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Abstract

In dynamic minimax and stochastic optimization
problems frequently one is forced to use a suboptimal
controller since the computation and implementation of
the optimal controller based on dynamic programming is
impractical in many cases. In this paper we study the
performance of some suboptimal controllers in relation
to the performance of the optimal feedback controller
and the optimal open-loop controller. Attention is
focused on some classes of, so called, open-loop-feed-
back controllers. It is shown under quite general
assumptions that these open-loop-feedback controllers
perform at least as well as the optimal open-loop
controller. The results are developed for general min-
imax problems with perfect and imperfect state informa-
tion. In the latter case the open-loop-feedback cont-
roller makes use of an estimator which is required to
perform at least as well as a pure predictor in order
for the results to hold. Some of the results presented
have stochastic counterparts.

1. Introduction

Since the dynamic programming approach towards the
optimization of dynamic uncertain systems is often com-
putationally impractical, suboptimal controllers for
such systems are in common usage. Such controllers
include the optimal open-loop controller, the naive
feedback controller, and the open-loop-feedback contro-
ller. The precise definition of each of these contro-
llers is not as yet standard in the current literature.
For this reason we shall define each of them in rela-
tion to a specific minimax problem which will be of
continuing interest in this paper.

Problem 1: Given is the uncertain dynamic system

Xe1 = 5 (ou W) 1)

where xy and uy denote for all k the state and con-
trol of the system and wy denotes some uncertain para-
meter. The quantities xp, u and wy are elements of
spaces Sxk’ Suk, ka, respectively and the functions
fk= Sxk X
It is assumed that, for each k, the control u is
constrained to take values from a given subset U, of
Sy - It is also assumed that the disturbance wy can
take values from a given subset wy of Sy, . Given the
initial state of the system x, find (if It exists) a
control law {pg,up,...,uy_1} with

M= Sxp * Uk, ug=uk{x), k=0,1,..,N-1 which minimizes
the cost functional

k=0,1,.., N-1

S, x + Sy , k=0,1,.., N-1 are given.
Uy ka Xy g

J(xgsHgsHyse sty ) = sup gxy)
w, € W
k k
k=0,1,..,N-1 2)
subject to the system equation constraints and where
g=SxN + R is a given real valued function.
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It is worth noting that the above problem formula-
tion is very general since the state, control and dis-
turbance spaces are arbitrary and may differ from one
time instant to another. Among other things this
allows one to reduce a wide variety of cost functionals
to the terminal state cost functional of Eq (2) by
means of various state augmentation and transformation
techniques.

We shall denote by Jg (xo) the optimal value of
the cost functional in Problem 1. This value corres-
ponds to the optimal feedback (o.f.) controller. This
controller makes optimal use of the information obtain-
ed during the operation of the system, namely the
value of the state at each time. The controller which
is optimal (assuming it exists) in the class of
admissible controllers which ignore the information,
i.e., the class of controllers for which
Uk (xy) =cy: constant, ¥ Xy € Sy k=0,1,..,N-1,
is called the optimal open-loop “(0.1.) controller and
the corresponding value of the cost functional is
denoted by Jg) (x0)-

Following Witsenhausen [1] we shall call any
admissible controller {ug,H;,..,un-1} Qquasi-adaptive
if

Jf(xo) SJ(xoauo,u:l; .. ,uN-l)SJol (xo)

and adaptive if
J J(x , sees
f(xo) < (xo uo’ul uN-l) < Jol (xo)

In a practical situation the computation and
implementation of the optimal feedback controller is
often impractical while the more easily implementable
optimal o.l. controller may perform rather poorly.
Thus suboptimal adaptive controllers which can be
practically implemented are of interest. A suboptimal
controller often used in practice is the, so called,
naive feedback controller. In order to calculate this
controller the disturbance vectors are assumed to have
some fixed value wy for each time k with
Wi € Wy and the feedback controller which is optimal
for the resulting "deterministic" problem is used.
This controller need not be calculated by dynamic
programming but rather can be implemented by solving
an open-loop 'deterministic" optimization problem at
each time k starting at the observed state x.
Contrary to deep-rooted convictions among engineers it
is known [2] that in general the naive feedback contr-
oller may perform strictly worse than the optimal o.1.
controller, i.e. it may not be quasi-adaptive.

The open-loop-feedback (0.1.f.)controller [11]which
is the main object of study of this paper, is similar
to the naive feedback controller except that it takes
uncertainty explicitly into account. It is denoted by
{1y,17, .. ,uNy-1} and defined as follows:

At any g}me k and state x; let
WA < s s
{ug,ups15..,uy_1} be the sequence which minimizes
(assuming it exists) the cost functional

3Txk,uk,uk+1,--,uN_1) = swp g(xy)
€N
%3417 (X55155%5)
i=k,..,N-1



among all sequences {uk,uk+1,..,uN_1} such that
u; €Uj,i=k,..,N-1. The value of the o.1.f. controller
at state xp is given by

n N
B ) =

Clearly the o.1.f. controller is easier to
implement than the optimal feedback controller and it
is more difficult to implement than the optimal o.1l.
controller (since the optimal o.l1. controller is cal-
culated already at the first stage of implementation
of the o0.1.f. controller). It is a general belief that
the o.1.f. controller usually performs considerably
better than the optimal o.1. controller. In this paper
we prove that the o.1.f. controller performs always at
least as well as the optimal o.l. controller, i.e. it
is quasi-adaptive. This fact, apparently not proven
in the literature even for the stochastic case, is
demonstrated in Section 2. In the same section we also
consider a problem similar to Problem 1 where in addi-
tion there are state constraints. We next consider the
case where the controller has imperfect state informa-
tion. Under these circumstances the o.l.f. controller
makes use of an estimator which calculates at each time
the set of possible system states given the observations
received. This estimator may calculate either the
exact set of possible states or a set which bounds the
exact set of possible states (presumably this bounding
set can be calculated more easily, as is the case, for
example, of linear systems with ellipsoidal constraints
[3], [4], [5]). It is shown in Section 3 that if the
estimator used performs, roughly speaking, better than
a pure predictor, then the resulting o.l1.f. controller
is quasi-adaptive.

2. Performance of the Open-Loop-Feedback
Controller for the Perfect State Information
Case

Let us assume that the o.l.f. controller
{8,14,..,_1} exists for Problem 1 and let the
corresponding value of the cost functional be denoted
b J (x ). Then

y o Joe) e
Joe(x) = 3 (%) (3
where the function Jg: Sy +(-%,+=]
sively by the algorithm

is given recur-

Iy &) = sup glfy_; (il (x),W)]
wawN_l 4)

J (x) = sup I [E (1 (x),%)]

K we, k+1M MRk

Let us also consider the functions
c
Jk: ng+ (-»,+>], k=0,1,..,N-1, defined by
JE x) = min sup
u.e U. w.EW.
i~ i il
i=k,k+1,..,N-1

g(xy)

%5417 (%5515 5%)

i=k,k+1,..,N-1
=X (6)

The minimization problem indicated in the above equa-
tion must be solved at time k and state x in order
tQ calcylate the o,l.f. control. Thus if
{uk(x),uk+1(xlc..,u -1(x)}} solves the problem in Equ.
(6) we have 1 (x)=uk(x). Clearly Jf(x) can be
interpreted as the calculated open-loop optimal cost
from time k to time N and starting from the state
x. The optimal open-loop cost is given by

Jol(xo) = Js (xo)
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We prove the following proposition:

Proposition 1: For every x and k we have

c
J < T (®) &)
In particular for k=0 we have
c
Jf(xo)s‘]of(x(gs‘]o (xo) = Jo1 (xo) (8)
and hence the open-loop-feedback controller is quasi-

adaptive.

Proof: We shall prove (7) by induction. Since by the
definition of the o0.1.f. controller we have

JIN-1(x) = Jﬁ-l (x), (7) holds for k=N-1. Assume
that Jk+1(x) SJ1%+1 (x),Vx € Sxk+1' Then for all

x € Sy, and w € Wy we have

Jk+1 k[x’&k(x) :w]]s J}c(+1 [fk [x:ﬁ\]l( (X) ,W]]

and

Y
- <
Jk(x) sup Jk+1 [fk[xsuk (X) ,W]] =
W sh&
c 49
< sup Jk“'l [fk[x:uk(x) ,W]] =
WE Wk
= sup min sup g(xN)

weW u.e U, w.€ W,
k i i i i

i=k+1,k+2,..,N-1 xi+1=fi(xi’ui’wi)
i=k+1,k+2,..,N-1

o
X175 [0 () W]
<min sup glxy) = J;(x)

u, €U, w, £ W,
i i i i

i=k+1,k+2,..,N-1 x, .=f, (x.,u,,w.)
i+l TiYViCTi0
i=k+1,k+2,..,N-1
"
xk+1_fk [xxuk (X) :w]

WE Wk

It is to be noted that by (7) the calculated open-
loop optimal cost from state x, Jf (xy), provides a
readily obtainable performance bound for the o.l.f.
controller. Two generalizations of the above proposi-
tion should also be noted. The first is concerned
with the case where the control constraints are state
dependent and the disturbance constraints are state
and control dependent. In this case the result of
Proposition 1 follows by using a similar proof. The
second generalization concerns the stochastic version
of Problem 1 where the disturbances w, are random
vectors with given probability distribution and the
sup in the cost functional (2) is replaced by an
expectation. Again a result analogous to the one of
Proposition 1 follows by using an entirely similar
argument.

Q.E.D.

The case where in Problem 1 there are additional
state constraints x, € Xy where Xy is a given sub-
set of Sy, requires separate discussion since one
can envisage two different ways of defining the o.1.f.
controller. The first method is similar to the one
used earlier whereby at state xi the o.l.f. contro-
ller solves the problem

min sup g(xN)
u.e U,
i~ i

i=k,k+1,..,N-1

w.E W,
1 1
X;541™E; (x5u;0%;)
i=k,..,N-1 €))

subject to the additional constraint on the sequence
{uk,ug41,..,u§-11 that x; € Xy, i=k+1,..,N-1 for all



w.€ W, ,i=k,k+1,..,N-1. This definition of the o.1l.f.
chntrdller results in satisfaction of the state const-
aints (if the o.1.f. controller exists) but does not
take into account the fact that the future states will
be known to the controller as time progresses. On the
other hand an alternate definition of the o.1.f. con-
troller which at first sight appears to offer an
advantage takes into account the fact that further
information will be received in as much as the satis-
faction of the state constraints is concerned. It is
known that in order that a feedback controller

{uo,u yes _1} results in satisfaction of the state
constraints” Xj € X; it is necessary and sufficient
that  p (xg)} € Ug(xg) where Up(xx)CUg is a state

dependent constraint set implied by the state con-
straints and generated (possibly at the expense of
considerable computation)by means of a recursive
algorithm [6],[7],[8]. Hence a possible definition of
the o.1.f. controller which results in satisfaction of
the state constraints can be given by means of the
solution at state xy of the problem

min sup g(xN)
Uk € Uk(xk) w.e Wi
Uy ey *j417F; (%5809
i=k+1,..,N-1 i=k,..,N-1 (10)
rather than via the solution of problem (9). Clearly

the set of admissible control sequences for problem
(10) contains the set of admissible control sequences
for problem (9) which may be empty even if there exists
an admissible control law for the original problem. It
would appear that the o.1.f. controller based on the
solution of problem (10) performs better than the o.l.f,
controller based on problem (9) since for the former
the control constraints implied by the state constraits
are less strict. This conjecture is not true in gen-
eral as the following example demonstrates.

Consider the scalar 2-stage system:
x =1
o
X, = X_+U_+wW
1 0o o o
X, = f(xl,ul)
where
f(2,0) = £(0,-1) = 0
£(2,-1) = £(0,0) = 2
£(1,0) = £(1,-1) = £(-1,0) = £(-1,-1) = 0.5

The control constraints are ug,u; €{0,-1} and the
state constraint is x, €{0,0.5}. The cost functional
is

J(x sug M) = max x,
wos{-l,l}

It follows by straightforward calculation that
the cost corresponding to the o.l.f. controller based
on problem (9) is 0 while the cost corresponding to
the o.1.f. controller based on problem (10) is O0.5.

The above example demonstrates also a counter-
intuitive property of the o.1.f. controller for
Problem 1 (without state constraints) namely that if
the control constraint sets are enlarged it is possible
that the performance of the o.l.f. controller deterio-
rates. This is due, of course, to the fact that the
0.1.f. controller does not make optimal use of the
additional admissible values.

3. Performance of the Open-Loop-Feedback
Controller for the Imperfect Information Case

We turn now to the case where the o.l.f. con-
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troller does not have access to the exact system state
but rather receives (possible noise-corrupted) measure-
ments providing information about the system state. We
consider the following problem.

Problem 2: Consider Problem 1 where the controller has
access to measurments of the form

2, = hk(xk,vk) k=0,1,..,N-1 (11)
where v, is an uncertain "disturbance" known to
belong to a given subset Vi of a space S and the
function hp: Sy x Svk > Sz, is given. Fnd (if it

exists) a control law {uo,ul,..,uN_l} with
Ug: Sz, X S21 X ..X Szk X Suox Sulx..x S ™ Uk»
ug = uk(zo,zl,..,zk,uo,ul,..,uk_l), k=0,1,..,N-1 which
minimizes the cost functional
J(x g sUoatyseoaty ) = sup 12)

g(xy)

Given a particular information sequence
Tk =(zo,zl,..,zk,uo,ul,..,uk_l) there exists a
corresponding set of possible states x; given that
Ly has occurred. We denote this set by Xp(gx). It
is the set of all states xj consistent with the
measurements 2,,..,Zx the controls wup,..,ux-1 the
system equation and the constraints w;eW;,i=o,.. k-1,
vi€V;,i=o0,1,..,k. It is known that the set Xy (Zx)
constitutes a sufficient information [1],([9],[10] for
the controller relative to Problem 2, i.e. the optimal
controller need only be a function of Xy (Zy) rather

than 7). In a sense that can be well defined the set
Xk (Cx) can be viewed as the state of a new system.
This system evolves in time according to the equations
Xk+1(Ck+l) = Fk[xk(gk) !uk)wkﬁvk+1]’ k=0’1)"’N_2 (13)
Xy (nop) = Eyoy Pyog Byopd sty ¥y ] a9
Xo(co) = {xo} (15)
where the function Fy is defined by
Nixfzy,q= Mgy v DY g4

Let us consider control laws of the form

{oo,ol,..,oN_l} with O Subsets of sx +Uk,

w = ok[xk(;k)] and consider also the cos% functional

J(xo’co’cl""cN-l) = sup G[XN(;N_I)]
wke Wk
ViE Vk
k=0,1,..,N-1 7
with
GIXy(gy )1 = sup g0xy)
Xy e Xy ) (18)

It can be easily seen that Problem 2 is equivalent to
the problem of minimizing the cost functional (17) over
all admissible control laws {og,..,0yq_1} subject to
the system equation constraints (13-16). Since how-
ever the controller can calculate (in principle) the
set Xy (Cx) this latter problem (call it Problem 2'}
is one with perfect state information which can be cast
within the framework of Problem 1. Now the o0.1.f.



controller for Problem 2' is exactly what we shall call
the 0.1.f. controller for Problem 2. Notice that this
0.1.f. controller can be realized by solving at time

k the problem

min sup gxy)
u, € Ui xke Xk(;k)
i=k,..,N-1 w, W,
1 1
%5417F; (xg0055%5)

i=k,k+1,..,N-1 (19)
and by taking as the current control the first

element of the minimizing sequence. Given that the
optimal open-loop controller for Problem 2' is the
same as the optimal open-loop controller for Problem 2
and using Proposition 1 we have:

Proposition 2: Let Vof(xo), and V,1(xo) be the
values of the cost functional (12) corresponding, to
the 0.1.f. controller and the optimal o.l controller
respectively. Then

Vog(x) Vg, (x,) (20)

While the calculation of the set Xy (Tx)} by

the controller is possible in principle, in practice
this calculation can be very difficult or impossible,
i.e. it may be difficult to construct a realization of
the corresponding estimator given by Equ.(13) through
(16). For this reason it is of interest to examine the
performance of open-loop feedback controllers based on
estimators that can be more easily implemented. We
shall consider a class of estimators which we shall
call recursive bounding estimators. Such estimators
provide estimate sets

ﬁk(Ck)

which contain the set of possible states Xk(ck) and
are realized by a recursive algorithm of the general
form

N Y
%1 Can) = B (B0 o2y, ]
Y
X () = {x.} (21)
where Ey is some function. Examples of such

recursive bounding estimators are the estimators of
[3], [4], [5]. We shall say that a recursive bounding
estimator is uncertainty reducing if for each admissible
Tk sUk s Wk s Vk+1 ,k we have

n Y Y]

Xk*l (Ck‘*l) = Ek [Xk (;k)'uk’zk“‘l] C fk[xk (Ck) :uk:wk]

Thus the estiqftor is uncertainty reducing if it pro-
vides a set Xi,1(Z +1) which is contained in the
get which would be obtained by pure prediction given
Xg (Zx),ux. In other words an uncertainty reducing
estimator uses the new measurement zy,; with advan-
tage.

We can define now an o.l1.f. controller using a

recursiveﬂpounding estimator (21) as follows. Given
the set Xy (k) solve the problem
min s g(xN)
ui€ Us X € l’%{(‘k)
iek,..,N-1 W.E wi
%17 By (g0050%)
i=k,..,N-1 (22)

and takes as the current control the first element of
the minimizing sequence.

We have the following proposition:
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Proposition 3: Let Jyr(x,) and Jol(xo) be the values
of the cost functional (18) corresponding to an o.1.f
controtler using a recursive bounding estimator (21),

and to Fhe optimal o.1. controller respectively. If
the estimator is uncertainty reducing we have

Jof(xo) < J01 (xo)
. n
Proof: Let {0 _,o ""GN-I}’ Uk[Xk(ck)] be the

o.l.f: controller.” Then Jof(x25 Jo(xo) where the
function Jo is given recursively by the algorithm

n
Ino1 P Gy Xy By ) =

o

v
= y ZuaN-l g [fN-l[x’cN_l[x'N_l(cN_l)],W]]
X € XN-I(CN-I)
I % ()R (5] =

S E [, (Ck)ﬂk["l(ﬁk3]=zk+1]]
Vke1® Vka1

K
Y
Zke1 © hk+1[£k[xkcck) Ok [ (B Tom ] ’Vk+1]

Jo(xo) = sup Jl[%o[xo’oo(xo)’wk’vk+1]’
woe wo EO[XO’OO(XO)’ZI]]
vls V1

z4€ hy [ [x .0 (x)),w 1,v,]

Consider also (c.f. (6)) the calculated cost

c :
I 5 (€)2] = min sup glx)
u, e U, w.e W,
. 1 1 1 ,\Jl
i=k,..,N-1 xks X(ck)
%5417F; (500503
i=k,..,N-1

c
We have Jo (xo) = Jol(xo).

Thus in order to prove the proposition it will be
sufficient to prove that

316 )% (g1 T IX )]
for all k and all admissible

(23)

Ck'
By using the fact that the estimator is bounding we
have that

3% @)% @)1 <3 1% €)1

where 3; is defined for all k by

N N

In-1Xyo1 By )] =sup g[fN-l["’UN-l[XN-l(CN-l)]»"]]
W EwN-l

xe Xy 4 (Gyp)
B% @1 =swp i[5, 1 6.0, 1K (61 5,1]

Zke1 M [fk CHCRECAECRIES ’Vk+1]

By using the fact that the estimator is uncertainty
reducing it follows easily that

3% @)1 eIp IR, (2]



for all

k,ck. Hence (23) holds and the proposition 9,
is proved.

Q.E.D.

An easily obtained generalization of the above
proposition concerns the possibility of proving

stochastic counterparts to Propositions 2 and 3. The 10.

stochastic counterpart of Prop. 2 can be proved
similarly with no difficulty. The role of the set

Xk (¢x) 1is played the the conditional probability
p(xx Zx). However for stochastic problems it is not
clear how one is to define the analog of a recursive 11.

bounding and uncertainty reducing estimator except for
some special cases. One such special case is the well
known linear quadratic Gaussian problem. For this case
linear estimators will produce Gaussian state estimates
which can be partially ordered by means of their error
covariance matrix. Thus an uncertainty reducing
linear estimator is one for which the corresponding
error covariance matrix is smaller (in the pos. defin-
ite sense) than the error covariance matrix correspond-
ing to pure prediction. Using this definition a prop-
osition similar to Proposition 3 can be proved.

4. Conclusions

In this paper it was shown under general assump-
tions that open-loop-feedback controllers perform at
least as well as optimal open-loop controllers in
dynamic minimax problems. The classes of problems
considered include the perfect state information case
and the imperfect state information case. In the latter
case the open-loop-feedback makes use of an estimator
computing either the exact set of possible states of
the system or an estimate set that bounds the set of
possible states. The estimator is required to perform
better than a pure predictor in order for the results
to hold. Some of the results in this paper can also
be proved in a stochastic control framework.
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