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Aggregation within the Approximation in Value Space Framework

Approximations: Replace E{·} with nominal values (certainty equiv-
alent control)

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

1

Approximations:

Replace E{·} with nominal values

(certainty equivalent control)

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

1

Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

Approximate minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

Approximate minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout Model Predictive Control

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search (certainty equivalence)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =
nX

i=1

dfi

nX

j=1

pij(u)�jf̄

1

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Cost 0 Cost g(i, u, j) Monte Carlo tree search

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

φjℓ̄ = 1 if j ∈ Iℓ̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

1

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Approximate PI Range of Weighted Projections

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

1

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function
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Some important differences from alternative schemes:
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Aggregation with Representative States: A Form of Discretization
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Original states are related to representative states with interpolation coefficients called
aggregation probabilities.
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
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n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)
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n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)
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Original cost approximation by interpolation

p̂xy (u) =
n∑

j=1

pxj(u)φjy , ĝ(x , u) =
n∑

j=1

pxj(u)g(x , u, j), J̃(j) =
∑
y∈A

φjy r∗y

Exact methods
Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, PI, optimistic PI, or linear programming.

Model-free (simulation-based) methods
Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.
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Feature-Based Aggregation - Discretize the Feature Space
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Representative features formation - Guiding ideas:

Feature map F : States i with similar F (i) should have similar J∗(i).

Footprint Ix of feature x : States i in Ix should have feature F (i) ≈ x .
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =
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probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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A Simple but Flawed Version of the Aggregate Problem

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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q⇤ = (čl )p(0) ⇥ p(0) = w⇤

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q⇤ ⇥ w⇤

minimize w

subject to (0, w) ⌅ M,

1

f̄�
2,Xk

(��)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(�)

Constant � f�
1 (�) f�

2 (��) F ⇤
2,k(��)F ⇤

k (�)

�
(g(x), f(x)) | x ⌅ X

 

M =
�
(u,w) | there exists x ⌅ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z2Z

inf
x2X

⇥(x, z) ⇥ sup
z2Z

inf
x2X

⇥̂(x, z) = q⇤ = p̃(0) ⇥ p(0) = w⇤ = inf
x2X

sup
z2Z

⇥(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⇤ ⇧n,
i = 1, . . . ,m
If s ⌅ conv(S) then s = s1 + · · · + sm where
si ⌅ conv(Si) for all i = 1, . . . ,m,
si ⌅ Si for at least m � n � 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
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(ii) Generate a transition from i to j according to pij(u), with cost
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ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
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φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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Patterned after the simpler representative states model

Aggregate dynamics and costs
Aggregate dynamics: Transition probabilities between representative features x , y

p̂xy (u) =
∑
i∈Ix

dxi

n∑
j=1

pij(u)φjy

Expected cost per stage:

ĝ(x , u) =
∑
i∈Ix

dxi

n∑
j=1

pxj(u)g(x , u, j)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑
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dxi
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j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
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n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

f̄�
2,Xk

(��)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(�)

Constant � f�
1 (�) f�

2 (��) F ⇤
2,k(��)F ⇤

k (�)

�
(g(x), f(x)) | x ⌅ X

 

M =
�
(u,w) | there exists x ⌅ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z2Z

inf
x2X

⇥(x, z) ⇥ sup
z2Z

inf
x2X

⇥̂(x, z) = q⇤ = p̃(0) ⇥ p(0) = w⇤ = inf
x2X

sup
z2Z

⇥(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⇤ ⇧n,
i = 1, . . . ,m
If s ⌅ conv(S) then s = s1 + · · · + sm where
si ⌅ conv(Si) for all i = 1, . . . ,m,
si ⌅ Si for at least m � n � 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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q⇤ = (čl )p(0) ⇥ p(0) = w⇤

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q⇤ ⇥ w⇤

minimize w

subject to (0, w) ⌅ M,

1

S1 S2 S3 Sℓ Sm−1 Sm

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)
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x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

1

S1 S2 S3 Sℓ Sm−1 Sm

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)
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k Simulator
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Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

1

Bellman equations for the enlarged problem

r∗x =
n∑

i=1

dxi J̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ̃1(j)

)
, i = 1, . . . , n,

J̃1(j) =
∑
y∈A

φjy r∗y , j = 1, . . . , n

r∗ solves uniquely the composite Bellman equation r∗ = Hr∗:

r∗x = (Hr∗)(x) =
n∑

i=1

dxi min
u∈U(i)

n∑
j=1

pij(u)

g(i, u, j) + α
∑
y∈A

φjy r∗y

 , x ∈ A
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Error Bound

Approximation error for the piecewise constant case (φjy = 0 or 1 for all j , y )

Consider the footprint sets

Sy = {j | φjy = 1}, y ∈ A

The (J∗ − J̃) error is small if J∗ varies little within each Sy . In particular,∣∣J∗(j)− r∗y
∣∣ ≤ ε

1− α, j ∈ Sy , y ∈ A,

where ε = maxy∈A maxi,j∈Sy

∣∣J∗(i)− J∗(j)
∣∣ is the max variation of J∗ within Sy .

Implication
Choose representative features x so that J∗ varies little over the footprint of x .

This is a generally valid qualitative guideline
Holds for the more general piecewise linear interpolation case.
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Simulation-Based Asynchronous Value Iteration for the Aggregate
Problem

A sampled version of VI for solving r∗ = Hr∗: r k+1 ≈ (1 − γk )r k + γk H(r k ) with

(Hr)(x) =
n∑

i=1

dxi min
u∈U(i)

n∑
j=1

pij(u)

g(i, u, j) + α
∑
y∈A

φjy ry

 , x ∈ A

Note that H is a contraction.

At time k iterate for a single rep. feature xk , and keep all other r k
x unchanged:

r k+1
xk = (1− γk )r k

xk + γk min
u∈U(i)

n∑
j=1

pik j(u)

g(ik , u, j) + α
∑
y∈A

φjy r k
y


where ik is a sample from Ixk selected according to dxk i , and γk is a stepsize.

Convergence result [Tsitsiklis and Van Roy (1995)]

With γk → 0 and other technical conditions, this iteration converges to the unique
solution r∗. Some similarity with (exact) Q-learning proofs.
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Simulation-Based Policy Iteration

Uses policy evaluation/policy improvement to generate policy/cost pairs {(µk , r k )}.
Converges monotonically (r k+1 ≤ r k ) and finitely (r k = r∗ for sufficiently large k ).

Policy evaluation of current policy µk

Solve the (linear) composite Bellman equation r k = Hµk r k for µk , where

(Hµk r)(x) =
n∑

i=1

dxi

n∑
j=1

pij
(
µk (i)

)g
(
i, µk (i), j

)
+ α

∑
y∈A

φjy ry

 , x ∈ A

Two possibilities:

Iteratively: Using a sampled version of VI with sampling for both i and for j .

By matrix inversion: Write the equation r k = Hµk r k in matrix form as
r k = Ak r k + bk . Evaluate Ak and bk by simulation, and set r k = (I − Ak )−1bk .

Policy improvement by one-step lookahead

µk+1(i) = arg min
u∈U(i)

n∑
j=1

pij(u)

g(i, u, j) + α
∑
y∈A

φjy r k
y

 , i = 1, . . . , n
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Biased Aggregation - Suppose we Know a Good Approximation V ≈ J∗;
How do we Correct it?

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities �iy

Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

Transition probabilities Cost g(i, u, j) Cost �V (i) Cost V (j)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1
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Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u
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{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1
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S1 S2 S3 Sℓ Sm−1 Sm

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

J̃ = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r∗

Controls u are associated with states i

N Stages jN−1 jN

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1

r∗
xℓ

r∗
xm

Footprint Sets J̃(i) J̃(j) =
∑

y∈A φjyr∗
y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

j=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄ℓ j̄ℓ−1 j̄1

Corrected V Garage Nodes j ∈ A(j̄ℓ) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities φiy

Transition probabilities pij(u) Destination

States i ∈ I0 States j ∈ I1 States x ∈ A States y ∈ A

n n − 1 0 1 2 i − 1 Termination State t Corrected V

Transition probabilities Cost g(i, u, j) Cost −V (i) Cost V (j) C c(1) c(i) c(n)

Is di + aij < UPPER − hj?

φjf̄ = 1 if j ∈ If̄ x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄ℓ j̄ℓ−1 j̄1 Aggregation-based

Corrected V Garage Nodes j ∈ A(j̄ℓ) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities φiy

Transition probabilities pij(u) Destination

States i ∈ I0 States j ∈ I1 States x ∈ A States y ∈ A

n n − 1 0 1 2 i − 1 Termination State t Corrected V

Transition probabilities Cost g(i, u, j) Cost −V (i) Cost V (j) C c(1) c(i) c(n)

Is di + aij < UPPER − hj?

φjf̄ = 1 if j ∈ If̄ x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

We add a “bias" function V to the cost structure of the enlarged aggregate problem
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

1

S1 S2 S3 Sℓ Sm−1 Sm

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).
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by
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These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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Let (r∗, J̃0, J̃1) be the solution [note that J̃1(j) = V (j) +
∑

y∈A φjy r∗y ]

When V = J∗ then r∗ = 0, J̃0 = J̃1 = J∗, and any optimal policy for the aggregate
problem is optimal for the original problem.

When V = Jµ for some policy µ, the policy produced by aggregation is a rollout
policy based on µ, when there is a single rep. feature. Suggests that with multiple
rep. features the aggregation/rollout policy should be much better than rollout.

Error bounds similar to the ones for the case V = 0 suggest to choose rep.
features and footprint sets within which V − J∗ varies little.

We do not know J∗, but we may use T k V (k value iterations on V ) as an
approximation. Then use V − T k V as a scoring function to form rep. features.
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).
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probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
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How do VI and PI benefit from the problem being deterministic?

VI form: r k+1
xk = (1− γk )r k

xk + γk minu∈U(i)
∑n

j=1 pik j(u)
(

g(ik , u, j) + α
∑

y∈A φjy r k
y

)
Policy evaluation: Solve the composite Bellman equation r k = Hµk r k , where

(Hµk r)(x) =
n∑

i=1

dxi

n∑
j=1

pij
(
µk (i)

)g
(
i, µk (i), j

)
+ α

∑
y∈A

φjy ry

 , x ∈ A

Policy improvement: µk+1(i) = arg minu∈U(i)
∑n

j=1 pij(u)
(

g(i, u, j) + α
∑

y∈A φjy r k
y

)
How about using representative states? Possibility of multistep lookahead?
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Deterministic Problems - Aggregation with `-Step Lookahead

For a deterministic problem, the simulation-based VI and PI are simplified
The sampled version of VI has the form

r k+1
xk = (1− γk )r k

xk + γk min
u∈U(i)

g(ik , u) + α
∑
y∈A

φf (ik ,u)y r k
y


No expectation over j is required.

If representative states are used, there is no need for sampling according to the
probabilities dxk i to obtain ik (so γk ≡ 1).

Given r∗, consider `-step lookahead minimization
At state i0 we find

(u∗0 , . . . , u
∗
N−1) ∈ arg min

(u0,...,u`−1)

`−1∑
k=0

αk g(ik , uk ) + α`
∑
y∈A

φi`y r∗y


and apply µ̃(i0) = u∗0 .

This is a shortest path problem, and its solution on-line may be fast.
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N-Step Feature-Based Aggregation
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =
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i=1

dxi
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pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =
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i=1

dxi
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j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi
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pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)
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The composite system consists of N + 2 stochastic Bellman equations.

Simulation-based version of VI is hard to implement.

Simulation-based version of PI is possible, but policies are multistep.

A simpler case: Deterministic problem and representative states (no features)
Then each VI iteration involves solution of an N-stage deterministic DP (shortest
path) problem: r k+1 = HN(r k ), where HN is the N-stage DP operator.

This algorithm embodies the idea of aggregation in both space and time.
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Spatio-Temporal Aggregation - Compressing Space and Time
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J̃ = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r∗

Controls u are associated with states i

N Stages jN−1 jN

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1

r∗
xℓ

r∗
xm

Footprint Sets J̃(i) J̃(j) =
∑

y∈A φjyr∗
y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

j=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

1

Plan 5-day auto travel from Boston to San Francisco - How would you do it?
Select major stops/cities (New York, Chicago, Salt Lake City, Phoenix, etc).

Select major stopping times (times to stop for sleep, rest, etc).

Decide on space and time schedules at a coarse level. Optimize the details later.

We may view this as an example of reduction of a very large-scale shortest path
problem to a manageable problem by spacio-temporal aggregation.
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Deterministic Problems - N-Stage Aggregation with Representative
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An example of spacio-temporal aggregation
The infinite horizon discounted aggregate problem decomposes into a sequence
of (identical) N-stage shortest path problems.

Compute shortest path from each rep. state x to each rep. state y .

Construct a low-dimensional deterministic infinite horizon DP problem (the states
are just the representative states).
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n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

1

Start End S1 S2 S3 Sℓ Sm−1 Sm

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)
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�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

1

Compressed N stages xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk) Terminal State 2 0 J⇤ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = ↵J(2), J(2) = ↵J(2)

Controls u 2 U(x)

x y Shortest N -Stage Distance x-to-y J⇤(1) = J⇤(2) = 0 Exact VI: Jk+1(1) = ↵Jk(2), Jk+1(2) =

↵Jk(2) (2↵rk, 2↵rk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
�
↵J̃k(2),↵J̃k(2)

�
= (2↵rk, 2↵rk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
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Each N-stages block is “compressed" into an all-to-all shortest path problem.

The compressed problem is a low-dimensional deterministic DP problem.
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Spatio-Temporal Decomposition - Extension
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At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

Deterministic shortest path and finite horizon extensions
Consider the space-time tube of a deterministic shortest path problem.

Introduce space-time barriers, i.e., subsets of representative state-time pairs that
“separate past from future" (think of the Boston-San Francisco travel).

“Compress" the portions of the space-time tube between two successive barriers
into shortest path problems between each state-time pair of the left barrier to each
state-time pair of the right barrier.

Form a “master" shortest path problem of low dimension that involves only the
representative state-time pairs.
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About the Next and Final Lecture

WE WILL GIVE AN OVERVIEW OF THE ENTIRE COURSE
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