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e Transition Probability Notation - Main Results
e SSP Problems: Elaboration

0 Algorithms - Approximate Value Iteration
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Stochastic DP Problems - Infinite Horizon

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizc

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {po, 1, - . .} with pux(x) € U(x) for all x and k.
@ Special scalar a with 0 < o < 1. If & < 1 the problem is called discounted.
@ Cost of stage k: g (X, sk (Xk), Wk).
@ Cost of a policy m = {uo, 1, - .-}
N—1
Jr(X0) = ’Vleoo Ew, {Z c!kg(Xk~, 1k (X ), W) }

k=0

@ Optimal cost function J*(xp) = min, J(Xo).

o If « = 1 we assume a special cost-free termination state ¢. The objective is to
reach t at minimum expected cost. The problem is called stochastic shortest path
(SSP) problem.
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Main Results: Intuitive Justification (Math Proof Required)

Value iteration (VI) convergence: Fix horizon N, let terminal cost be 0
@ Let Vy_«(x) be the optimal cost starting at x with k stages to go, so
i N—k
Wn—k(x) = g Ew{Oé 90, u, w) + Vi1 (f(x, u, W))}

@ Reverse the time index: Define Jk(x) = V_k(x)/aV =¥ and divide with oV =:

Jelx) = min Ew{g(x, u, w) + adi_1 (f(x, u, w))} (V1)

@ Jn(x) is equal to Vo(x), which is the N-stages optimal cost starting from x
@ Hence, intuitively, VI converges to J*:

J*(x) = Jim In(x), for all states x (?7?)

The following Bellman equation holds: Take the limit in Eq. (VI)

()= min Ew{g(x, u, w) + aJ” (f(x, u, w))}, for all states x (??)

Optimality condition: Let u(x) attain the min in the Bellman equation for all x
The policy {x, , ...} is optimal (??). (This type of policy is called stationary.)
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Transition Probability Notation for Finite-State Problems

@ States: i = 1,...,n. Successor states: j. (For SSP there is also the extra
termination state t.)

@ Probability of i — j transition under control u: p;(u)
@ Cost of i — j transition under control u: g(i, u, j)

VI (translated to the new notation - note that Jx(t) = 0 for SSP)
Jie1(i) = min Z,O,, 9(i, u,j) + adk(j))

UEU

chal) = o) [P/r( )9(i, u, f)+ZPff(U)(g(f7 U»/')+Jk(/'))] (for SSP)
j=1

v

Bellman equation (translated to the new notation - note that J*(t) = 0 for SSP)
J(i) = mln Zp,, a(i, u,j) + ad*(j))

J*(i) = min [p,t(u)g(/ u,t) +Zp,, (9(i, u,j)+J*(j))] (for SSP)

ueu(i)
J=1
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Statement of Main Results - Finite Spaces Discounted Problems

Convergence of VI

Given any initial conditions Jo(1), . .., Jo(n), the sequence {Jk(i)} generated by VI
s (i —u@mZp,, a(iu,)) + adk(j)),  i=1,....n,

converges to J* (i) for each i.

Bellman’s equation
The optimal cost function J* = (J*(1),...,J*(n)) satisfies the equation

*(i) = min Zp,, (g(i, u,j) + ad*())). i=1,....n,

ueU(i)

and is the unique solution of this equation.

Optimality condition

A stationary policy u is optimal if and only if for every state /, u(i) attains the minimum

in the Bellman equation.
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Statement of Main Results - Finite Spaces SSP Problems

Assumption (Termination Inevitable Under all Policies)

There exists m > 0 such that regardless of the policy used and the initial state, there is
positive probability that ¢ will be reached within m stages; i.e., for all ©

0009

VI Convergence: Jx — J* for all initial conditions Jy, where

i1 (i) = ur&ijr&) [p,-t(u)g(i, u, t) + Zp,-,—(u) (9(i,u,j) + Jk(j))] , i=1,...,n

=1

Bellman’s equation: J* satisfies

n

J(i) = min [P/t(“)g(i, ut)+ > pi(u) (gl uj) + J° (j))] . i=1,...n,
j=1

and is the unique solution of this equation.

Optimality condition: u is optimal if and only if for every i, u(/) attains the minimum in

the Bellman equation.
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SSP Analysis and Extensions

Cost g(i,u,j)
(i, u,§) api(u) P
Pii(u) Pig (u) pjj(u)

pji(u)

Cost g

Discounted Problem SSP Equivalent

@ A discounted problem can be converted to an SSP problem, since the stage k
cost is identical in both problems, under the same policy.
@ Proof line of text: Start with SSP analysis, get discounted analysis as special case.

@ Key proof argument: The tail portion (k to co) of the infinite horizon cost

diminishes to 0, as k — oo, at a geometric progression rate (so the finite horizon
costs converge to the infinite horizon cost).

A more general assumption for our results: Nonterminating policies are “bad"

@ Every stationary policy under which termination is not inevitable from some initial
states is “bad," in the sense that it has oo cost for some initial states.

@ There exists at least one stationary policy under which termination is inevitable.
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SSP Problems can be Tricky

Without the assumption on nonterminating policies
@ Bellman equation may have any number of solutions: one, infinitely many, or none.
@ Bellman equation may have one or more solutions, but J* is not a solution.
@ VI may converge to J* from some initial conditions but not from others.

Cost a

Terminal State

Two possible controls at state 1

Cost b

(costs a and b)

Challenge questions: Consider the cases a>0,a=0,anda< 0
@ Whatis J*(1)?
@ What is the solution set of Bellman’s equation J(1) = min [b, a+ J(1)]?
@ What is the limit of the VI algorithm Jy..1(1) = min [b, a+ Jk(1)]?
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Answers to the Challenge Questions

Cost a

Terminal State

Two possible controls at state 1

Cost b

(costs a and b)

Bellman Eq: J(1) = min [b, a-+ J(1)]; VI: k1 (1) = min [b, a+ Jk(1)]

@ If a > 0 (positive cycle): J*(1) = b is the unique solution, and VI converges to
J*(1). Here the “nonterminating policies are bad" assumption is satisfied.
@ |f a= 0 (zero cycle):
J*(1) = min|0, b].
The solution set of the Bellman equation is = (—oo, b].
The VI algorithm, Jx11(1) = min [b, Jx(1)], converges to b starting from Jy(1) > b,
and does not move from a starting value Jy(1) < b.

@ If a < 0 (negative cycle): B-Eq has no solution, and VI diverges to J*(1) = —oc.
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Results Involving Q-Factors - Discounted Problems

VI for Q-factors
Quirli,0) = Zp,, ) (9,00 + @ min 1))

converges to Q*(i, u) for each (/, u).

Bellman’s equation for Q-factors

0 =Y pio) (g.0.)+a min @G
j=1
Q" is the unique solution of this equation, and we have

J (i) = min Q" (i, u) (1)

ueu(i)

Optimality condition

A stationary policy u is optimal if and only if u(i) attains the minimum in Eq. (1) for
every state i.
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Approximations to VI: Jk,1(i) = minyey(y > pi(u) (97, u, ) + adk(f))

Consider VI with sequential approximation (fitted VI - a neural net may be
used). Assume that for some § > 0

_max Jky1(f) — min Zp,, g(i, u,j) + adi(j))| <6 (1)

..... ueU(i) £

@ The cost function error is: max |Jk J*(i)]

,,,,,

Can be shown to be < 4/(1 — a) (asymptotically, as k — o).
@ ... but this result may not be meaningful; it may be difficult to maintain Eq. (1) over
an infinite horizon.
@ In particular, suppose Jx.+ is obtained using a parametric architecture:
Start with J.

Given parametric approximation Jj, obtain a parametric approximation Ji 1 using a

least squares fit.
We will give an example where the cost function error accumulates to co.

Bertsekas Reinforcement Learning 16/18



Bad Example for Fitted VI

Cost 0
Bellman Eq: J(1) = «J(2), J(2) = aJ(2)
J*(1) =J*(2)=0
Cost 0 Exact VI: Jiy1(1) = adi(2), Jit1(2) = adi(2)
A
Approximate Approximation Subspace
VI iterate
s T Orthogonal Projection
e = (rp,2
k= (e 2r) \ Exact VI iterate
(2ark, 2ary)
J* = (0, 0)\

\/

By using a weighted projection we may correct the problem.
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About the Next Lecture

We will cover:
@ Infinite horizon policy iteration without approximations
@ Infinite horizon policy iteration with approximations
@ Rollout and parametric approximation methods
@ We will likely need more that one lecture

PLEASE READ AS MUCH OF SECTIONS 4.5-4.7 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE
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