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Gambkrelitze’s and Boltyanskii’s results appear to entail the same
degree of difficulty in computing the optimal parameter vector in
the general nonlinear case f(t,£,w). However, if f is linear with respect
to w and of the form

Fgw) = Rt + hat,2) h)

where £ois an (7 + 1) X m matrix valued function and £ is an (n +
1) vector-valued function, Gamkrelitze’s results have a definite
advantage over Boltyanskii's. Indeed, Boltyanskii’s conditions (3)
or (4) in the linear case (7) result in a set of implicit equations for
w*, while Gamkrelitze’s maximum principle (2) may give an explicit
form for it. This is shown in the following proposition.

Proposition 2: Let 2 be the closed unit hypercube in B™ and con-
sider the system

) = kltzw + M), (€1 (8)

with w € Q. If w* is an optimal parameter vector in 2, transferring
the state of (8) from 2y € R" to 2; &€ R" in minimum time, then w*
(if it exists) will be of the form

t1
w* = sgn {f hoT (8 )W) dt} (9)
fo

where ¢ is a nontrivial solution of the adjoint system corresponding
to (8), and system (8) is assumed to be normal in the sense that

£t
f BT (8,27 ) (8) db 5= O.
4

0

Proof: The proof follows from Proposition 1.

Remark: The two-point boundary-value problem that results from
substitution of (9) into (8) and its adjoint appears to be of the antici-
pative type! However, the optimal parameter can be found by solv-
ing 2™ equations of type (8), one for each of the vertices of the
hypercube.
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Linear Convex Stochastic Control Problems Over
an Infinite Horizon

DIMITRI P. BERTSEKAS

Abstract—A stochastic control problem over an infinite horizon
which involves a linear system and a convex cost functional is
analyzed. We prove the convergence of the dynamic programming
algorithm associated with the problem, and we show the existence of
a stationary Borel measurable optimal control law. The approach
used illustrates how results on infinite time reachability [1] can be
used for the analysis of dynamic programming algorithms over an
infinite horizon subject to state constraints.

1. ProBLEM FORMULATION

Consider a constant linear discrete system

Try = Aze + Bug + we, k=01 1)
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where zr € E* and w, € E™ denote for all k the state and control of
the system, w; denotes a stochastic disturbance vector, and the ma-
trices 4 and B are given. The problem that we are concerned with is
finding a feedback control law {ueui,--+}, w = we(az), which
minimizes the cost functional

J(@o,uo,p,. . ) =

N
lim E {Z akg[xk,#k(m]} 2)

N> wp (k=1
0<k <N

where ¢ is a scalar discount factor 0 < ¢ < 1, ¢ is a convex function
of (z,u), and E{ -} denotes the expectation operator.

Such problems are often encountered in practice [4]-[6] and, in
lack of special structure, they must be solved numerically by dy-
namic programming (DP). A question of practical importance is
whether the DP algorithm converges to a steady-state solution.
It is also of interest to examine the question of existence of an
optimal control law. A recent interesting paper [4] has considered the
problem in a framework which required somewhat restrictive
assumptions in order to assert existence. The aim of this note is to
offer an alternative problem formulation which is natural, suitable to
a DP solution, and which provides a framework within which both
the convergence and the existence questions can be answered in the
affirmative.

In the formulation that we consider we assume that the random
vector wi takes values for all & in a Borel subset W of E* and is
characterized by a probability measure P defined on the o-algebra of
Borel subsets of W. The class of admissible control laws consists of
all sequences {uo,u1, - -} of Borel measurable functions u: defined on
aset X < E*such that ur = m{z) EU(z) € E»forallkand 2 € X.
The set X is a state constraint set and the set U(z) is a state de-
pendent control constraint set. It is assumed that the sets X and
M = {(zu)u €EU(z),z € X} are convex and compact. It is further
demanded that the control law {uo,u1,- - -} be such that the state z of
the closed-loop system x4 = Azr + Bur(zi) 4+ ws belongs to X for
all k and for all values wx € W;i.e., it is demanded that the control
law {uo,p1,- -} achieve infinite time reachability of the set X ac-
cording to the terminology of [1]. In the next section we prove the
existence of a stationary control law within the admissible class
which minimizes the cost functional (2), and we show the uniform
convergence of the associated DP algorithm.

II. THE Dy~NaMic PROGRAMMING ALGORITHM

Prior to the formulation of the DP algorithm it is necessary that
the issues associated with the domain of definition of this algorithm
be clarified. The presence of the state constraint + € X complicates
matters since given any point 2x € X there may not exist any control
ur & U(zx) such that the state of the system at the next stage zxy1 =
Az 4+ Buir + wr is guaranteed to belong to X for all valueswr &€ W.
Thus the state-space region of infinite time feasibility R*(X) (the
set of initial states starting from which there exists an admissible
control law resulting in satisfaction of all the constraints of the
problem) may be (and usually will be) only a proper subset of the set
X. Since the region of feasibility B*(X) is the domain of definition of
the DP algorithm, it is necessary to demonstrate that this region
can be characterized effectively.

Using the results of [1] and [2], we have that for the problem of this
note

R¥*(X) = n R"(:r) (3)

n=
where the function R* mapping subsets of E" into subsets of E* is the
composition R-E- --- - R(n times) of the function E defined by

RZ)={zqu € U) st. Az +Bu+WCZ} NZ (4)

It is shown in [1] and [2] that BR*(X) converges to the convex, com-
pact set R*(X) in a well-defined sense. Furthermore, it is shown in
[1] and {2] that the class © of all admissible control laws which
achieve infinite time reachability of the set X is the elass of control
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laws {uo,p,- + - } for which u; is Borel measurable and
[z,p:2)] € ﬂl Cn(X), ¥z € B¥*(X) (5)
ne=

where the convex and compact sets Cn.(X) are defined by
Ca(X) = {u)lz € R*1X), u € Ulz), Az + Bu

+ W e RYX)}. (6)
It has been shown also [1], [2] that, for the problem of this note,
R*(X) is the projection on the state space of the set ﬁol Ca(X), ie.,

n=

B¥X) = Pz[ EIC,.(X)].

We assume that N Cn(X)is nonempty. We can prove now that the
n= .
class @ of admissible control laws is nonempty. To show this, con-
sider the multivalued mapping 4:R*(X) — E* defined by

A(z) = {u|(z,u) € n gn(X)}, (7)

the graph of which is N C,(X). Now for every closed set § € E»
1

n=

the set
A-YS) = {z € R*X)|A(z) N S = 4}

- p[ 0 aon @woxs]

is compact by the compactness of M C.(X). Hence the mapping A
n=1

is Borel measurable according to the definition of [7]. By using a

theorem of Kuratowski and Rull-Nardzewski (see [7, corollary 1.1])

it follows that there exists & Borel measurable function u: R*(X)—>E»

such that [z,u(z)] € N Cu(X) for all z € R*(X). Hence the sta-
n=1

tionary control law{s,u,--+} is Borel measurable and achieves reach-
ability of X. The conclusion is that the class © of admissible control
laws is nonempty and that, by using any control law in this class, the
state of the closed-loop system will belong to the set R*(X) for all
times. Henece any DP algorithm used for solving the problem need
only be defined over the set B*(X).

Consider now the cost functional (2). We have, by the continuity
of g,

r < glzu) < 1y M (r,u) € ﬂlCn(X)
ne=

for some scalars r; and rs. It follows that, for every fixed control law
in @, the series in (2) converges absolutely and the limit indicated
exists.

Furthermore, it can be easily shown that

Jolze) =  inf  J(zomomuy-+-) =
{po,u1,- -} ER

lim Jx(xo)

where im-» « J(2s) exists for every 2,&R*(X), and where the func-
tion Jx:R*(X)— R is defined recursively by

Jolz) = Igai?) g(z,u) @)

uc

Jen(@) = min [g(z,u) + aB{J:(Az + Bu + w)}],
ucd (z) 0

k=01 (9

where A (z) is the compact set defined for every z by (7).
In order to show the existence of a Borel measurable conirol law,
we prove the following lemma.
Lemma: Let B C E* be a nonempty convex and compact set and
A:R —> E™ be a multivalued mapping with A (z) = @, forallz E R,
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such that its graph ¢ = {(z,u) € E* X Em|z € R, u € A(z)} is
convex and compact. Also let 2:C — £ be a lower semicontinuous
convex function. Then the function

H(z) = min »A{zu)

uCA(x)

is convex and lower semicontinuous over B. Furthermore, there exists
3 Borel measurable function u: B — £ with u(z) € A(z), for all
2 € R, such that

H(z) = hlz,u(2)]. (10)

Proof: By direct use of Theorem 9.2 in [8], H can be shown to be
convex and lower semicontinuous. Now consider the epigraph of &

epi () = {(w,a)|@u) EC, « €EE, hizu) < of.

The set epi () is a closed convex set, and it is also the graph of the
multivalued epigraph mapping K:R — Em11

K@) = {(wa)|@u) €C, o €L, hzu) < a.
For any compact set § € E»*1 we have that
K~Y8) = {z € R|K(z) N 8 5 @} = P.lepi &) N (B X 8)]

is compact by the compactness of (B X 8). Hence, K is Borel mea-
surable and A(z,u) + B(z,u[ C) (where 8(- ]'C )is the indicator function
of (') is a normal convex integrand on 2 X £™, [7, theorem 4]. The
existence of the Borel measurable function g satisfying (10) now
follows from Corollary 4.3 of [7]. Q.E.D.

By using the lemma, we have that the functions Jx of (8) and (9)
are convex and lower semicontinuous over B*(X). Furthermore, it
can be easily shown by using an argument similar to the one in [4]
that the pointwise limit J,, of the sequence {J:} is a convex and lower
semicontinuous function over R*(X) satisfying

lg(z,u) + o B{Jo(dz + Bu + w)}]. (11)

min
uCA(x)

Jo(z) =

In addition, the convergence is uniform on any compact subset of
the relative interior of B*(X) [8, theorem 10.8]. The existence of a
stationary Borel measurable optimal control law follows by using the
lemma in conjunction with (11).

The actual solution of the problem can be effected in two ways.
One method is to use the dynamic programming algorithm (8), (9)
and simultaneously determine the region of k-step reachability B*(X)
which is the domain of the function Ji. Since R¥(X) converges to
E*(X) and J converges to J on R*(X), this procedure will deter-
mine both J, and its domain R*(X). The other method is to de-
termine B*(X) first, and then to use a generalization of Howard’s
policy iteration algorithm [3] for finding J,. Which of the two
methods is more efficient should depend on the particular problem
at bhand.
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