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Proper Policies in Infinite-State Stochastic

Shortest Path Problems

Dimitri P. Bertsekas

Abstract

We consider stochastic shortest path problems with infinite state and control spaces, a nonnegative cost per stage,

and a termination state. We extend the notion of a proper policy, a policy that terminates within a finite expected

number of steps, from the context of finite state space to the context of infinite state space. We consider the optimal

cost function J
∗, and the optimal cost function Ĵ over just the proper policies. We show that J∗ and Ĵ are the smallest

and largest solutions of Bellman’s equation, respectively, within a suitable class of Lyapounov-like functions. If the

cost per stage is bounded, these functions are those that are bounded over the effective domain of Ĵ . The standard

value iteration algorithm may be attracted to either J
∗ or Ĵ , depending on the initial condition.

I. INTRODUCTION

In this paper we consider a stochastic discrete-time infinite horizon optimal control problem involving the system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1)

where xk and uk are the state and control at stage k, which belong to sets X and U , wk is a random disturbance

that takes values in a countable set W with given probability distribution P (wk | xk, uk), and f : X×U×W 7→ X

is a given function. The state and control spaces X and U are arbitrary, but we assume that W is countable to

bypass the complicated mathematical measurability issues in the choice of control.1 The control uk must be chosen

from a constraint set U(xk) ⊂ U that may depend on the current state xk. The expected cost for the kth stage,

E
{
g(xk, uk, wk)

}
, is assumed real-valued and nonnnegative:

0 ≤ E
{
g(xk, uk, wk)

}
< ∞, ∀ x ∈ X, u ∈ U(x). (2)

We assume that X contains a special cost-free and absorbing state t, referred to as the destination:

f(t, u, w) = t, g(t, u, w) = 0, ∀ u ∈ U(t), w ∈ W. (3)

The essence of the problem is to reach or approach the destination with minimum expected cost.

D. P. Bertsekas is with the Computer Information and Decision Science and Engineering Dept., Arizona State University, Tempe, AZ, and

the Laboratory for Information and Decision Systems (LIDS), M.I.T. Email: dimitrib@mit.edu.

1The nature of these difficulties is well-documented; see the monograph by Bertsekas and Shreve [1], and the paper by James and Collins [2],

which treats stochastic shortest path problems. It may be reasonably conjectured that our analysis can be extended to hold within an appropriate

measurability framework, but this undertaking is beyond the scope of the present paper.
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We are interested in policies of the form π = {µ0, µ1, . . .}, where each µk is a function mapping x ∈ X into

the control µk(x) ∈ U(x). The set of all policies is denoted by Π. Policies of the form π = {µ, µ, . . .} are called

stationary, and will be denoted by µ, when confusion cannot arise.

Given an initial state x0, a policy π = {µ0, µ1, . . .} when applied to the system (1), generates a random sequence

of state-control pairs
(
xk, µk(xk)

)
, k = 0, 1, . . . , with cost

Jπ(x0) =

∞∑

k=0

Eπ
x0

{
g
(
xk, µk(xk), wk

)}
, x0 ∈ X,

where Eπ
x0
{·} denotes expectation with respect to the probability measure corresponding to initial state x0 and

policy π, and the series converges in view of the nonnegativity of cost per stage g. We view Jπ as a function over

X , and we refer to it as the cost function of π. For a stationary policy µ, the corresponding cost function is denoted

by Jµ. The optimal cost function is defined as

J∗(x) = inf
π∈Π

Jπ(x), x ∈ X,

and a policy π∗ is said to be optimal if Jπ∗(x) = J∗(x) for all x ∈ X. We refer to the problem of finding J∗ and

an optimal policy as the stochastic shortest path problem (SSP problem for short). We denote by E
+(X) the set of

functions J : X 7→ [0,∞]. All equations, inequalities, limit and minimization operations involving functions from

this set are meant to be pointwise. In our analysis, we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost functions Jπ of all π ∈ Π, as well as J∗.

It is well known that when g ≥ 0, J∗ satisfies the Bellman equation given by

J(x) = inf
u∈U(x)

E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, x ∈ X, (4)

where the expected value is with respect to the distribution P (w | x, u). Moreover, an optimal stationary policy (if

it exists) may be obtained through the minimization in the right side of this equation when J = J∗ [cf. Prop. 1(d)

in the next section]. One hopes to obtain J∗ in the limit by means of value iteration (VI for short), which starting

from some function J0 ∈ J, generates a sequence {Jk} ⊂ J according to

Jk+1(x) = inf
u∈U(x)

E
{
g(x, u, w) + Jk

(
f(x, u, w)

)}
, x ∈ X. (5)

However, {Jk} may not always converge to J∗ because, among other reasons, Bellman’s equation may have multiple

solutions within J.

In a recent paper [3] we have addressed the connections between stability and the solutions of Bellman’s equation

in the context of undiscounted discrete-time deterministic optimal control with a termination state. In this paper we

address similar issues in the context of SSP problems but we focus attention on proper policies, which are the ones

that are guaranteed to reach the termination state within a finite expected number of steps, starting from the states

where the optimal cost is finite (a precise definition is given in the next section). Proper policies may be viewed

as the analog of stable policies in a deterministic context, and their significance is well known in finite-state SSP

problems (see e.g., the books [4], [5], [6], [7], [8], [9], [10], and [11], and the references quoted there). For the
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case where g ≥ 0, the paper by Bertsekas and Tsitsiklis [12] provides an analysis that bears similarity with the one

of the present paper, but assumes a finite state space and that there exists an optimal policy that is proper. In the

infinite-state context of this paper and under weaker assumptions, we show that Ĵ , the optimal cost function over

just the proper policies, is the largest solution of Bellman’s equation within a set of functions Ŵ ⊂ J that majorize

Ĵ , and that the VI algorithm converges to Ĵ starting from a function in Ŵ. Our line of analysis draws its origin

from concepts of regularity introduced by the author in the monograph [13] and the paper [14].

To compare our analysis with the existing literature, we note that proper policies for infinite-state SSP problems

have been considered earlier, notably in the works of Pliska [15], and James and Collins [2], where they are called

transient. There are a few differences between the frameworks of [15], [2] and this paper, which impact on the

results obtained. In particular, the paper [15] uses a similar (but not identical) definition of properness to the one

of the present paper, but assumes that all policies are proper, that g is bounded, and that J∗ is real-valued. The

paper [2] uses the properness definition of [15], and extends the analysis of [11] from finite state space to infinite

state space (addressing also measurability issues). Moreover, [2] allows the cost per stage g to take both positive

and negative values. However, [2] uses assumptions that guarantee that improper policies cannot be optimal and

that J∗ = Ĵ , while J∗ is real-valued. This is the most important difference from the analysis of this paper.

Our analysis is also related to the one of Bertsekas and Yu [16], where the case J∗ 6= Ĵ was analyzed using

perturbation ideas that are similar to the ones of Section 3. The paper [16] assumes that the state space is finite

and that J∗ is real-valued, but allows g to take negative values. Moreover [16] gives an example showing that J∗

may not be a solution of Bellman’s equation if improper policies can be optimal, and g can take both positive and

negative values. The extension of our results to SSP problems where g takes both positive and negative values may

be possible, but our line of analysis relies strongly on the nonnegativity of g and cannot be extended without major

modifications.

II. PROPER POLICIES AND THE PERTURBED PROBLEM

In this section, we will lay the groundwork for our analysis and introduce the notion of a proper policy. To this

end, we will use some classical results for stochastic optimal control with nonnegative cost per stage, which stem

from the original work of Strauch [17]. For textbook accounts we refer to [1], [8], [11], and for a more abstract

development, we refer to the monograph [13]. The following proposition gives the results that we will need.

Proposition 1. The following hold:

(a) J∗ is a solution of Bellman’s equation and if J ∈ E+(X) is another solution, i.e., J satisfies for all x ∈ X

J(x) = inf
u∈U(x)

E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, (6)

then J∗ ≤ J .

(b) For all stationary policies µ, Jµ is a solution of the equation

J(x) = E
{
g
(
x, µ(x), w

)
+ J

(
f
(
x, µ(x), w

))}
,

and if J ∈ E+(X) is another solution, then Jµ ≤ J .
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(c) For every ǫ > 0 there exists an ǫ-optimal policy, i.e., a policy πǫ such that for all x ∈ X , we have

Jπǫ
(x) ≤ J∗(x) + ǫ, ∀ x ∈ X.

(d) A stationary policy µ∗ is optimal if and only if for all x ∈ X , we have

µ∗(x) ∈ argmin
u∈U(x)

E
{
g(x, u, w) + J∗

(
f(x, u, w)

)}
.

(e) If U(x) is finite for all x ∈ X , then Jk → J∗, where {Jk} is the sequence generated by the VI algorithm (5)

starting from any J0 with 0 ≤ J0 ≤ J∗.

Proof. See [1], Props. 5.2, 5.4, and 5.10, or [11], Props. 4.1.1, 4.1.3, 4.1.5, 4.1.9.

For a given state x ∈ X , a policy π is said to be proper at x if

Jπ(x) < ∞,

∞∑

k=0

rk(π, x) < ∞, (7)

where rk(π, x0) is the probability that xk 6= t when using π and starting from x0 = x. Note that the sum
∑∞

k=0 rk(π, x) is the expected number of steps to reach the destination starting from x and using π.

We denote by Π̂x the set of all policies that are proper at x, and we use the notation

C =
{
(π, x) | π ∈ Π̂x

}
. (8)

We denote by Ĵ the corresponding restricted optimal cost function,

Ĵ(x) = inf
(π,x)∈C

Jπ(x) = inf
π∈Π̂x

Jπ(x), x ∈ X.

Finally we denote by X̂ the effective domain of Ĵ , i.e.,

X̂ =
{
x ∈ X | Ĵ(x) < ∞

}
. (9)

Note that X̂ is the set of all x such that Π̂x is nonempty.

The definition of proper policy just given differs from the definition of a transient policy adopted by James and

Collins [2]. In particular, the definition of [2] requires that the expected number of steps to reach the destination is

uniformly bounded over the initial state x (see [2], p. 608) and is not tied to a single state x.

For any δ > 0, let us consider the δ-perturbed optimal control problem. This is the same problem as the original,

except that the cost per stage is changed to

g(x, u, w) + δ, ∀ x 6= t,

while g(x, u, w) is left unchanged at 0 when x = t. Thus t is still cost-free as well as absorbing in the δ-perturbed

problem. The δ-perturbed cost function of a policy π is denoted by Jπ,δ and is given by

Jπ,δ(x) = Jπ(x) + δ
∞∑

k=0

rk(π, x). (10)

We denote by Ĵδ the optimal cost function of the δ-perturbed problem, i.e., Ĵδ(x) = infπ∈Π Jπ,δ(x). The following

proposition relates the δ-perturbed problem with proper policies.
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Proposition 2. (a) A policy π is proper at a state x ∈ X if and only if Jπ,δ(x) < ∞.

(b) We have Ĵδ(x) < ∞ for all δ > 0 if and only if x ∈ X̂ .

(c) For every ǫ > 0 and δ > 0, there exists a policy πǫ that is proper at all x ∈ X̂ and is ǫ-optimal for the

δ-perturbed problem, i.e.,

Jπǫ,δ(x) ≤ Ĵδ(x) + ǫ, ∀ x ∈ X.

Proof. (a) Follows from Eq. (10) and the definition (7) of a proper policy.

(b) If x ∈ X̂ there exists a policy π that is proper at x, and by part (a), Ĵδ(x) ≤ Jπ,δ(x) < ∞ for all δ > 0.

Conversely, if Ĵδ(x) < ∞, there exists π such that Jπ,δ(x) < ∞, implying [by part (a)] that π ∈ Π̂x, so that

x ∈ X̂ .

(c) By Prop. 1(c), there exists an ǫ-optimal policy πǫ for the δ-perturbed problem, so we have Jπǫ,δ(x) ≤ Ĵδ(x)+ ǫ

for all x ∈ X . Hence Jπǫ,δ(x) < ∞ for all x ∈ X̂ , implying by part (a) that πǫ is proper at all x ∈ X̂ .

The next proposition shows that the cost function Ĵδ of the δ-perturbed problem can be used to approximate Ĵ .

Proposition 3. We have limδ↓0 Ĵδ(x) = Ĵ(x) for all x ∈ X.

Proof. Let us fix δ > 0, and for a given ǫ > 0, let πǫ be a policy that is proper at all x ∈ X̂ and is ǫ-optimal for

the δ-perturbed problem [cf. Prop. 2(c)]. By using Eq. (10), we have for all ǫ > 0, x ∈ X̂ , and π ∈ Π̂x,

Ĵ(x)− ǫ ≤ Jπǫ
(x) − ǫ

≤ Jπǫ,δ(x) − ǫ

≤ Ĵδ(x)

≤ Jπ,δ(x)

= Jπ(x) + wπ,δ(x), ∀ x ∈ X̂,

where

wπ,δ(x) = δ

∞∑

k=0

rk(π, x) < ∞, ∀ x ∈ X̂.

By taking the limit as ǫ ↓ 0, we obtain for all δ > 0 and π ∈ Π̂x,

Ĵ(x) ≤ Ĵδ(x) ≤ Jπ(x) + wπ,δ(x), ∀ x ∈ Π̂x.

We have limδ↓0 wπ,δ(x) = 0 for all x ∈ X̂ and π ∈ Π̂x, so by taking the limit as δ ↓ 0 and then the infimum over

all π ∈ Π̂x,

Ĵ(x) ≤ lim
δ↓0

Ĵδ(x) ≤ inf
π∈Π̂x

Jπ(x) = Ĵ(x), ∀ x ∈ X̂,

from which Ĵ(x) = limδ↓0 Ĵδ(x) for all x ∈ X̂ . Since by Prop. 2(b), we also have Ĵδ(x) = Ĵ(x) = ∞ for all

x /∈ X̂ , the result follows.
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III. MAIN RESULTS

By Prop. 1(a), Ĵδ solves Bellman’s equation for the δ-perturbed problem, while by Prop. 3, limδ↓0 Ĵδ(x) = Ĵ(x).

This suggests that Ĵ solves the unperturbed Bellman equation, which is the “limit” as δ ↓ 0 of the δ-perturbed

version. Indeed, under a certain assumption we will show a stronger result, namely that Ĵ is the unique solution

of Bellman’s equation within the set of functions

Ŵ =
{
J ∈ J | Ĵ ≤ J, Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C

}
, (11)

where C is given by Eq. (8), Eπ
x0
{·} denotes expected value with respect to the probability measure corresponding

to initial state x0 under policy π, and Eπ
x0

{
J(xk)

}
denotes the expected value of the function J along the sequence

{xk} generated starting from x0 and using π. The functions in Ŵ are the ones whose expected value is decreasing

to 0 along the trajectories generated by the proper policies, so they may be interpreted as a type of Lyapounov

functions.

Given a policy π = {µ0, µ1, . . .}, we denote by πk the policy

πk = {µk, µk+1, . . .}. (12)

We first show a preliminary result.

Proposition 4. The following hold:

(a) For all pairs (π, x0) ∈ C and k = 0, 1, . . ., we have

0 ≤ Eπ
x0

{
Ĵ(xk)

}
≤ Eπ

x0

{
Jπk

(xk)
}
,

where πk is the policy given by Eq. (12).

(b) The set Ŵ of Eq. (11) contains Ĵ , as well as all J ∈ Ŵ satisfying Ĵ ≤ J ≤ cĴ for some c ≥ 1.

Proof. (a) For any pair (π, x0) ∈ C and δ > 0, we have

Jπ,δ(x0) = Eπ
x0

{
Jπk,δ(xk) + kδ

+

k−1∑

m=0

g
(
xm, µm(xm), wm

)}
.

Since Jπ,δ(x0) < ∞ [cf. Prop. 2(a)], it follows that Eπ
x0

{
Jπk,δ(xk)

}
< ∞. Hence for all xk that can be reached

with positive probability using π and starting from x0, we have Jπk,δ(xk) < ∞, implying [by Prop. 2(a)] that

(πk, xk) ∈ C and hence Ĵ(xk) ≤ Jπk
(xk). By applying Eπ

x0
{·} to this last inequality, the result follows.

(b) We have for all (π, x0) ∈ C,

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ1

(x1)
}
, (13)

and for all m = 1, 2, . . . ,

Eπ
x0

{
Jπm

(xm)
}
=Eπ

x0

{
g
(
xm, µm(xm), wm

)}

+ Eπ
x0

{
Jπm+1

(xm+1)
}
, (14)
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where {xm} is the sequence generated starting from x0 and using π. By using repeatedly the expression (14) for

m = 1, . . . , k − 1, and combining it with Eq. (13), we obtain for all k = 1, 2, . . . , and (π, x0) ∈ C,

Jπ(x0) = Eπ
x0

{
Jπk

(xk)
}
+

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm), wm

)}
.

The rightmost term above tends to Jπ(x0) as k → ∞, so by using the fact Jπ(x0) < ∞, we obtain

Eπ
x0

{
Jπk

(xk)
}
→ 0, ∀ (π, x0) ∈ C.

By part (a), it follows that Eπ
x0

{
Ĵ(xk)

}
→ 0 for all (π, x0) ∈ C, so that Ĵ ∈ Ŵ. This also implies that

Eπ
x0

{
J(xk)

}
→ 0 for all (π, x0) ∈ C, if Ĵ ≤ J ≤ cĴ for some c ≥ 1.

We can now prove our main result. We denote by X∗ the effective domain of J∗:

X∗ =
{
x ∈ X | J∗(x) < ∞

}
. (15)

We also denote by Q∗
δ(x, u) the optimal Q-factor of a pair (x, u) in the δ-perturbed problem:

Q∗
δ(x, u) = E

{
g(x, u, w) + δ + Ĵδ

(
f(x, u, w)

)}
.

The following proposition shows that Ĵ is the unique solution of the Bellman equation within the set Ŵ of

Lyapounov functions under a certain assumption relating to the states in X∗. This assumption can often be easily

verified in practice. It is satisfied for example if there exists a policy π (necessarily proper at all x ∈ X∗) such that

Jπ,δ is bounded over the set X∗. Later, we will also prove the result under the alternative assumption that the set

of disturbances W is finite.

Proposition 5. Assume that there exists a δ > 0 such that

Q∗
δ(x, u) < ∞, ∀ x ∈ X∗, u ∈ U(x). (16)

Then:

(a) Ĵ is the unique solution of the Bellman Eq. (6) within the set Ŵ of Eq. (11).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI algorithm (5) starting with some J0 ∈ Ŵ, then

Jk → Ĵ .

(c) (Optimality Condition) If µ is a stationary policy that is proper at all x ∈ X̂ , and for all x ∈ X we have

µ(x) ∈ argmin
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, (17)

then µ is optimal over the set of proper policies, i.e., Jµ = Ĵ . Conversely, if µ is optimal within the set of

proper policies, then it satisfies the preceding condition (17).
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Proof. (a), (b) By Prop. 4(b), Ĵ ∈ Ŵ. We will first show that Ĵ is a solution of Bellman’s equation and then show

that it is the unique solution within Ŵ by showing the convergence of VI [cf. part (b)]. Since Ĵδ solves the Bellman

equation for the δ-perturbed problem, and Ĵδ ≥ Ĵ (cf. Prop. 3), we have for all δ > 0 and x 6= t,

Ĵδ(x) = inf
u∈U(x)

E
{
g(x, u, w) + δ + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
.

By taking the limit as δ ↓ 0 and using Prop. 3, we obtain

Ĵ(x) ≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X. (18)

To prove the reverse inequality, we consider two cases:

(1) x /∈ X∗, i.e., J∗(x) = ∞. Then from Bellman’s equation, we have

∞ = J∗(x) = inf
u∈U(x)

E
{
g(x, u, w) + J∗

(
f(x, u, w)

)}
.

Since Ĵ ≥ J∗ it then follows that

∞ = Ĵ(x) = inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x /∈ X∗. (19)

(2) x ∈ X∗. Then we let {δm} be a sequence with δm ↓ 0. We have for all m, x 6= t, and u ∈ U(x),

Q∗
δm

(x, u) = E
{
g(x, u, w) + δm + Ĵδm

(
f(x, u, w)

)}

≥ inf
v∈U(x)

E
{
g(x, v, w) + δm + Ĵδm

(
f(x, v, w)

)}

= Ĵδm(x).

We now take limit as m → ∞ in the preceding relation. The condition (16) implies that for all m sufficiently large

the left side is finite for each u ∈ U(x), so we can apply the monotone convergence theorem to interchange limit

as m → ∞ and expectation.2 Since limδm↓0 Ĵδm = Ĵ (cf. Prop. 3), we obtain

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X∗, u ∈ U(x),

2We are using here the following version of the monotone convergence theorem: Let {hm} be a sequence of monotonically nonincreasing

functions hm : {1, 2, . . .} 7→ ℜ, let {p1, p2, . . .} be a probability distribution, and assume that for some function h̄ : {1, 2, . . .} 7→ ℜ such

that hm(i) ≤ h̄(i) for all m and i, we have
∑

∞

i=1
pih̄(i) < ∞. Then

lim
m→∞

∞
∑

i=1

pihm(i) =
∞
∑

i=1

pi lim
m→∞

hm(i).

We give the proof, which is simple in the discrete distribution case considered here: Let h be the pointwise limit of {hm}, i.e., h(i) =

limm→∞ hm(i) for all i. Since {hm} is nonincreasing, we have

∞
∑

i=1

pihm(i) ≥
∞
∑

i=1

pih(i), ∀ m = 0, 1, . . . ,

so that

lim
m→∞

∞
∑

i=1

pihm(i) ≥
∞
∑

i=1

pih(i).
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so that

inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X∗. (20)

Thus by combining Eqs. (18), (19), and (20), we see that

Ĵ(x) = inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X,

and that Ĵ is a solution of Bellman’s equation.

We will next show that Jk → Ĵ starting from every initial J0 ∈ Ŵ [cf. part (b)]. Indeed, for x0 ∈ X̂ and any

π = {µ0, µ1, . . .} ∈ Π̂x0
, let {xk} be the generated sequence starting from x0. Since from the definition of the VI

sequence {Jk} [cf. Eq. (5)], we have for all x ∈ X , u ∈ U(x), k = 1, 2, . . .,

Jk(x) ≤ E
{
g(x, u, w) + Jk−1

(
f(x, u, w)

)}
,

it follows that

Jk(x0) ≤ Eπ
x0

{
J0(xk) +

k−1∑

m=0

g
(
xm, µm(xm), wm

)
}
.

Since J0 ∈ Ŵ, we have Eπ
x0

{
J0(xk)

}
→ 0, so by taking the limit as k → ∞ in the preceding relation, it follows that

lim supk→∞ Jk(x0) ≤ Jπ(x0). By taking the infimum over all π ∈ Π̂x0
, we obtain lim supk→∞ Jk(x0) ≤ Ĵ(x0).

Conversely, since Ĵ ≤ J0 and Ĵ is a solution of Bellman’s equation (as shown earlier), it follows by induction that

Ĵ ≤ Jk for all k. Thus Ĵ(x0) ≤ lim infk→∞ Jk(x0), implying that Jk(x0) → Ĵ(x0) for all x0 ∈ X̂ . We also have

Ĵ ≤ Jk for all k, so that Ĵ(x0) = Jk(x0) = ∞ for all x0 /∈ X̂ . This completes the proof of part (b). Finally, since

Ĵ ∈ Ŵ and Ĵ is a solution of Bellman’s equation, part (b) implies the uniqueness assertion of part (a).

(c) If µ is proper at all x ∈ X̂ and Eq. (17) holds, then

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X.

By Prop. 1(b), this implies that Jµ ≤ Ĵ , so µ is optimal over the set of proper policies. Conversely, assume that µ

is proper at all x ∈ X̂ and Jµ = Ĵ . Then by Prop. 1(b), we have

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X,

Conversely, since h̄(i)− hm(i) ≥ 0 for all m, we have for every N ≥ 1

∞
∑

i=1

pi
(

h̄(i) − hm(i)
)

≥
N
∑

i=1

pi
(

h̄(i)− hm(i)
)

,

and hence

lim
m→∞

∞
∑

i=1

pi
(

h̄(i) − hm(i)
)

≥ lim
m→∞

N
∑

i=1

pi
(

h̄(i)− hm(i)
)

,

so that
∞
∑

i=1

pih̄(i)− lim
m→∞

∞
∑

i=1

pihm(i) ≥
N
∑

i=1

pih̄(i)−
N
∑

i=1

pih(i).

By taking the limit as N → ∞ and using the fact that
∑

∞

i=1
pih̄(i) is finite (so we can cancel it from both sides of the inequality), we obtain

lim
m→∞

∞
∑

i=1

pihm(i) ≤
∞
∑

i=1

pih(i),

thus completing the proof.
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and since [by part (b)] Ĵ is a solution of Bellman’s equation,

Ĵ(x) = inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, x ∈ X.

Combining the last two relations, we obtain Eq. (17).

Let us also state our main result under an alternative assumption, which makes the connection with our earlier

deterministic results of the paper [3], where an assumption such as Eq. (16) is not needed.

Proposition 6. Assume that the disturbance set W is finite. Then the conclusions of Prop. 5 hold.

Proof. The monotone convergence argument for the proof of Eq. (20) goes through using the finiteness of W in

place of the assumption (16).

We note that some additional assumption, like Eq. (16) or the finiteness of W , is necessary to prove our results

for SSP problems. In this respect, we note that the original version of the proposition, which appeared in the IEEE

Trans. on Aut. Control, was flawed in that it was valid only for the case where W is finite. This was pointed out

to us by Yi Zhang (private communication), who constructed the following example.

Example 1. Let X = {t, 0, 1, 2, . . .}, where t is the termination state, and let g(x, u, w) ≡ 0, so that J∗(x) ≡ 0.

There is only one control at each state, and hence only one policy. The transitions are as follows:

From each state x = 2, 3, . . . we move deterministically to state x− 1, from state 1 we move deterministically to

state t, and from state 0 we move to state x = 1, 2, . . ., with probability px such that
∑∞

x=1 xpx = ∞ [so at state

0, the assumption (16) and the finiteness of W are violated].

Here the unique policy is proper at all x = 1, 2, . . ., and we have Ĵ(x) = J∗(x) = 0. However, the policy is

not proper at x = 0, since the expected number of transitions from x = 0 to termination is
∑∞

x=1 xpx = ∞. As a

result the set Π̂0 is empty and we have Ĵ(0) = ∞. Thus Ĵ does not satisfy the Bellman equation for x = 0, since

∞ = Ĵ(0) 6= E
{
g(0, u, w) + Ĵ

(
f(0, u, w)

)}
=

∞∑

x=1

pxĴ(x) = 0.

Suppose now that the set of proper policies is sufficient in the sense that it can achieve the same optimal cost

as the set of all policies, i.e., Ĵ = J∗. Then, Prop. 5 or Prop. 6 (under the corresponding assumptions) imply that

J∗ is the unique solution of Bellman’s equation within Ŵ, and the VI algorithm converges to J∗ starting from any

J0 ∈ Ŵ. Under additional conditions, such as finiteness of U(x) for all x ∈ X [cf. Prop. 1(e)], the VI algorithm

converges to J∗ starting from any J0 ∈ J with Eπ
x0

{
J(xk)

}
→ 0, for all (π, x0) ∈ C.

IV. THE MULTIPLICITY OF SOLUTIONS OF BELLMAN’S EQUATION

Let us now discuss the issue of multiplicity of solutions of Bellman’s equation within the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

We know from Prop. 1(a) and Prop. 5(a) (or Prop. 6) that J∗ and Ĵ are solutions, and that all other solutions J

must satisfy either J∗ ≤ J ≤ Ĵ or J /∈ Ŵ.
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In the special case of a deterministic problem (one where the disturbance wk takes a single value), it was shown in

the paper [3] that Ĵ is the largest solution of Bellman’s equation within J, so all solutions J ∈ J satisfy J∗ ≤ J ≤ Ĵ .

Moreover, it was shown through examples that there can be any number of solutions that lie between J∗ and Ĵ : a

finite number, an infinite number, or none at all.

In stochastic problems, however, the situation is strikingly different. There can be an infinite number of solutions

J ∈ J such that J 6= Ĵ and J ≥ Ĵ , even when the set W is finite, as illustrated by the following example. Of

course, by Prop. 5(a) or Prop. 6, under the corresponding assumptions, these solutions must lie outside Ŵ.

Example 2. Let X = ℜ, t = 0, and assume that there is only one control at each state. The disturbance wk takes

two values: 1 and 0 with probabilities α ∈ (0, 1) and 1− α, respectively. The system equation is

xk+1 =
wkxk

α
,

and there is no cost at each state and stage [g(x, u, w) ≡ 0]. Thus from state xk we move to xk/α with probability

α and to the termination state t = 0 with probability 1 − α. Here, the only admissible policy is proper, and we

have

J∗(x) = Ĵ(x) = 0, ∀ x ∈ X.

Bellman’s equation has the form

J(x) = (1 − α)J(0) + αJ
(x
a

)
, x ∈ X,

and has an infinite number of solutions within J in addition to J∗ and Ĵ: any positively homogeneous function,

such as, for example, J(x) = γ|x|, γ > 0, is a solution. Consistently with Prop. 5(a), none of these solutions

belongs to Ŵ, since xk is either equal to x0/α
k (with probability αk) or equal to 0 (with probability 1−αk), and,

for example, E
{
γ|xk|

}
= γ|x0| for all k.

Let us also note that in the case of linear-quadratic problems, the number of solutions of the Riccati equation

has been the subject of considerable investigation, starting with the papers by Willems [18] and Kucera [19], [20],

which were followed up by several other papers. These works adopt various assumptions relating to controllability

and observability. Because of these assumptions and also because solutions of the Riccati equation give rise to

solutions of the Bellman equation, but not reversely, it appears that the full characterization of the set of solutions

of the Bellman equation remains an interesting open research question at present.

V. THE CASE OF BOUNDED COST PER STAGE

Let us consider the special case where the cost per stage g is bounded over X × U ×W , i.e.,

sup
(x,u,w)∈X×U×W

g(x, u, w) < ∞. (21)

We will show that Ĵ is the largest solution of Bellman’s equation within the class of functions that are bounded

over the effective domain X̂ of Ĵ [cf. Eq. (15)].
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We say that a policy π is uniformly proper if there is a uniform bound on the expected number of steps to reach

the destination from states x ∈ X̂ using π:

sup
x∈X̂

∞∑

k=0

rk(π, x) < ∞.

Since we have for all π ∈ Π̂x0
,

Jπ(x0) ≤

(
sup

(x,u,w)∈X×U×W

g(x, u, w)

)
·

∞∑

k=0

rk(π, x0) < ∞,

it follows that the cost function Jπ of a uniformly proper π belongs to the set B, defined by

B =

{
J ∈ J

∣∣∣ sup
x∈X̂

J(x) < ∞

}
. (22)

When X̂ = X , the notion of a uniformly proper policy coincides with the notion of a transient policy used in [2]

and [15], which itself descends from earlier works. However, our definition is somewhat more general, since it also

applies to the case where X̂ is a strict subset of X .

Let us denote by Ŵb the set of functions

Ŵb = {J ∈ B | Ĵ ≤ J}.

The following proposition provides conditions for Ĵ to be the largest fixed solution of the Bellman equation within

B. Its assumptions include the existence of a uniformly proper policy, which implies that Ĵ belongs to B.

Proposition 7. Assume that the cost per stage g is bounded over X ×U ×W [cf. Eq. (21)], and that there exists

a uniformly proper policy. Assume further that Eq. (16) holds or that the set W is finite. Then:

(a) Ĵ is the unique solution of the Bellman Eq. (6) within the set Ŵb. Moreover, if Ĵ = J∗, then J∗ is the unique

solution of Bellman’s equation within B.

(b) If {Jk} is the sequence generated by the VI algorithm (5) starting with some J0 ∈ B with J0 ≥ Ĵ , then

Jk → Ĵ .

Proof. Since, as noted earlier, the cost function of a uniformly proper policy belongs to B, it follows that Ĵ also

belongs to B. On the other hand, for all J ∈ B, we have

Eπ
x0

{
J(xk)

}
≤

(
sup
x∈X̂

J(x)

)
· rk(π, x0) → 0, ∀ π ∈ Π̂x0

.

It follows that the set Ŵb is contained in Ŵ, while the function Ĵ belongs to Ŵb. Since by Prop. 5(a) (or Prop. 6,

depending on the assumptions), Ĵ is the unique solution of Bellman’s equation within Ŵ, it follows that Ĵ is the

unique solution of Bellman’s equation within Ŵb.

The proof of part (b) and that Ĵ is the unique solution of the Bellman Eq. (6) within the set Ŵb follow as in

the proof of Prop. 5.

Assume now that Ĵ = J∗. Then from the preceding proof, J∗ is the unique solution of Bellman’s equation within

the set Ŵb = {J ∈ B | J∗ ≤ J}. If there were another solution J ′ within B, then by Prop. 1(a), we would have
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J∗ ≤ J ′ so that J ′ ∈ Ŵb. This shows that J ′ = J∗, so J∗ is the unique solution of Bellman’s equation within

B.

The uniqueness of solution of Bellman’s equation within B when Ĵ = J∗ [cf. part (a) of the preceding proposition]

is consistent with Example 2. In that example, J∗ and Ĵ are equal and bounded, and all the additional solutions of

Bellman’s equation are unbounded.

Note that without the assumption of existence of a uniformly proper π, Ĵ and J∗ need not belong to B. As an

example, let X be the set of nonnegative integers, let t = 0, and let there be a single policy that moves the system

deterministically from a state x ≥ 1 to the state x− 1 at cost g(x, x− 1) = 1. Then

Ĵ(x) = J∗(x) = x, ∀ x ∈ X,

so Ĵ and J∗ do not belong to B, even though g is bounded. Here the unique policy is proper at all x, but is not

uniformly proper.

VI. CONCLUDING REMARKS

We have considered nonnegative cost SSP problems, which involve arbitrary state and control spaces, and a

Bellman equation with possibly multiple solutions. Within this context, we have generalized the notion of a proper

policy and we have discussed the restricted optimization over just the proper policies. The restricted optimal cost

function Ĵ is a solution of Bellman’s equation, and if the cost per stage is bounded, Ĵ is the maximal solution

within the set of nonnegative functions that are bounded within their effective domain. By contrast, J∗ is the

minimal solution. When compared with their deterministic counterparts of the paper [3], the results of the present

paper highlight an interesting difference: in deterministic problems Ĵ is the maximal solution of Bellman’s equation

within all functions in J (unbounded as well as extended real-valued), whereas this need not be true for stochastic

problems.
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