It follows t,hat,  for  every fixed contxol law 
in Q, the series in (2) converges absolutely'  and  the  limit  indicated 
exists. 

n = l  

Furthermore, it can be easily shown that  

Jm(sO) . . .) E D  inf J ( ~ o , P o , ~ I ,  * . ) = lim  JN(XO) 
N + m  

mherelim-tm J N ( Z ~ )  exists for  every xoER*(X),  and where the func- 
tion JN: R * ( X )  + R is d e h e d  recursively by 

k = 0,1,. . . (9) 

where A (x) is the  compact  set defined for  every z by (7). 
In  order to show the existence of a Borel measurable  control law, 

we prove  the following lemma. 
Lemma: Let R c En be a nonempty convex and compact  set. and 

A : R + Em be a multivalued  mapping wit.h A (z) # 0, for all x E R, 

such  that  its  graph C = { (x,u) E E" X Emlz E R, u E A(z)}  is 
convex and compact. Also let, h:C + E be a lower semicontinuous 
convex funct.ion. Then  the  function 

H ( x )  = min h(z,u) 
uE-4 (2) 

is convex and lower semicont.inuous over R.  Furthermore,  there exists 
a Borel measurable function p : R  + Em with p(x) E A ( z ) ,  for all 
z E R, such  that 

H(z)  = h[z,p(z)l. (10) 

Proof: By direct use of Theorem 9.2 in [ 8 ] ,  H can be shown to  be 
convex and lower semicontinuous. Now consider the epigraph of h 

epi (h) = { (z,u.,a)l(z,u) E C, a E E, h(x,u) 5 a}. 

The  set epi ( h )  is a closed convex set,  and  it is also the  graph of t.he 
multivalued epigraph  mapping K :  R + Em +1 

K(x)  = { (u,,a)l(z,u) E C, a E E, I 0 ) .  

For  any compact set S c Em+l we have  that 

K-I(S) = {x E RIK(z)  fl S # 0} = P,[epi (h) fl ( R  x S)] 

is compact by t,he  compactness of ( R  x 8). Hence, K is Borel mea- 
surable  and h(z,u) + S(s,ulC) (where 6(. IC) is the  indicator  function 
of C) is a normal convex inbegrand on R X Em, [7, theorem 41. The 
existence of the Borel measurable function p satisfying (10) now 
follows from  Corollary 4.3 of [7]. Q.E.D. 

By using the lemma, we have  that  the functions J k  of (8) and  (9) 
are convex and lower semicontinuous  over R * ( X ) .  Furthermore, i t  
can be easily shown by using an  argument similar to  the one  in [4] 
that t,he pointwise limit J ,  of t.he sequence {Jnj is a convex and lower 
semicontinuous funct.ion over R * ( X )  satisfying 

J,(x) = min [g(z,u) + a E{Jm(Ax + Bu + w))]. (11) 
u € A  (2) 20 

In  addition, the convergence is uniform on any compact subset of 
the  relative int.erior of R * ( X )  [8, theorem 10.81. The existence of a 
st.ationary Borel measurable  optimal  control law follows by using the 
lemma  in  conjunction with (11). 

The  actual solution of the problem can be effected in  two ways. 
One met,hod is to  use t.he dynamic programming algorithm (8), (9) 
and simultaneously determine  the region of k-step reachability R'(X) 
which is the domain of the function Jk. Since R"X) converges to 
R * ( X )  and Jk converges t,o J ,  on R * ( X ) ,  this procedure will deter- 
mine both J ,  and its domain R * ( X ) .  The  other met.hod is to de- 
termine R * ( X )  first, and  then  to use  a  generalization of Howard's 
policy- it,eration  algorithm [3] for finding J,. Which of the  two 
methods  is  more efficient should  depend on the  particular problem 
at hand. 
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