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Abstract 

In dynamic minimax and stochastic  optimization 
problems frequent ly  one i s  forced  to   use a suboptimal 
con t ro l l e r   s ince   t he  computation and implementation  of 
the  optimal  controller  based on dynamic programming i s  
impract ical   in  many cases .  In th i s   paper  we study  the 
performance  of some subopt imal   cont ro l le rs   in   re la t ion  
t o   t h e  performance  of  the  optimal  feedback  controller 
and the  optimal  open-loop  controller.  Attention i s  
focused on  some c l a s ses   o f ,  so called,  open-loop-feed- 
back c o n t r o l l e r s .   I t  i s  shown under  quite  general  
assumptions  that  these  open-loop-feedback  controllers 
perform a t   l e a s t   a s  well as  the  optimal  open-loop 
c o n t r o l l e r .  The r e s u l t s   a r e  developed for   general  min- 
imax problems  with  perfect  and  imperfect  state  infonna- 
t i on .   In   t he   l a t t e r   ca se   t he  open-loop-feedback  cont- 
r o l l e r  makes use  of an est imator  which i s  required  to  
perform a t   l ea s t   a s   we l l  as a pure   p red ic tor   in   o rder  
f o r   t h e   r e s u l t s   t o   h o l d .  Some of the   resu l t s   p resented  
have s tochast ic   counterpar ts .  

1. Introduction 

Since  the dynamic programming approach  towards t h e  
optimization  of dynamic uncertain  systems is  of ten com- 
putationally  impractical ,   suboptimal  controllers  for 
such  systems are i n  common usage. Such cont ro l le rs  
include  the  optimal  open-loop  controller,  the  naive 
feedback  controller, and the  open-loop-feedback  contro- 
l l e r .  The p rec i se   de f in i t i on  of each  of  these  contro- 
l l e r s  i s  not as ye t   s t anda rd   i n   t he   cu r ren t   l i t e r a tu re .  
For this   reason we sha l l   de f ine  each  of *hem i n   r e l a -  
t i o n   t o  a s p e c i f i c  minimax problem which will be  of 
con t inu ing   i n t e re s t   i n   t h i s   pape r .  

Problem 1: Given i s  the   uncer ta in  dynamic system 

where Xk and Uk denote   for  a l l  k t h e   s t a t e  and  con- 
t r o l   o f   t h e  system and Wk denotes some uncertain  para- 
meter. The q u a n t i t i e s  Xk, uk and Wk are  elements  of 
spaces S %, kk, Swk, respect ively and the  functions 

fk= Sxk x SUk x %k + Sxk,  k=0,1,.. ,  N - 1  are given. 

I t  i s  assumed tha t ,   f o r   each  k ,  the   cont ro l  Uk is  
constrained  to   take  values  from a given  subset uk of 

I t   i s  a l s o  assumed tha t   the   d i s turbance  Wk can %; values from a given  subset wk of swk. Given t h e  
i n i t i a l  s tate o f   t he  system x. f i n d   ( i f  it e x i s t s )  a 
control  law {po,pl,. . . ,pN-l}  with 

the   cos t   func t iona l  
&= Sxk * uk, Uk=& (xk) , k=O ,1, . . , N - 1  which minimizes 

k=O,l,..,N-l (2) 

subject   to   the  system  equat ion  constraints  and where 
g=Sq * R is  a given real valued  function. 
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I t  i s  worth no t ing   t ha t   t he  above problem  formula- 
t i o n  i s  very   genera l   s ince   the   s ta te ,   cont ro l  and d i s -  
turbance  spaces   are   arbi t rary and may d i f f e r  from one 
t ime  instant   to   another .  Among o ther   th ings   th i s  
allows  one t o  reduce a wide var ie ty   o f   cos t   func t iona ls  
to   the   t e rmina l   s ta te   cos t   func t iona l   o f  Eq (2)  by 
means of  various state augmentation  and  transformation 
techniques. 

We shall   denote by Jf (xo) the  optimal  value  of 
the   cos t   func t iona l   in  Problem 1. This  value  corres- 
ponds to   the  opt imal   feedback  (0 . f . )   control ler .   This  
c o n t r o l l e r  makes optimal  use  of  the  information  obtain- 
ed  during  the  operation  of  the  system, namely t h e  
value  of   the  s ta te   a t   each  t ime.  The c o n t r o l l e r  which 
i s  optimal  (assuming it e x i s t s )   i n   t h e   c l a s s   o f  
admissible  controllers w-hich ignore  the  information, 
i . e . ,  t h e  class o f   c o n t r o l l e r s   f o r  which 

i s  called  the  optimal  open-loop 'k (0 .1 . )   control ler  and 
the  corresponding  value of the   cost   funct ional  i s  
denoted by Jol (x,). 

&(xk) = c k :  Constant, v XkE s k = O , l , . . , N - l ,  

Following  Witsenhausen [l] we s h a l l   c a l l  any 
admissible   control ler   {po,pl , .  . , p s 1 }  quasi-adaptive 
i f  

and adaptive i f  

In a p r a c t i c a l   s i t u a t i o n   t h e  computation  and 
implementation  of  the  optimal  feedback  controller is  
of ten  impract ical   whi le   the more e a s i l y  implementable 
optimal 0.1. c o n t r o l l e r  may per fom  ra ther   poor ly .  
Thus suboptimal  adaptive  controllers which can  be 
p r a c t i c a l l y  implemented a r e   o f   i n t e r e s t .  A suboptimal 
con t ro l l e r   o f t en   u sed   i n   p rac t i ce  is  t h e ,  s o  c a l l e d ,  
naive  feedback  control ler .   In   order   to   calculate   this  
cont ro l le r   the   d i s turbance   vec tors   a re  assumed t o  have 
some fixed  value y( for  each  t ime k with 
Wk E: wk and t h e  feedback c o n t r o l l e r  which is  optimal 
for   the   resu l t ing   "de terminis t ic"  problem i s  used. 
This   control ler   need  not   be  calculated by dynamic 
programming bu t   r a the r  can  be  implemented by solving 
an  open-loop  "deterministic"  optimization  problem at  
each  time k s t a r t i ng   a t   t he   obse rved   s t a t e  Xk. 
Contrary t o  deep-rooted  convictions among engineers it 
i s  known [2]  that   in   general   the   naive  feedback  contr-  
o l l e r  may perform s t r i c t l y  worse  than  the  optimal 0.1. 
c o n t r o l l e r ,   i . e .  it may not  be  quasi-adaptive. 

- 

The open-loop-feedback(o.l.f.)controller [lllwhich 
is  the  main object   of   s tudy  of   this   paper ,  is  similar 
to   t he   na ive  feedback con t ro l l e r   excep t   t ha t  it takes 
unce r t a in ty   exp l i c i t l y   i n to   accoun t .  I t  is denoted by 
{p0,$,. .,IJN-$ and defined as follows: % % 

% %  
A t  any Lime k and s t a t e  Xk l e t  

{uk ,uk+l,. . ,u N-.l} be  the  sequence which minimizes 
(assuming it ex i s t s )   t he   cos t   func t iona l  

X i + l = f .  (x.  ,u.  ,w.) 
1 1 1 1  

i=k,.. ,N-1 
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among a l l  sequences  {uk,uk+l,. . ,uN-13 such t h a t  
u i   EUi , i=k , .  . , N - l .  The va lue   o f   the   o .1 . f .   cont ro l le r  
a t  s tate Xk i s  given by 

Clear ly   the   o .1 . f .   cont ro l le r  is  e a s i e r   t o  
implement than  the  optimal  feedback  controller and i t  
i s  more d i f f i c u l t   t o  implement than  the  optimal 0.1. 
control ler   (s ince  the  opt imal  0.1. c o n t r o l l e r  is ca l -  
culated  already at  the  f i rs t   s tage  of   implementat ion 
o f   t h e   o . 1 . f .   c o n t r o l l e r ) .   I t  is  a genera l   be l ie f   tha t  
the  o .1 . f .   control ler   usual ly   performs  considerably 
bet ter   than  the  opt imal  0.1. con t ro l l e r .   I n   t h i s   pape r  
we prove tha t   the   o .1 . f .   cont ro l le r   per forms always a t  
l e a s t  as well  as  the  optimal 0.1. c o n t r o l l e r ,   i . e .  it 
i s  quasi-adaptive.  This  fact,  apparently  not  proven 
i n   t h e   l i t e r a t u r e  even fo r   t he   s tochas t i c   ca se ,  is  
demonstrated in   Sec t ion  2 .  In  the same sec t ion  we a l so  
consider a problem similar t o  Problem 1 where in   addi-  
t i o n   t h e r e   a r e   s t a t e   c o n s t r a i n t s .  We next  consider  the 
case where the  control ler   has   imperfect   s ta te   informa- 
t i o n .  Under these   c i rcumstances   the   o .1 . f .   cont ro l le r  
makes use  of an est imator  which c a l c u l a t e s   a t  each time 
t h e   s e t  of  possible  system states given  the  observations 
received.  This  estimator may ca l cu la t e   e i t he r   t he  
exac t   s e t   o f   poss ib l e   s t a t e s  o r  a s e t  which bounds the  
exac t   s e t   o f   poss ib l e   s t a t e s  (presumably t h i s  bounding 
s e t  can  be  calculated more e a s i l y ,  as i s  t h e   c a s e ,   f o r  
example,   of  l inear  systems  with  ell ipsoidal  constraints 
[3 ] ,   [ 4 ] ,   [S I ) .   I t  i s  shown in  Sect ion 3 t h a t   i f   t h e  
estimator  used  performs,  roughly  speaking,  better  than 
a pure   p red ic tor ,   then   the   resu l t ing   o .1 . f .   cont ro l le r  
is  quasi-adaptive. 

2 .  Performance  of  the Open-Loop-Feedback 
Control ler   for   the  Perfect   State   Information 
Case - 

Let us assume tha t   t he   o .1 . f .   con t ro l l e r  
{ll”,,u”,, . . ,pN- l j   ex is t s   for  Problem 1 and l e t   t h e  
corresponding  value  of  the  cost  functional be denoted 
by J (x ) .  Then 

of 0 

where the  funct ion Jo: Sxo +(-m,+m] is  given  recur- 
s i v e l y  by the  algorithm 

k=O, l , . . ,N-2  ( 5  1 

Let  us a l so   cons ider   the   func t ions  

JL: Sx; (-=,+-I,  k=0,1,. . , N - 1 ,  defined by 

J‘ (x) = min k 
U . E  u 1 i  

SUP 
w. EWi 

i = k , k + l , . . , N - 1  X i + l = f i  (Xi ’ U i  ,Wi) 
i = k , k + l , .  . , N - 1  

The minimization  problem  indicated  in  the above equa- 
t i o n  must be  solved a t  time k and s t a t e  x i n   o r d e r  
t R  ca lcx la te   the   ob l . f .   cont ro l .  Thus i f  
{uk(x)  ,uk+l(x&. . ,u   -1(x) l   solves   the problem i n  Equ. 
( 6 )  we have  &(x)=$  (x).  Clearly Jf (x)  can  be 
in te rpre ted  as the  calculated  open-loop  optimal  cost  
from time k t o  time N and s t a r t i n g  from t h e   s t a t e  
x. The optimal  open-loop  cost is  given  by 

We prove  the  following  proposit ion: 

Proposition 1: For  every x and k we have 
C 

Jk (‘1 <_ Jk (’1 (7) 

In   pa r t i cu la r   fo r  k=O we have 

Jf(Xo)<_JOf(X&J:  (xo) = Jol (xo) (8) 

and hence  the  open-loop-feedback  controller i s  quasi-  
adaptive. 

Proof: We shal l   prove (7)  by induction.  Since by the  
de f in i t i on   o f   t he   o .1 . f .   con t ro l l e r  we have 
J N - ~  (X) = Jk- (x ) ,  (7)  hnlds  for  k=N-1. Assume 
t h a t  J k + l  (x) <J$+1 (x),V x E Sxk+l. Then f o r  a l l  
x E Sx,. and w E wk we have 

and 

% 
5 sup Ji+l [ fk[Xrpk(X) 9‘1 = 3 

WE Wk 

W E  Wk U . E  u 
= sup min SUP g (XN) 

1 i  
W.E w 1 i  

i = k + l , k + 2 , .  . , N - 1  ~ ~ + ~ = f .  (x. ,u. ,w.) 
1 1 1 1  

i=k+l ,k+2, . . ,N-l  

x k + l = f k [ x ’ ~ ( x )  , W l  
,-b 

5 min SUP 
u. EU 

i = k + l , k + 2 , .  . , N - 1  ~ ~ + ~ = f .  (x. ,u. ,w.) 
1 i  w E wi i 

1 1 1 1  
i=;C+l ,k+2, .  . , N - 1  

‘k+lZfk IX9pk (‘1 9’1 

% 

W E  Wk Q .E .D .  

I t  i s  t o  be noted  that  by ( 7 )  the   calculated open- 
loop  optimal  cost from s t a t e  Xk, Jf (xk),  provides a 
readily  obtainable  performance bound fo r   t he   o .1 . f .  
cont ro l le r .  Two general izat ions  of   the  above proposi- 
t ion  should  a lso be  noted. The f i r s t  i s  concerned 
with  the  case where the   con t ro l   cons t r a in t s   a r e   s t a t e  
dependent  and  the  disturbance  constraints  are  state 
and control  dependent.   In  this  case  the  result   of 
Proposition 1 follows by using a s imilar   proof .  The 
second  generalization  concerns  the  stochastic  version 
of Problem 1 where the  disturbances wk a r e  random 
vectors  with  given  probabili ty  distribution and the  
sup in   the  cost   funct ional   (2)  i s  replaced by an 
expectation. Again a resu l t   ana logous   to   the  one of 
Proposition 1 follows by using an e n t i r e l y   s i m i l a r  
argument. 

The case where i n  Problem 1 there   a re   addi t iona l  
s t a t e   c o n s t r a i n t s  Xk E xk where xk i s  a given  sub- 
set of  Sxk requires   separate   discussion  s ince one 
can  envisage two d i f f e r e n t  ways of   def ining  the  0 .1 . f .  
cont ro l le r .  The f i r s t  method is  similar t o   t h e  one 
used e a r l i e r  whereby a t   s t a t e  Xk the   o .1 . f .   contm-  
l l e r   s o l v e s   t h e  problem 

min SUP g (XN) 

1 i  
U . E  u 
i = k , k + l , .  . , N - 1  x ~ + ~ = ~ ~ ( x ~ , u .  ,w.) 

W.E w 
1 i  

1 1  
i = k , .  . , N - 1  (9) 

sub jec t   t o   t he   add i t iona l   cons t r a in t  on the  sequence 
{Uk,Uk+l,.., UN-1) t h a t  X i  E X i ,  i = k + l , . .  , N - 1  f o r   a l l  
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W.E W.,i=k,k+l,.. ,N-1.  This  definition  of  the  o.1.f. 
c b n t d l l e r   r e s u l t s   i n   s a t i s f a c t i o n   o f   t h e  state const- 
a in t s   ( i f   t he   o .1 . f .   con t ro l l e r   ex i s t s )   bu t   does   no t  
t ake   i n to   accoun t   t he   f ac t   t ha t   t he   fu tu re   s t a t e s  will 
be known t o   t h e   c o n t r o l l e r  as time progresses. On t h e  
o ther  hand an a l t e rna te   de f in i t i on   o f   t he  0.1 . f .  con- 
t r o l l e r  which a t  f i r s t   s i g h t   a p p e a r s   t o   o f f e r  an 
advantage  takes   into  account   the  fact   that   fur ther  
information will be  received  in as much as the  satis-  
fac t ion  of t h e  state cons t ra in ts  i s  concerned. I t  is  
known tha t   i n   o rde r   t ha t  a feedback c o n t r o l l e r  
{~.I,,I.I~ ,. . ,$-1} r e s u l t s   i n   s a t i s f a c t i o n  of   the   s ta te  
cons t r a in t s   x i  E X i  it is  necessary and s u f f i c i e n t  

dependent  constraint set implied by t h e   s t a t e  con- 
s t r a i n t s  and generated@ossibly at the  expense  of 
considerable  computation)by means o f  a recursive 
algorithm  [6],[7],[8].  Hence a poss ib le   def in i t ion   o f  
t he   o .1 . f .   con t ro l l e r  which r e su l t s   i n   s a t i s f ac t ion   o f  
t he   s t a t e   cons t r a in t s  can  be  given by means of  the 
s o l u t i o n   a t   s t a t e  Xk of   the  problem 

t h a t  &(Xk) E Uk(xk)  where Uk(Xk)C uk is  a S t a t e  

min SUP g 
'k E Uk(xk) W . E  w. 
ui E ui  

1 1  
x. = f .  (x.  ,u.,w.) 1+1 1 1 1 1 

i = k + l , . . , N - 1  i = k , . . , N - 1  (10) 

ra ther   than   v ia   the   so lu t ion   of  problem ( 9 ) .  Clear ly  
t h e   s e t  of  admissible  control  sequences  for  problem 
(10)  contains  the set of  admissible  control  sequences 
f o r  problem (9) which may be empty even i f   t h e r e   e x i s t s  
an admissible  control law f o r   t h e   o r i g i n a l  problem. I t  
would appear   that   the   o .1 . f .   control ler   based on the  
solution  of problem (10) performs  better  than  the  o.1.f. 
cont ro l le r   based  on problem  (9)  since  for  the  former 
the  control   constraints   implied by the  s ta te   constraints  
a re   l ess   s t r ic t .   This   coniec ture  is no t   t rue   i n  gen- 
eral   as   the  fol lowing example demonstrates. 

~~ 

Consider  the scalar 2-stage  system: 
x = 1  
0 

x1 = xo+uo+wo 

x* = f(Xl'Ul) 
where 

f(2,O) = f (0 , -1)  = 0 

f(2,-1)  = f(0,O) = 2 

f(1,O) = f (1 , -1)  = f(-1,O) = f ( -1 , -1)  

The control   constraints   are   uo,ul  E { o , - ~ }  
s t a t e   cons t r a in t  is  x2 E { o , o . ~ ) .  The cos t  
is  

J ( x ~ . ~ . I ~ , u ~ )  = m a  x2 
W0E{-l,l) 

= 0 . 5  

and the  
funct ional  

I t  follows by s t ra ight forward   ca lcu la t ion   tha t  
the  cost   corresponding  to   the  o .1 . f .   control ler   based 
on problem  (9) is 0 while  the  cost   corresponding  to 
the  o.1.f. cont ro l le r   based  on problem  (10) is 0 .5 .  

The above  example demonstrates  also a counter- 
in tu i t ive   p roper ty   o f   the   o .1 . f .   cont ro l le r   for  
Problem 1 (without   s ta te   constraints)  namely t h a t  i f  
the  control   constraint   se ts   are   enlarged it i s  possible  
tha t   t he  performance  of  the  o.1.f .   controller  deterio- 
ra tes .   This  i s  due,  of  course, t o   t h e   f a c t   t h a t   t h e  
o .1 . f .   con t ro l l e r  does  not make optimal  use  of  the 
additional  admissible  values.  

3.  Performance  of  the Open-Loop-Feedback 
Controller  for  the  Imperfect  Information Case 

We turn now to   the   case  where t h e  0.1. f .  con- 

t r o l l e r  does  not  have  access to   t he   exac t   sys t em  s t a t e  
but  rather  receives  (possible  noise-corrupted)  measure- 
ments providing  information  about  the  system  state.  We 
consider  the  following  problem. 

Problem 2 :  Consider Problem 1 where the   cont ro l le r   has  
access   t o  measurments of   the form 

Given a particular  information  sequence 
i& = ( z ~ , z ~ , . . , z ~ , u ~ , u ~ , . . , ~ ~ ~ ~ )  t h e r e   e x i s t s  a 
corresponding  set  of  possible states Xk given  that  
ck has  occurred. We denote   this  set by xk(ck). I t  
i s  t h e   s e t   o f   a l l   s t a t e s  Xk cons is ten t   wi th   the  
measurements z o , . . , z k  the  controls   uo, . . ,uk- l   the  
system  equation and the  constraints  wiEWi,i=o,. . ,k-l ,  
v i ~ V ~ , i = o , l , .  . ,k .  I t  i s  known t h a t   t h e  set xk(ck) 
c o n s t i t u t e s  a suf f ic ien t   in format ion   [ I ] ,   [g ] ,   [ lo ]   for  
t h e   c o n t r o l l e r   r e l a t i v e   t o  Problem 2 ,  i . e .   the   op t imal  
c o n t r o l l e r  need  only  be a function  of  xk(<k)  rather 
than c k .  In a sense  that   can  be  well   defined  the  set  
xk(5k)  can  be  viewed as t h e   s t a t e   o f  a new system. 
This  system  evolves  in  time  according  to  the  equations 

Let us  consider  control laws of   the form 

{uo,ul,. . with ak: Subsets  of Sx + U k ,  

I+ = ok[ \ ($) ]  and cons ider   a l so   the  cos! funct ional  

G r ~ k ( $ - l ) l  = sup g ("N) 

54 E 5(%-1) (18) 

I t  can  be eas i ly   s een   t ha t  Problem 2 is equiva len t   to  
t h e  problem of minimizing  the  cost   functional (17) over 
a l l  admissible  control laws {ao,.. , u N - ~ }   s u b j e c t   t o  
t h e  system  equation  constraints  (13-16).  Since how- 
eve r   t he   con t ro l l e r  can  calculate   ( in   pr inciple)   the 
s e t  Xk(5k) t h i s  la t ter  problem ( c a l l  it Problem 2 ' )  
i s  one with  perfect   s ta te   information which can  be  cast 
within  the framework of Problem 1. Now the   o .1 . f .  
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c o n t r o l l e r   f o r  Problem 2 '  is exac t ly  what we s h a l l  call  
t he   o .1 . f .   con t ro l l e r   fo r  Problem 2 .  Not ice   tha t   th i s  
o .1 . f .   con t ro l l e r  can be   rea l ized  by  solving a t  time 
k the  problem 

min sup g ( 5 1  
i E 'i % E  %(ck) 

i = k , .  . , N - 1  w.  E Wi 

Xi+l=f.  (x. ,u. ,w.) 
1 1 1 1  

i=k,k+l , . . ,N-1 (19) 

and by taking as the   cur ren t   cont ro l   the  first 
element  of  the  minimizing  sequence. Given tha t   t he  
optimal  open-loop  controller  for Problem 2 '  i s  t h e  
same as the  opt imal   open-loop  control ler   for  Problem 2 
and using  Proposition 1 we have: 

Proposition 2 :  Let Vof (xo), and V o l  (xo) be t h e  
values  of  the  cost functional (12) corresponding. t o  
the   o .1 . f .   con t ro l l e r  and the  optimal 0.1 c o n t r o l l e r  
respect ively.  Then 

Vof (xo) I VOl (xo) (20) 

While the  calculat ion  of   the  set   xk(ck)  by 
the   con t ro l l e r  i s  poss ib l e   i n   p r inc ip l e ,   i n   p rac t i ce  
th i s   ca l cu la t ion  can  be  very d i f f i c u l t  or impossible, 
i . e .  it may b e   d i f f i c u l t   t o   c o n s t r u c t  a r e a l i z a t i o n  of 
the  corresponding  estimator  given by Equ. (13) through 
(16). For this   reason i t  i s  of i n t e r e s t   t o  examine the  
performance  of  open-loop  feedback  controllers  based on 
est imators   that   can  be more e a s i l y  implemented. We 
shal l   consider  a c lass   o f   es t imators  which we s h a l l  
ca l l   r ecu r s ive  bounding  estimators. Such est imators  
provide  estimate  sets 

which conta in   the   se t   o f   poss ib le   s ta tes   xk(ck)  and 
are   rea l ized  by a recursive  algorithm  of  the  general 
f o m  

2k (Ck) 

where Ek is  some funct ion.  Examples of  such 
recursive bounding est imators  are the  es t imators  of 
[3] ,  [ 4 ] ,  [ 5 ] .  We sha l l   s ay   t ha t  a recursive  bounding 
est imator  i s  uncertainty  reducing  i f   for   each admissible 
5k,UkBWk,vk+l,k we have 

Thus the   e s t iRa to r  i s  uncertainty  reducing i f  it pro- 
vides a s e t  xk+ (ck+l) which i s  contained  in   the vt which would be  obtained by pure  prediction  given 
Xk(i&),uk.  In o t h e r  words  an uncertainty  reducing 
est imator   uses   the new measurement Zk+l  with  advan- 
t age. 

We can  define now an o .1 . f .   cont ro l le r   us ing  a 
recursive,bounding  estimator  (21) as follows. Given 
t h e   s e t  xk(5k)  solve  the  problem 

min 
sf? 

g ( 5 1 )  
UiE u i 5' k('k) 

i E k , . . , N - 1  WiE w i 
xi+l= f .  (x. ,u. ,Wi) 

1 1 1  
i=k,.. ,N-1 (22) 

and takes  as the   cu r ren t   con t ro l   t he   f i r s t   e l emen t   o f  
t h e  minimizing  sequence. 

We have  the  following  proposition: 

P y p F i t i o n  :: Let  Jof(x 1 and JO1(xQ)  be  the  values 
3 t e cost   unctional  (18) corresponding t o  an o.1.f 
con t ro l l t r   u s ing  a recursive bounding estimator  (21),  
and t o   t h e   o p t m a 1  0.1. cont ro l le r   respec t ive ly .   I f  
the   es t imator  i s  uncertainty  reducing we have 

Proof:  Let ( u   , u l , .  . yu ~ - 1 1 ~  = uk[$(ck)l  be  the 
0.1 . f .  control&.  Then J o f ( x 3  = J, (xo) where t h e  
function Jo is  given recursively by the  algorithm 

Jo(xo) = sup J 

W E . W  

VIE v 
0 0  

1 
zlE h ~ ~ f ~ ~ X o ~ u o ~ X o ~ ~ W o l ~ V ~ l  

Consider  also  (c.f .  ( 6 ) )  t he   ca l cu la t ed   cos t  

J: [xk (ck)l  = min SUP g ($1 
U . E  u 
1 i  

W.E w 
1 % i  

i = k , .  . , N - 1  XkE '(Ck) 

Xi+l=f.  (x.  ,u. ,w.  ) 
1 1 1 1  

i = k , . . , N - 1  

We have J: (xo) = Jol(xo). 

Thus in   o rder   to   p rove   the   p ropos i t ion  it will be 
su f f i c i en t   t o   p rove   t ha t  
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f o r   a l l  k , r ;  . Hence (23) holds  and  the  proposition 
i s  proved. kQ.E.D. 

An eas i ly   ob ta ined   genera l iza t ion   of   the  above 
proposi t ion  concerns  the  possibi l i ty   of   proving 
stochastic  counterparts  to  Proposit ions 2 and 3 .  The 
stochastic  counterpart  of  Prop. 2 can  be  proved 
s imi la r ly   wi th  no d i f f i c u l t y .  The ro l e   o f   t he  set 
xk(ck) is  played  the  the  condi t ional   probabi l i ty  
p(Xk & ) .  However f o r   s t o c h a s t i c  problems it i s  not 
c l e a r  how one i s  to  define  the  analog  of a recursive 
bounding and uncertainty  reducing  estimator  except  for 
some spec ia l   cases .  One such  special  case is  the  wel l  
known linear  quadratic  Gaussian  problem.  For  this  case 
l i nea r   e s t ima to r s  will produce  Gaussian s t a t e   e s t ima tes  
which can  be pa r t i a l ly   o rde red  by means o f   t h e i r   e r r o r  
covariance  matrix. Thus an uncertainty  reducing 
l inear   es t imator  is  one f o r  which the  corresponding 
error  covariance  matrix i s  smaller  ( in  the  pos.   defin- 
i te   sense)   than  the  error   covariance  matr ix   correspond-  
ing  to   pure  predict ion.  Using th i s   def in i t ion   a   p rop-  
os i t i on   s imi l a r   t o   P ropos i t i on   3  can  be  proved. 

4 .  Conclusions 

In  this   paper  it w a s  shown under  general assump- 
t i o n s   t h a t  open-loop-feedback cont ro l le rs   per form  a t  
l eas t   as   wel l  as optimal  open-loop  controllers  in 
dynamic minimax problems. The classes  of  problems 
considered  include  the  perfect   state  information  case 
and the  imperfect   s ta te   information  case.   In   the latter 
case  the  open-loop-feedback makes use  of an est imator  
computing e i t h e r   t h e   e x a c t   s e t  of  possible  states  of 
the  system o r  an e s t i m a t e   s e t   t h a t  bounds t h e   s e t   o f  
poss ib l e   s t a t e s .  The est imator  is  required  to   perform 
be t te r   than  a pu re   p red ic to r   i n   o rde r   fo r   t he   r e su l t s  
t o   ho ld .  Some o f   t he   r e su l t s   i n   t h i s   pape r  can  also 
be  proved in   a   s tochas t ic   cont ro l  framework. 
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