
Ten Key Ideas for
Reinforcement Learning and Optimal Control

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

and
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University

August 2019
(Periodically Updated)

Bertsekas (M.I.T.) Reinforcement Learning 1 / 82

Reinforcement Learning (RL): A Happy Union of AI and
Decision/Control/Dynamic Programming (DP) Ideas

Decision/
Control/DP

Principle of
Optimality

Markov Decision
Problems

POMDP

Policy Iteration
Value Iteration

AI/RL
Learning through

Experience

Simulation,
Model-Free Methods

Feature-Based

Representations

A*/Games/
Heuristics

Complementary
Ideas

Late 80s-Early 90s

Historical highlights
Exact DP, optimal control (Bellman, Shannon, 1950s ...)

First impressive successes: Backgammon programs (Tesauro, 1992, 1996)

Algorithmic progress, analysis, applications, first books (mid 90s ...)

Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)

Bertsekas (M.I.T.) Reinforcement Learning 2 / 82

AlphaGo (2016) and AlphaZero (2017)

AlphaZero (Google-Deep Mind)

Plays different!

Learned from scratch ... with 4 hours of training!

Plays much better than all chess programs

Same algorithm learned multiple games (Go, Shogi)

Methodology:
Simulation-based approximation to a form of the policy iteration method of DP

Uses self-learning, i.e., self-generated data for policy evaluation, and Monte Carlo
tree search for policy improvement

The success of AlphaZero is due to:
A skillful implementation/integration of known ideas

Awesome computational power
Bertsekas (M.I.T.) Reinforcement Learning 3 / 82

Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
From Deterministic to Stochastic

From Combinatorial optimization to Optimal control w/ infinite state/control spaces

From One decision maker to Two player games

... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
Approximation (use neural nets and other architectures to reduce dimension)

Simulation (use a computer model in place of a math model)

State of the art:
Broadly applicable methodology: Can address broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

There are no methods that are guaranteed to work for all or even most problems

There are enough methods to try with a reasonable chance of success for most
types of optimization problems

Role of the theory: Guide the art, delineate sound ideas, filter out bad ideas

Bertsekas (M.I.T.) Reinforcement Learning 4 / 82

About this Talk

The purpose of this talk
To selectively explain some of the key ideas of RL and its connections with DP.

To provide a road map for further study (mostly from the perspective of DP).
To provide a guide for reading my book (abbreviated RL-OC):

I Bertsekas, "Reinforcement Learning and Optimal Control" Athena Scientific, 2019; see
also the monograph "Rollout, Policy Iteration and Distributed RL" 2020, which deals
with rollout, multiagent problems, and distributed asynchronous algorithms.

I For slides and videolectures from 2019 and 2020 ASU courses, see my website.

References
Quite a few Exact DP books (1950s-present starting with Bellman). My books:

I My two-volume textbook "Dynamic Programming and Optimal Control" was updated in
2017.

I My mathematically oriented research monograph “Stochastic Optimal Control" (with S.
E. Shreve) came out in 1978.

I My latest mathematically oriented research monograph “Abstract DP" came out in
2018.

Quite a few Approximate DP/RL/Neural Nets books (1996-Present)
I Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
I Sutton and Barto, 1998, Reinforcement Learning (new edition 2018)

Many surveys on all aspects of the subject
Bertsekas (M.I.T.) Reinforcement Learning 5 / 82

Terminology in RL/AI and DP/Control (RL-OC, Section 1.4)

RL uses Max/Value, DP uses Min/Cost
Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) State cost.

Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
Agent = Decision maker or controller.

Action = Control.

Environment = Dynamic system.

Methods terminology
Learning = Solving a DP-related problem using simulation.

Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.

Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.

Bertsekas (M.I.T.) Reinforcement Learning 6 / 82

AN OUTLINE OF THE SUBJECT - TEN KEY IDEAS

1 Principle of Optimality

2 Approximation in Value Space

3 Approximation in Policy Space

4 Model-Free Methods and Simulation

5 Policy Improvement, Rollout, and Self-Learning

6 Approximate Policy Improvement, Adaptive Simulation, and Q-Learning

7 Features, Approximation Architectures, and Deep Neural Nets

8 Incremental and Stochastic Gradient Optimization

9 Direct Policy Optimization: A More General Approach

10 Gradient and Random Search Methods for Direct Policy Optimization

Bertsekas (M.I.T.) Reinforcement Learning 7 / 82

1. PRINCIPLE OF OPTIMALITY
(RL-OC, Chapter 1)

Bertsekas (M.I.T.) Reinforcement Learning 9 / 82

Finite Horizon Deterministic Problem

......

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stges

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Discrete-time system:

xk+1 = fk (xk , uk), k = 0, 1, . . . ,N − 1

where xk : State, uk : Control chosen from some constraint set Uk (xk)

Cost function:

gN(xN) +
N−1∑
k=0

gk (xk , uk)

For given initial state x0, minimize over control sequences {u0, . . . , uN−1}

J(x0; u0, . . . , uN−1) = gN(xN) +
N−1∑
k=0

gk (xk , uk)

Control sequences correspond to paths from start node to end node in the graph

Optimal cost function J∗(x0) = min uk∈Uk (xk)
k=0,...,N−1

J(x0; u0, . . . , uN−1)

Bertsekas (M.I.T.) Reinforcement Learning 10 / 82

Discrete-State Problems: Combinatorial/Shortest Path View

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
minal Cost AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n � 1 n p11 p12 p1n p1(n�1) p2(n�1)

... . . .

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n � 1 n p11 p12 p1n p1(n�1) p2(n�1)

... . . .

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n � 1 n p11 p12 p1n p1(n�1) p2(n�1)

... . . .

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

s t uk Demand at Period k Stock at Period k Stock at Period
k + 1

Initial State Stage 0 Stage 1 Stage 2 Stage N � 1 Stage N

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA
CD ABC

Artificial Terminal Node

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n � 1 n p11 p12 p1n p1(n�1) p2(n�1)

... . . .

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

Nodes correspond to states xk

Arcs correspond to state-control pairs (xk , uk)

An arc (xk , uk) has start node xk and end node xk+1 = fk (xk , uk)

A control sequence {u0, . . . , uN−1} corresponds to a sequence of arcs from the
initial node s to the terminal node t .

An arc (xk , uk) has a cost gk (xk , uk). The cost to optimize is the sum of the arc
costs from s to t .

The problem is equivalent to finding a minimum cost/shortest path from s to t .

Bertsekas (M.I.T.) Reinforcement Learning 11 / 82

Continuous-State Problems

PATH PLANNING
Keep state close to a trajectory

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

xs
k, us

k = µ̃k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory Constraints

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

xs
k, us

k = µ̃k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

xs
k, us

k = µ̃k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk) Penalty for deviating from nom-
inal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk) Penalty for deviating from nom-
inal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk) Penalty for deviating from nom-
inal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk)

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

1

REGULATION PROBLEM
Keep the state near the origin

Bertsekas (M.I.T.) Reinforcement Learning 12 / 82

Tail Subproblems and the Principle of Optimality

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN�1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Consider solution of the tail subproblem that starts at xk at time k and minimizes over
{uk , . . . , uN−1} the “cost-to-go” from k to N,

gk (xk , uk) +
N−1∑

m=k+1

gm(xm, um) + gN(xN), Optimal Cost-to-Go: J∗k (xk)

To solve it, choose uk to min (1st stage cost + Optimal tail problem cost) or

min
uk∈Uk (xk)

[
gk (xk , uk) + J∗k+1

(
fk (xk , uk)

)]
Bertsekas (M.I.T.) Reinforcement Learning 13 / 82

DP Algorithm Idea: Solve Progressively Longer Tail Subproblems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25 8 12

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25 8 12

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25 8 12

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25 8 12 13

Initial State s Terminal State t

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

15 1 5 18 4 19 9 21 25 8 12 13

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

A

B

C

D

Tail Problem

Entire Problem

Tail Problem

Terminal Cost

Four Cities

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) J∗

0 (x0)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) J∗

0 (x0)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) J∗

0 (x0)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution

Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE

ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk

xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

 Traveling Salesman
Example

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

Optimal Tour

Bertsekas (M.I.T.) Reinforcement Learning 14 / 82

DP Algorithm: Formal Statement

Go backward to compute the optimal costs J∗k (xk) of the xk -tail subproblems

Start with
J∗N(xN) = gN(xN), for all xN ,

and for k = 0, . . . ,N − 1, let

J∗k (xk) = min
uk∈Uk (xk)

[
gk (xk , uk) + J∗k+1

(
fk (xk , uk)

)]
, for all xk .

The optimal cost J∗(x0) is obtained at the last step: J∗0 (x0) = J∗(x0).

Go forward to construct optimal control sequence {u∗0 , . . . ,u∗N−1}
Start with

u∗0 ∈ arg min
u0∈U0(x0)

[
g0(x0, u0) + J∗1

(
f0(x0, u0)

)]
, x∗1 = f0(x0, u∗0).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

u∗k ∈ arg min
uk∈Uk (x∗k)

[
gk (x∗k , uk) + J∗k+1

(
fk (x∗k , uk)

)]
, x∗k+1 = fk (x∗k , u

∗
k).

Approximation idea: Replace J∗k with an approximation J̃k (possibly a neural net).
Bertsekas (M.I.T.) Reinforcement Learning 15 / 82

Stochastic DP Problems

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Stochasticity in the form of a random “disturbance" wk (e.g., physical noise, market
uncertainties, demand for inventory, unpredictable breakdowns, etc)

Cost function:

E

{
gN(xN) +

N−1∑
k=0

gk (xk , uk ,wk)

}

Policies π = {µ0, . . . , µN−1}, where µk is a “closed-loop control law" or “feedback
policy"/a function of xk . Specifies control uk = µk (xk) to apply when at xk .

For given initial state x0, minimize over all π = {µ0, . . . , µN−1} the cost

Jπ(x0) = E

{
gN(xN) +

N−1∑
k=0

gk
(
xk , µk (xk),wk

)}

Optimal cost function J∗(x0) = minπ Jπ(x0)
Bertsekas (M.I.T.) Reinforcement Learning 16 / 82

The Stochastic DP Algorithm

Go backward to compute the optimal costs J∗k (xk) of the xk -tail subproblems

Start with J∗N(xN) = gN(xN), and for k = 0, . . . ,N − 1, let

J∗k (xk) = min
uk∈Uk (xk)

E
{

gk (xk , uk ,wk) + J∗k+1
(
fk (xk , uk ,wk)

)}
, for all xk .

The optimal cost J∗(x0) is obtained at the last step: J∗0 (x0) = J∗(x0).

The optimal control function µ∗k can be constructed simultaneously with J∗k , and
consists of the minimizing u∗k = µ∗k (xk) above.

Go forward to implement the optimal policy, given J∗1 , . . . , J
∗
N−1

Sequentially, starting with x0, observe xk and apply

u∗k ∈ arg min
uk∈Uk (xk)

E
{

gk (xk , uk ,wk) + J∗k+1
(
fk (xk , uk ,wk)

)}
.

Issues: Need to compute J∗k+1 (possibly off-line), compute expectation for each uk ,
minimize over all uk

Approximation idea: Use J̃k in place of J∗k , and approximate E{·} and minuk .

Bertsekas (M.I.T.) Reinforcement Learning 17 / 82

Infinite Horizon Extension: α-Discounted Case (0 < α < 1)

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost
System xk+1 = f (xk , uk ,wk) with state, control, and random disturbance.

Policies π = {µ0, µ1, . . .} with µk (x) ∈ U(x) for all x and k .

Optimal cost function J∗(x0) = minπ Jπ(x0) satisfies Bellman’s equation

J∗(x) = min
u∈U(x)

E
{

g(x , u,w) + αJ∗
(
f (x , u,w)

)}
Optimal policy: Applies at x the minimizing u above, regardless of stage k .

When there are finitely many states, i = 1, . . . , n, Bellman’s equation is written in
terms of the i → j transition probabilities pij (u) as

J∗(i) = min
u∈U(i)

n∑
i=1

pij (u)
(
g(i, u, j) + αJ∗(j)

)
Approximation possibility: Use J̃ in place of J∗, and approximate E{·} and minu

Bertsekas (M.I.T.) Reinforcement Learning 18 / 82

2. APPROXIMATION IN VALUE SPACE
(RL-OC, Sections 2.1-2.2)

Bertsekas (M.I.T.) Reinforcement Learning 20 / 82

Approximation in Value Space: One-Step Lookahead

At state xk , use J̃k+1 (in place of J∗k+1) to compute a (suboptimal) control
min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{
gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets Discretization

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy , etc

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector �(x)

Approximator r0�(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

1

Three main issues; they can be addressed separately

How to construct J̃k [an important example is parametric approximation J̃k (xk , rk)
with parameter vector rk , e.g., neural nets].

How to simplify E{·} operation.

How to simplify min operation.

Bertsekas (M.I.T.) Reinforcement Learning 21 / 82

Approximation in Value Space: Multistep Lookahead

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

at state xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gm

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

At state xk , solve an `-stage version of the DP problem with xk as the initial state
and J̃k+` as the terminal cost function.

Use the first control of the `-stage policy thus obtained, and discard the others.

We can view `-step lookahead as a special case of one-step lookahead:
The “effective" one-step lookahead function is the optimal cost function of an
(`− 1)-stage DP problem with terminal cost J̃k+`.

Bertsekas (M.I.T.) Reinforcement Learning 22 / 82

On-Line and Off-Line Lookahead Implementations
min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

Approximations: Computation of J̃k+ℓ:

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{
gk(xk, uk, wk) + J̃k+1(xk+ℓ)

}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

Approximations: Computation of J̃k+ℓ: (Could be approximate)

DP minimization Replace E{·} with nominal values

(certainty equivalent control) Computation of J̃k+1:

Limited simulation (Monte Carlo tree search)

Simple choices Parametric approximation Problem approximation

Rollout

min
uk

E
{

gk(xk, uk, wk) + J̃k+1(xk+1)
}

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” First Step
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

s t j̄1 j̄2 j̄` j̄`�1 j̄1

Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Aggregation Adaptive simulation Monte-Carlo Tree Search

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Computation of J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

Certainty equivalence Monte Carlo tree search

Parametric approximation Neural nets Discretization

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy , etc

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector �(x)

Approximator r0�(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

1

Off-line methods: All the functions J̃k+1 are computed for every k , before the
control process begins.

Examples of off-line methods: Neural net and other parametric approximations.

On-line methods: The values J̃k+1(xk+1) are computed only at the relevant next
states xk+1, and are used to compute the control to be applied at the N time steps.

Examples of on-line methods: Rollout and model predictive control.

On-line methods are well-suited for on-line replanning (but require more on-line
computation).

Bertsekas (M.I.T.) Reinforcement Learning 23 / 82

Simplifying the Minimization of the Expected Value in Lookahead
Schemes

min
uk∈Uk (xk)

E
{

gk (xk , uk ,wk) + J̃k+1
(
fk (xk , uk ,wk)

)}
The minimization can be done by:

Brute force (after discretization if there are infinitely many controls).

For deterministic problems and continuous controls, nonlinear programming.

For stochastic problems and continuous controls, stochastic programming.

When u has multiple components, multiagent/component-by-component
minimization (see the book "Rollout, Policy Iteration and Distributed RL", 2020).

Possibilities to simplify the E{·}:
Assumed certainty equivalence, i.e., choose a typical value w̃k of wk , and use the
control µ̃k (xk) that solves the deterministic problem

min
uk∈Uk (xk)

[
gk (xk , uk , w̃k) + J̃k+1

(
fk (xk , uk , w̃k)

)]
However, this may degrade performance significantly.

Monte Carlo Tree Search (a form of lookahead based on adaptive simulation -
simulate more accurately the controls that seem “most promising").

Bertsekas (M.I.T.) Reinforcement Learning 24 / 82

3. APPROXIMATION IN POLICY SPACE
(RL-OC, Section 2.1)

Bertsekas (M.I.T.) Reinforcement Learning 26 / 82

Approximation in Policy Space: The Major Alternative to Approximation
in Value Space

System
Cost

Disturbance
Control

Controller

Current State

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Idea: Select the policy by optimization over a suitably restricted class of policies.

The restricted class is usually a parametric family of policies µk (xk , rk),
k = 0, . . . ,N − 1, of some form, where rk is a parameter (e.g., a neural net).

Important advantage once the parameters rk are computed: The computation of
controls during on-line operation of the system is often much easier; i.e.,

At state xk apply uk = µk (xk , rk)

Bertsekas (M.I.T.) Reinforcement Learning 27 / 82

Approximation in Policy Space on Top of Approximation in Value Space

Approximation in
 Value Space

State-Control
Sample Pair
Generation

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

xs
k, us

k = µ̃k(xs
k) s = 1, . . . , q µ̃k(xk)

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

xs
k, us

k = µ̃k(xs
k) s = 1, . . . , q µ̃k(xk)

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

Least Squares
Fit

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints Keep state close to a trajectory

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

uk = µ̃k(xk, rk) xk µ̃k(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints Keep state close to a trajectory

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints Keep state close to a trajectory

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

Compute approximate cost-to-go functions J̃k+1, k = 0, . . . ,N − 1.

This defines a suboptimal policy µ̃k , k = 0, . . . ,N − 1, through

µ̃k (xk) ∈ arg min
uk∈Uk (xk)

E
{

gk (xk , uk ,wk) + J̃k+1
(
fk (xk , uk ,wk)

)}
Generate a training set consisting of a large number q of sample pairs

(
xs

k , u
s
k

)
,

s = 1, . . . , q, where us
k = µ̃k (xs

k). Approximate µ̃k using some form of parametric
least squares fit.

Example: Introduce a parametric family of policies µk (xk , rk), k = 0, . . . ,N − 1, of
some form, where rk is a parameter vector. Then obtain rk by

rk ∈ arg min
r

q∑
s=1

∥∥us
k − µk (xs

k , r)
∥∥2

Some other possibilities: Nearest neighbor optimization (use the control us
k of the

sampled state xs
k nearest to xk), or interpolation.

Bertsekas (M.I.T.) Reinforcement Learning 28 / 82

4. MODEL-FREE METHODS AND SIMULATION
(RL-OC, Section 2.1)

Bertsekas (M.I.T.) Reinforcement Learning 30 / 82

Model-Based Versus Model-Free Implementation for Stochastic
Problems

Our use of the term “model-free": A method is called model-free if it involves
calculations of expected values using Monte Carlo simulation.

Principal example

Calculate J̃k in model-free fashion (rollout is a possibility to be discussed later).
Implement model-free control minimization with one of three possible methods:

I (1) On-line, at state xk calculate by simulation the needed Q-factors for lookahead
minimization

Q̃k (xk , uk) = E
{

gk (xk , uk ,wk) + J̃k+1
(
fk (xk , uk ,wk)

)}
and choose uk that minimizes Q̃k (xk , uk)

I (2) Off-line “train" a parametric class of policies µ̃k (xk , rk) by approximation in policy
space on top of approximation in value space (see previous slide)

I (3) Off-line “train" a parametric family of Q-factors Q̃k (xk , uk , rk) and choose uk that
minimizes Q̃k (xk , uk , rk) (see next slide)

Alternative: “Train" directly parametric Q-factors by Q-learning (RL-OC,
Section 5.4)

Bertsekas (M.I.T.) Reinforcement Learning 31 / 82

Model-Free Q-Factor Parametric Approximation

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Sample Q-Factor �s
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

1

Use the simulator to collect a large number of “representative" samples of
state-control-successor states-stage cost quadruplets (xs

k , u
s
k , x

s
k+1, g

s
k), and

corresponding sample Q-factors

βs
k = gs

k + J̃k+1(xs
k+1), s = 1, . . . , q

Introduce a parametric family of Q-factors Q̃k (xk , uk , rk).

Determine the parameter vector r̄k by the least-squares fit

r̄k ∈ arg min
rk

q∑
s=1

(
Q̃k (xs

k , u
s
k , rk)− βs

k
)2

Use the policy
µ̃k (xk) ∈ arg min

uk∈Uk (xk)
Q̃k (xk , uk , r̄k)

Bertsekas (M.I.T.) Reinforcement Learning 32 / 82

5. POLICY IMPROVEMENT, ROLLOUT, SELF-LEARNING
(RL-OC, Section 2.4)

Bertsekas (M.I.T.) Reinforcement Learning 34 / 82

Main Rollout Idea: Start with a Base Policy, Get a Better Policymin
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

at state xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gm

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

Use the cost of the base/suboptimal policy at the end of `-step lookahead

Assume a base policy is available and can be simulated.

The control µ̃k (xk) of the lookahead policy, can be computed at any xk . It defines
the rollout policy.

The rollout policy performs better than the base policy. (Intuition: Using
optimization in the first ` steps instead of using the base policy should work better.)

In practice rollout performs well, is very reliable, is very simple to implement, can
be model-free (particularly in the case ` = 1).

Rollout in its “standard" form involves simulation and can be implemented on-line.

The simulation can be prohibitively expensive (so further approximations may be
needed); particularly for stochastic problems and multistep lookahead.

Bertsekas (M.I.T.) Reinforcement Learning 35 / 82

Deterministic Rollout (` = 1) - Avoids Expensive Simulation

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

At state xk , for every pair (xk , uk), uk ∈ Uk (xk), we generate a Q-factor

Q̃k (xk , uk) = gk (xk , uk) + Hk+1
(
fk (xk , uk)

)
using the base policy [Hk+1(xk+1) is the base policy cost starting from xk+1].

We select the control uk with minimal Q-factor.

We move to the next state xk+1, and continue.

Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree).

Bertsekas (M.I.T.) Reinforcement Learning 36 / 82

Traveling Salesman Example of Rollout with a Greedy Heuristic

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N �1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities Nearest Neighbor

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Initial City Current Partial Tour Next Cities

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Complete Tours Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

N cities c = 0, . . . ,N − 1; each pair of distinct cities c, c′, has traversal cost
g(c, c′).

Find a minimum cost tour that visits each city once and returns to the initial city.

Recall that it can be viewed as a shortest path/deterministic DP problem. States
are the partial tours, i.e., the sequences of ordered collections of distinct cities.

Nearest neighbor heuristic; sequentially extends the partial tour with the closest
next city.

Rollout algorithm: Start at some city; given a partial tour {c0, . . . , ck} of distinct
cities, select as next city ck+1 the one that yielded the minimum cost tour under the
nearest neighbor heuristic.

Bertsekas (M.I.T.) Reinforcement Learning 37 / 82

Stochastic Rollout: Learning (Cost Improvement) Through
Self-Observation (Simulation)min

uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
Nonlinear Ay(x) + b φ1(x, v) φ2(x, v) φm(x, v) r x Initial

Selective Depth Lookahead Tree σ(ξ) ξ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r′φ(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

(
xk(Ik)

)

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector φk(xk) Approximator r′
kφk(xk)

x0 xk im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2
N i

s i1 im−1 im . . . (0, 0) (N, −N) (N, 0) ī (N, N) −N 0 g(i) Ī N − 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector φ(x) Approximator φ(x)′r

ℓ Stages Riccati Equation Iterates P P0 P1 P2 γ2 − 1 γ2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k − wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J⇤
3 (x3) J⇤

2 (x2) J⇤
1 (x1) Optimal Cost J⇤

0 (x0) = J⇤(x0)

Optimal Cost J⇤
k (xk) xk xk+1 x

0
k+1 x

00
k+1

Opt. Cost J⇤
k+1(xk+1) Opt. Cost J⇤

k+1(x
0
k+1) Opt. Cost J⇤

k+1(x
00
k+1)

xk uk u
0
k u

00
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

1

Compressed N stages xk+1 = f(xk, uk, wk) αkg(xk, uk, wk) Terminal State 2 0 J∗ = (0, 0) . . .

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

J̃k = (rk, 2rk) Exact VI iterate Approximate J̃k+1 =
(
αJ̃k(2), αJ̃k(2)

)
= (2αrk, 2αrk).

Orthogonal Projection

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation Representative State-Time Pairs Space-Time Barriers

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

at state xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gm

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Start End Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo

tree search

1

Start with a base policy π = {µ0, . . . , µN−1}.
Let the rollout policy be π̃ = {µ̃0, . . . , µ̃N−1}. Then cost improvement is obtained

Jk,π̃(xk) ≤ Jk,π(xk), for all xk and k .

This fundamental property carries over to policy iteration, which can be viewed as
perpetual rollout:

Start Policy =⇒ Rollout Policy =⇒ Rollout of Rollout Policy =⇒ · · ·

Approximate policy iteration (or self-learning): Use of simulation, and
approximation in policy and/or value space, to learn sequentially improved policies.

Many variants: Actor only, critic only, actor-critic, Q-learning methods.

Bertsekas (M.I.T.) Reinforcement Learning 38 / 82

6. APPROXIMATE POLICY IMPROVEMENT, ADAPTIVE SIMULATION,
Q-LEARNING

(RL-OC, Section 2.4)

Bertsekas (M.I.T.) Reinforcement Learning 40 / 82

Multistep Truncated Rollout with Cost Approximation

Selective Depth Lookahead Tree

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk

xk States xk+1 States xk+2 Truncated Rollout Terminal Cost Ap-
proximation

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

1

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk

xk States xk+1 States xk+2 Truncated Rollout Terminal Cost Ap-
proximation

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Truncation of the rollout with cost approximation at the end saves computation.

Cost improvement property holds approximately (error bounds in RL-OC, Section
5.1).

Typically, longer lookahead leads to improved performance. However, long
lookahead is costly.

Experimentation with length of rollout and terminal cost function approximation are
recommended.

Bertsekas (M.I.T.) Reinforcement Learning 41 / 82

Backgammon Example (Tesauro 1996)

Average Score
Monte-Carlo
Simulation

Average Score
Monte-Carlo
Simulation

Average Score
Monte-Carlo
Simulation

Average Score
Monte-Carlo
Simulation

Possible
Moves

Current Position and Dice Roll

Best Score

Truncated rollout with cost function approximation provided by TD-Gammon
(earlier program involving a neural network trained by a form of policy iteration).

Plays better than TD-Gammon, and better than any human.

Too slow for real-time play (without parallel hardware), due to excessive simulation.

Bertsekas (M.I.T.) Reinforcement Learning 42 / 82

Monte Carlo Tree Search - Motivation

We assumed equal effort for evaluation of Q-factors of all controls at a state xk

Drawbacks:

Some of the controls uk may be clearly inferior to others, and may not be worth as
much sampling effort.

Some of the controls uk that appear to be promising, may be worth exploring
better through multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead
MCTS aims to trade off computational economy with a hopefully small risk of
degradation in performance.

It involves adaptive simulation (simulation effort adapted to the perceived quality of
different controls). Methods that use only few samples are called “optimistic".

Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

Bertsekas (M.I.T.) Reinforcement Learning 43 / 82

Implementation of MCTS

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Find a control ũk that minimizes the approximate Q-factor

Q̃k (xk , uk) = E
{

gk (xk , u,wk) + J̃k+1
(
fk (xk , u,wk)

)}
over uk ∈ Uk (xk), by averaging samples of Q̃k (xk , uk).

Assume that Uk (xk) contains m elements, denoted 1, . . . ,m

After the nth sampling period we have Qi,n, the empirical mean of the Q-factor of
control i (total sample value divided by total number of samples).

How do we use the estimates Qi,n to select the control to sample next?

Bertsekas (M.I.T.) Reinforcement Learning 44 / 82

Implementation of MCTS Based on Statistical Tests

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation

Complete Tours Current Partial Tour Next Cities Next States

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

1

A good sampling policy balances exploitation (sample controls that seem most
promising, i.e., a small Qi,n) and exploration (sample controls with small sample count).

A popular strategy: Sample next the control i that minimizes the sum Qi,n + Ri,n

where Ri,n is an exploration index.

Ri,n is based on a confidence interval formula and depends on the sample count si

of control i (which comes from analysis of multiarmed bandit problems).

The UCB rule (upper confidence bound) sets Ri,n = −c
√

log n/si , where c is a
positive constant, selected empirically (values c ≈

√
2 are suggested, assuming

that Qi,n is normalized to take values in the range [−1, 0]).

MCTS with UCB rule has been extended to multistep lookahead.
Bertsekas (M.I.T.) Reinforcement Learning 45 / 82

Optimistic Policy Iteration with Q-Factor Approximation - Infinite Horizon

In “optimistic" policy iteration, the policy is changed frequently (few samples are
used for rollout/policy evaluation between policy updates).
Implementation of policy changes with Q-factors: Introduce a parametric
approximation Q̃(x , u, r), and iterate on r .
Each value of r defines a policy, which generates controls. We update r in a
“direction of policy improvement" after a few samples.

SARSA/DQN: At iteration t , we have r t , x t , and we have chosen a control ut

We simulate the next transition to x t+1 and the transition cost gt .

We generate ut+1 with the minimization ut+1 ∈ arg minu∈U(x t+1) Q̃(x t+1, u, r t). [In
some schemes, ut+1 is chosen with a small probability to be a different element of
U(x t+1) to enhance exploration (this is called off-policy exploration).]

We update r t in a gradient direction, aimed at solving a training/regression
problem, via

r t+1 = r t − γ t∇r Q̃(x t , ut , r t)qt ,

where γ t is a positive stepsize, and the scalar

qt = Q̃(x t , ut , r t)− αQ̃(x t+1, ut+1, r t)− gt

is referred to as the temporal difference at iteration t .

Bertsekas (M.I.T.) Reinforcement Learning 46 / 82

7. APPROXIMATION ARCHITECTURES, FEATURES, AND
DEEP NEURAL NETS

(RL-OC, Chapter 3)

Bertsekas (M.I.T.) Reinforcement Learning 48 / 82

Parametric Approximation in Value Space

The starting point: An approximation architecture and a target function

The architecture: A class of functions J̃(x , r) that depend on x and a vector
r = (r1, . . . , rm) of m “tunable" scalar parameters (or weights).

Training: Adjust r to change J̃ and “match" the target function, usually by some
form of least squares fit of the architecture to data relating to the target function.

Architectures are feature-based if they depend on x via a feature vector φ(x),

J̃(x , r) = Ĵ
(
φ(x), r

)
,

where Ĵ is some function. Idea: Features capture dominant nonlinearities and can
be problem-specific.

Architectures J̃(x , r) can be linear or nonlinear in r . Linear are much easier to
train.

A linear feature-based architecture: J̃(x , r) = r ′φ(x) =
∑m

i=1 riφi (x)

Special State n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
Approximator ⇧(i)⇥r

Route to Queue 2

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ � ⇤)Nµ(n)
n � 1 �(n � 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇧
J�

⇤
pf0(z)

pf0(z) + (1 � p)f1(z)

⌅⌃

Cost = 0 Cost = �1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � ⇥j(u)
⇥ 1 � ⇥i(u)

⇥ 1 � ⇥k(u)
⇥

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n⌥

j=1

p1jJ�(j)

1

Special State n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
Approximator ⇧(i)⇥r

Route to Queue 2

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ � ⇤)Nµ(n)
n � 1 �(n � 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇧
J�

⇤
pf0(z)

pf0(z) + (1 � p)f1(z)

⌅⌃

Cost = 0 Cost = �1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � ⇥j(u)
⇥ 1 � ⇥i(u)

⇥ 1 � ⇥k(u)
⇥

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n⌥

j=1

p1jJ�(j)

1

Special State n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
Approximator ⇧(i)⇥r

Route to Queue 2

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ � ⇤)Nµ(n)
n � 1 �(n � 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇧
J�

⇤
pf0(z)

pf0(z) + (1 � p)f1(z)

⌅⌃

Cost = 0 Cost = �1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � ⇥j(u)
⇥ 1 � ⇥i(u)

⇥ 1 � ⇥k(u)
⇥

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n⌥

j=1

p1jJ�(j)

1

Special State n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
Approximator ⇧(i)⇥r

Route to Queue 2

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ � ⇤)Nµ(n)
n � 1 �(n � 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇧
J�

⇤
pf0(z)

pf0(z) + (1 � p)f1(z)

⌅⌃

Cost = 0 Cost = �1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � ⇥j(u)
⇥ 1 � ⇥i(u)

⇥ 1 � ⇥k(u)
⇥

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n⌥

j=1

p1jJ�(j)

1

Special State n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
Approximator ⇧(i)⇥r

Route to Queue 2

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ � ⇤)Nµ(n)
n � 1 �(n � 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇧
J�

⇤
pf0(z)

pf0(z) + (1 � p)f1(z)

⌅⌃

Cost = 0 Cost = �1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � ⇥j(u)
⇥ 1 � ⇥i(u)

⇥ 1 � ⇥k(u)
⇥

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n⌥

j=1

p1jJ�(j)

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector φ(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy Cost of Base Policy
Lookahead Minimization

Control Probabilities Rollout Control State x Feature Vector φ(x)

Approximator r′φ(x)

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

1

Bertsekas (M.I.T.) Reinforcement Learning 49 / 82

Examples of Generic Feature-Based Architectures

Quadratic polynomial approximation: J̃(x , r) is quadratic in the components x i of
x . Consider features

φ0(x) = 1, φi (x) = x i , φij (x) = x ix j , i, j = 1, . . . , n.

A linear feature-based architecture, where r consists of weights r0, ri , and rij :

J̃(x , r) = r0 +
n∑

i=1

rix i +
n∑

i=1

n∑
j=i

rijx ix j

General polynomial architectures: Higher-degree polynomials in the components
x1, . . . , xn. Another possibility: Polynomials of features.

In aggregation (RL-OC, Chapter 6) we use piecewise constant and piecewise
linear architectures.

Many other possibilities: Radial basis functions, data-dependent/kernel
architectures, support vector machines, etc.

Partial state observation problems (POMDP): Can be reformulated as problems of
perfect state observation involving a belief state (see RL-OC and the references
there). Architectures involving features of the belief state (such as state estimates)
are useful.

Bertsekas (M.I.T.) Reinforcement Learning 50 / 82

Examples of Domain-Specific Feature-Based Architectures

Feature Extraction Features: Material Balance, Mobility, Safety, etc
Weighting of Features Score

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Feature Extraction Features: Material Balance,

Mobility, Safety, etc Weighting of Features Score Position Evaluator

States xk+1 States xk+2

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

1

Win
"Probability"

Chess

Tetris
Features such as column heights, column height differentials, number of “holes" etc

Bertsekas (M.I.T.) Reinforcement Learning 51 / 82

Underparametrized and Overparametrized Architectures

If Number of Features > (or <) Number of Data Points, we say that the
architecture is overparametrized (or underparametrized), respectively.

Overparametrized architectures can be trained exactly (essentially with zero
training error), i.e., they fit exactly/interpolate the data (this is also known as
“overfitting").

In this case, the training problem has many globally optimal solutions with equal
(essentially zero) optimal cost. Some of these solutions are better than others in
modeling the target function.

Underparametrized training is subject to significant generalization error (good
performance on the training set, bad model of the target function, i.e., much worse
performance on more general data, outside the training set).

To deal with this, a regularization term is added to underparametrized least
squares training objectives (to essentially “fool" the optimization away from
“overfitting").

One of the exciting recent discoveries is that overparametrized architectures do
not have nearly as much generalization error difficulty, assuming proper (but not
very tricky) implementation, to find a good solution out of the many candidates.

Current speculation is that this is the main reason for the success of deep neural
nets (a primary example of overparametrized architecture).

Bertsekas (M.I.T.) Reinforcement Learning 52 / 82

Neural Nets: An Architecture that Automatically Constructs Features

.

State x

Encoding

Cost
Approximation

LayerLayer
Linear Linear

Weighting

y(x)

Parameter Parameter
v = (A, b)

φ1(x, v)

Ay(x) + b φ2(x, v)

φm(x, v)

r

State

r′φ(x, v)

Nonlinear

FEATURES

Given a set of state-cost training pairs (xs, βs), s = 1, . . . , q, the parameters of the
neural network (A, b, r) are obtained by solving the training problem

min
A,b,r

q∑
s=1

(
m∑
`=1

r`σ
((

Ay(xs) + b
)
`

)
− βs

)2

Universal approximation property.

An “incremental" gradient method (back-propagation) is typically used for training.

The state encoding y(x) may include problem-dependent features, thought to be
“informative"; this may be important for success in practice.

Bertsekas (M.I.T.) Reinforcement Learning 53 / 82

Rectifier and Sigmoidal Nonlinearities

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

1

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)
max{0, ξ}

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2)

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

dℓi = 0 if i /∈ Iℓ

1

The rectified linear unit σ(ξ) = ln(1 + eξ). It is the rectifier function max{0, ξ} with its
corner “smoothed out"

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Sigmoidal units: The hyperbolic tangent function σ(ξ) = tanh(ξ) = eξ−e−ξ
eξ+e−ξ is on the

left. The logistic function σ(ξ) = 1
1+e−ξ is on the right.

Bertsekas (M.I.T.) Reinforcement Learning 54 / 82

Deep Neural Networks

.
.

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

1

Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r x

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation �(x, v)0r

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

1

Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r x

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r0�(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

Nonlinear Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r x Initial

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r0�(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

Nonlinear Ay(x) + b �1(x, v) �2(x, v) �m(x, v) r x Initial

Selective Depth Lookahead Tree �(⇠) ⇠ 1 0 -1 Encoding y(x)

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting
Cost Approximation r0�(x, v)

Feature Extraction Features: Material Balance, uk = µd
k

�
xk(Ik)

�

Mobility, Safety, etc Weighting of Features Score Position Evaluator
States xk+1 States xk+2

State xk Feature Vector �k(xk) Approximator r0k�k(xk)

x0 xk im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2
N i

s i1 im�1 im . . . (0, 0) (N,�N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
i

u1
k u2

k u3
k u4

k Selective Depth Adaptive Simulation Tree Projections of
Leafs of the Tree

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

1

A deep NN is a multilayer network that provides a hierarchy of features (each set
of features being a function of the preceding set of features).

We may use matrices A with a special structure that encodes special linear
operations such as convolution.

When such structures are used, the training problem may become easier.

The large number of deep NN weights (overparametrization) may contribute to
their ability to produce good predictors of the target function.

Deep NNs have been found more effective than shallow NNs in some important
problem settings.

There is a lot of research and speculation regarding their success.
Bertsekas (M.I.T.) Reinforcement Learning 55 / 82

Parametric Approximation of Policies (RL-OC, Section 3.5)

(a) (b) System PID Controller yk y ek = yk � y + � ⌧

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours, MAP Classifier Data-Trained Max MAX max

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) System PID Controller yk y ek = yk � y + � ⌧

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours, MAP Classifier Data-Trained Max MAX max

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours, MAP Classifier Data-Trained Max MAX max

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Generate Improved Policy µ Next Partial Tours, MAP Classifier Data-Trained Max MAX max

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

State xk Policy µ̃k(xk, rk) h̃u(ck, rk)

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

...

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

State xk Policy µ̃k(xk, rk) h̃u(ck, rk)

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Aggregate States j 2 S f(u) u u1 = 0 u2 uq uq�1 . . . b = 0 b⇤ b⇤ = Optimized b

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
P

y2A �jyr⇤y

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem J⇤

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /2 Ix

Aggregation Probabilities �jy �jy = 1 for j 2 Iy

State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r⇤ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r⇤x y1 y2 y3

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1 r⇤x` r⇤xm Footprint Sets J̃(i) J̃(j) =
P

y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

1

(a) (b) Category c̃(x, r̄) c⇤(x) System PID Controller yk y ek = yk � y + � ⌧ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ⇠ij(u) pij(u)

Aggregate States j 2 S f(u) u u1 = 0 u2 uq uq�1 . . . b = 0 b⇤ b⇤ = Optimized b

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
P

y2A �jyr⇤y

p(z; r) 0 z r r + ✏1 r + ✏2 r + ✏m r � ✏1 r � ✏2 r � ✏m · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem J⇤

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /2 Ix

Aggregation Probabilities �jy �jy = 1 for j 2 Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) 2 arg minu2U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r⇤ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r⇤x y1 y2 y3

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1 r⇤x` r⇤xm Footprint Sets J̃(i) J̃(j) =
P

y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk)

Motion equations xk+1 = fk(xk, uk, wk) Penalty for deviating from
nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

A given policy can be implemented approximately with a data-trained classifier

We collect a training set of many state-control pairs (xs
k , u

s
k), s = 1, . . . , q, using

the policy (i.e., at xs
k the policy applies us

k).

The classifier generates for each state xk the “probability" h̃(u, xk , rk) of each
control u being the correct one (i.e., the one generated by the given policy).

The classifier outputs the control of max probability for each state.

Thus a pattern classification/recognition method can be used to train the policy
approximation.

Neural nets are widely used for this.

Bertsekas (M.I.T.) Reinforcement Learning 56 / 82

8. INCREMENTAL AND STOCHASTIC GRADIENT OPTIMIZATION
(RL-OC, Sections 3.1.2, 3.1.3)

Bertsekas (M.I.T.) Reinforcement Learning 58 / 82

Incremental Gradient Methods

Generic training problem: Minimize a sum of cost function components (each
corresponding to some data)
Minimize

f (y) =
m∑

i=1

fi (y)

where each fi is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y t+1 from y t according to

y t+1 = y t − γ t∇f (y t) = y t − γ t
m∑

i=1

∇fi (y t)

where γ t > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index it and iterate according to:

y t+1 = y t − γ t∇fit (y
t)

where γ t > 0 is a stepsize parameter.Bertsekas (M.I.T.) Reinforcement Learning 59 / 82

The Advantage of Incrementalism

x*

xR

REGION OF CONFUSION FAROUT REGIONFAROUT REGION

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

1

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

1

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

1

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

minu2U(i)

Pn
j=1 pij(u)

�
g(i, u, j) + J̃(j)

�
Computation of J̃ :

Good approximation Poor Approximation �(⇠) = ln(1 + e⇠)

max{0, ⇠} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

1

Minimize f (y) =
∑m

i=1(ciy − bi)
2

Compare the ordinary and the incremental gradient methods in two cases
When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas (M.I.T.) Reinforcement Learning 60 / 82

Incremental Aggregated and Stochastic Gradient Methods

The incremental aggregated method aims at acceleration
Evaluates gradient of a single term at each iteration.

Uses previously calculated gradients as if they were up to date

y t+1 = y t − γ t
m−1∑
`=0

∇fit−`(y t−`)

Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

Applies to minimization of f (y) = E
{

F (y ,w)
}

where w is a random variable

Has the form
y t+1 = y t − γ t∇y F (y t ,w t)

where w t is a sample of w and ∇y F denotes gradient of F with respect to y .

The incremental gradient method with random index selection is the same as SGD
[convert the sum

∑m
i=1 fi (y) to an expected value, where i is random with uniform

distribution].

Bertsekas (M.I.T.) Reinforcement Learning 61 / 82

Implementation Issues of Incremental Methods - Alternative Methods

How to pick the stepsize γ t (usually γ t = γ
t+1 or similar).

How to deal (if at all) with region of confusion issues (detect being in the region of
confusion and reduce the stepsize).

How to select the order of terms to iterate (cyclic, random, other).

Dealing with issues of underparametrization and overparametrization.

Diagonal scaling (a different stepsize for each component of y).

Alternative methods (more ambitious): Incremental Newton method, diagonalized
Newton Method, extended Kalman filter (see RL-OC, Section 3.1.3, or the author’s
Nonlinear Programming book).

Issues of parallel and asynchronous computation in special (partitioned) types of
architectures.

For extensive discussions see the author’s book “Nonlinear Programming," 3rd
edition, Athena Scientific, 2016, and the references given there.

Bertsekas (M.I.T.) Reinforcement Learning 62 / 82

9. DIRECT POLICY OPTIMIZATION: A MORE GENERAL APPROACH
(RL-OC, Section 5.7.1)

Bertsekas (M.I.T.) Reinforcement Learning 64 / 82

General Framework for Approximation in Policy Space

Parametrize stationary policies with a parameter vector r ; denote them by µ̃(r),
with a component µ̃(x , r) for each state x . Each r defines a policy.

Parametrization may be problem-specific, or may involve a neural network.

The idea is to optimize some measure of performance with respect to r .

Approximation in policy space applies more broadly; relies less on DP structure.

An example of problem-specific/natural parametrization: Supply chains,
inventory control

Production
Center

Delay Retail
Storage

Demand

Retail center places orders to the production center, depending on current stock;
there may be orders in transit; demand and delays can be stochastic.

State is (current stock, orders in transit, etc). Can be formulated by DP but can be
very difficult to solve exactly.

Intuitively, a near-optimal policy is of the form: When the retail inventory goes
below level r1, order an amount r2. Optimize over the parameter vector r = (r1, r2).

Extensions to a network of production/retail centers, multiple products, etc.

Bertsekas (M.I.T.) Reinforcement Learning 65 / 82

Another Example: Policy Parametrization Through Value
Parametrization

Suppose J̃(x , r) is a given cost function parametric approximation.

J̃ may be a linear feature-based architecture that is natural for the given problem.

Define µ̃(x , r) ∈ arg min
u∈U(x)

E
{

g(x , u, x) + J̃
(
f (x , u,w), r

)}
This is useful when we know a good parametrization in value space, but we want
to use a method that works well in policy space, and results in an easily
implementable policy.

Tetris example: There are good linear parametrizations through features. Great
success has been achieved by indirect approximation in policy space.

Bertsekas (M.I.T.) Reinforcement Learning 66 / 82

Policy Approximation on Top of Value Approximation

Compute approximate cost-to-go function J̃ using an approximation in value space
scheme.

This defines the corresponding suboptimal policy µ̂ through one-step lookahead,

µ̂(x , r) ∈ arg min
u∈U(x)

E
{

g(x , u,w) + J̃
(
f (x , u,w), r

)}
or a multistep lookahead version.

Approximate µ̂ using a training set consisting of a large number q of sample pairs(
xs, us), s = 1, . . . , q, where us = µ̂(xs).

In particular, introduce a parametric family of policies µ̃(x , r). Then obtain r by

min
r

q∑
s=1

∥∥us − µ̃(xs, r)
∥∥2
.

Bertsekas (M.I.T.) Reinforcement Learning 67 / 82

Learning from a Software or Human Expert

Suppose we have a software or human expert that can choose a “good" or
“near-optimal" control u at any state x .

We use the expert to generate a sample set of representative state-control pairs
(xs, us), s = 1, . . . , q.

We introduce a parametric family of policies µ̃(x , r). Then obtain r by

min
r

q∑
s=1

∥∥us − µ̃(xs, r)
∥∥2
.

This approach is known as expert supervised training.

It has been used (in various forms) in backgammon and in chess.

It can be used, among others, for initialization of other methods (such as rollout)
with a reasonably good policy.

Bertsekas (M.I.T.) Reinforcement Learning 68 / 82

Unconventional Information Structures

Approximation in value space is based on a DP formulation, so the controller has
access to the exact state (or a belief state in case of partial state information).

In some contexts this may not be true. There is a DP-like structure, but no full
state or belief state is available.

Example 1: The controller “forgets" information, e.g., has “limited memory".

Example 2: Some control components may be chosen on the basis of different
information that others.

Example: Multiagent systems with local agent information
Suppose decision making and information gathering is distributed among multiple
autonomous agents.

Each agent’s action depends only on his/her local information.

Agents may be receiving delayed information from other agents.

Then conventional DP and much of the approximation in value space methodology
breaks down.

Approximation in policy space is still applicable.

Bertsekas (M.I.T.) Reinforcement Learning 69 / 82

10. GRADIENT AND RANDOM SEARCH METHODS FOR
DIRECT POLICY OPTIMIZATION

(RL-OC, Section 5.7.1-5.7.2)

Bertsekas (M.I.T.) Reinforcement Learning 71 / 82

Optimization/Training Framework

System
Cost

Disturbance
Control

Controller

Current State

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r)

Motion equations xk+1 = fk(xk, uk)

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

uk = µk(xk, rk) xk µk(·, rk) µ̃k(xk)

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Training by Cost Optimization

Each r defines a stationary policy µ̃(r), with components µ̃(x , r).

Determine r through the minimization

min
r

Jµ̃(r)(x0)

where Jµ̃(r)(x0) is the cost of the policy µ̃(r) starting from initial state x0.

More generally, determine r through the minimization

min
r

E
{

Jµ̃(r)(x0)
}

where the E{·} is with respect to a suitable probability distribution of x0.

Bertsekas (M.I.T.) Reinforcement Learning 72 / 82

Policy Gradient Method for Stochastic Problems

Consider the generic optimization problem minz∈Z F (z)

We take an unusual step: Convert this problem to the stochastic optimization problem

min
p∈PZ

Ep
{

F (z)
}

where

z is viewed as a random variable.

PZ is the set of probability distributions over Z .

p denotes the generic distribution in PZ .

Ep{·} denotes expected value with respect to p.

How does this relate to our DP problems?
For this framework to apply to a stochastic DP context, we must enlarge the set of
policies to include randomized policies, mapping a state x into a probability
distribution over the set of controls U(x).

Note that in our DP problems, optimization over randomized policies gives the
same results as optimization over ordinary/nonrandomized policies.

In the DP context, z is the state-control trajectory: z = {x0, u0, x1, u1, . . .}.
Bertsekas (M.I.T.) Reinforcement Learning 73 / 82

Gradient Method for Approximate Solution of minz∈Z F (z)

Parametrization of the probability distributions

We restrict attention to a parametrized subset P̃Z ⊂ PZ of probability distributions
p(z; r), where r is a continuous parameter.

In other words, we approximate the problem minz∈Z F (z) with the restricted
problem

min
r

Ep(z;r)
{

F (z)
}

We use a gradient method for solving this problem:

r t+1 = r t − γ t∇
(

Ep(z;r t)

{
F (z)

})

Key fact: There is a useful formula for the gradient, which involves the gradient
with respect to r of the natural logarithm log

(
p(z; r t)

)
.

Bertsekas (M.I.T.) Reinforcement Learning 74 / 82

Log-Likelihood Policy Gradient Method

The Gradient Formula: Assuming that p(z; r t) is a discrete distribution,

∇
(

Ep(z;r t)

{
F (z)

})
= ∇

(∑
z∈Z

p(z; r t)F (z)

)
=
∑
z∈Z

∇p(z; r t)F (z)

=
∑
z∈Z

p(z; r t)
∇p(z; r t)

p(z; r t)
F (z)

= Ep(z;r t)

{
∇
(

log
(
p(z; r t)

))
F (z)

}

Sample-Based Gradient Method for Parametric Approximation of minz∈Z F (z)

At r t obtain a sample z t according to the distribution p(z; r t).

Compute the sample gradient ∇
(

log
(
p(z t ; r t)

))
F (z t).

Use it to iterate according to

r t+1 = r t − γ t∇
(

log
(
p(z t ; r t)

))
F (z t)

Bertsekas (M.I.T.) Reinforcement Learning 75 / 82

Policy Gradient Method - Finite-State Discounted Problem

Denote by z the infinite horizon state-control trajectory: z = {i0, u0, i1, u1, . . .}.
We consider a parametrization of randomized policies p(u | i; r) with parameter r ,
i.e., at state i , u is generated according to a distribution p(u | i; r) over U(i).

Example: Soft-min parametrization using a Q-factor parametrization Q̃(i, u, r),

p(u | i; r) =
e−βQ̃(i,u,r)∑

v∈U(i) e−βQ̃(i,v,r)

Then for a given r , the state-control trajectory z is a random trajectory with
probability distribution denoted p(z; r).

The cost corresponding to the trajectory z is F (z) =
∑∞

m=0 α
mg(im, um, im+1), and

the problem is to minimize Ep(z;r)
{

F (z)
}
, over r .

The gradient needed in the gradient iteration

r t+1 = r t − γ t∇
(

log
(
p(z t ; r t)

))
F (z t)

is given by

∇
(

log
(
p(z t ; r t)

))
=
∞∑

m=0

log
(
pim im+1 (um)

)
+
∞∑

m=0

∇
(

log
(
p(um | im; r t)

))
Bertsekas (M.I.T.) Reinforcement Learning 76 / 82

Training by Random Search

Random search methods apply to the general minimization minr∈R F (r)

They generate a parameter sequence {r t} aiming for cost reduction.

Given r t , points are chosen in some random fashion in a neighborhood of r t , and
some new point r t+1 is chosen within this neighborhood.

In theory they have good convergence properties. In practice they can be slow.

They are not affected as much by local minima (as for example gradient-type
methods).

They don’t require a differentiable cost function, and they apply to discrete as well
as continuous minimization.

There are many methods and variations thereoff.

Some examples
Evolutionary programming.

Tabu search.

Simulated annealing.

Cross entropy method.

Bertsekas (M.I.T.) Reinforcement Learning 77 / 82

Cross-Entropy Method - A Sketch

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk Base Policy

µ̂k(xk) J̃k(xk) rt rt+1

xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Et Et+1 Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

At the current iterate r k , construct an ellipsoid Ek centered at r k .

Generate a number of random samples within Ek . “Accept" a subset of the
samples that have “low" cost.

Let r k+1 be the sample “mean" of the accepted samples.

Construct a sample “covariance" matrix of the accepted samples, form the new
ellipsoid Ek+1 using this matrix, and continue.

Limited convergence rate guarantees. Success depends on domain-specific
insight and the skilled use of implementation heuristics.

Simple and well-suited for parallel computation. Resembles a “gradient method".
Bertsekas (M.I.T.) Reinforcement Learning 78 / 82

FINAL REMARKS

Bertsekas (M.I.T.) Reinforcement Learning 79 / 82

A List of Some Important Topics we Did Not Cover Fully (or at all)

Infinite horizon extensions: Approximate value and policy iteration, error bounds,
stochastic shortest path and average cost problems (RL-OC, Sections 5.1-5.3)
Optimistic (few sample) and multistep variants of self-learning and policy iteration
(RL-OC, Sections 5.3-5.4)
Sampling for exploration, in the context of policy evaluation (RL-OC, Section 5.3.4)
Temporal difference methods: A class of methods for approximate policy
evaluation in infinite horizon problems with a rich theory (RL-OC, Section 5.5)
Q-learning, with and without approximations (RL-OC, Section 5.4)
Many variants of policy approximation methods: actor-critic methods, policy
gradient and random search methods (RL-OC, Section 5.7)
Approximate linear programming: Start with a linear program corresponding to a
discounted infinite horizon problem. Use its optimal solution for approximation in
value space (RL-OC, Section 5.6).
Aggregation: Construct a “smaller" aggregate problem using “aggregate states".
Use its optimal cost function for approximation in value space (RL-OC, Chapter 6)
Special aspects of deterministic problems: Shortest paths and their use in
approximate DP (RL-OC, Sections 1.3.1, 2.4.1)
Special aspects of partial observation problems (POMDP): (RL-OC, Sections
1.3.6, 3.1.1, 5.7.3)
Multiagent rollout and policy iteration: Reduces dramatically the cost for lookahead
minimization (see the book "Rollout, Policy Iteration and Distributed RL", 2020)

Bertsekas (M.I.T.) Reinforcement Learning 80 / 82

Concluding Remarks

Some words of caution about RL
There are challenging implementation issues in all approaches, and no fool-proof
methods

Good features are helpful, but finding them requires domain-specific knowledge
(or else use a NN and a potentially long training process)

Training algorithms are not as reliable as you might think by reading the literature

Approximate policy iteration/self-learning involves exploration challenges (i.e.,
“representative" training sets)

Recognizing success or failure can be difficult!

The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state)

Problems with partial state observation remain a big challenge

On machine learning (Steven Strogatz, NY Times Article, Dec. 2018)
“What is frustrating about machine learning is that the algorithms can’t articulate what
they’re thinking. We don’t know why they work, so we don’t know if they can be trusted
... As human beings, we want more than answers. We want insight. This is going to be
a source of tension in our interactions with computers from now on."

Bertsekas (M.I.T.) Reinforcement Learning 81 / 82

On the Positive Side

Massive computational power together with distributed computation are a source
of hope.

Silver lining: We can begin to address practical optimization problems of
unimaginable difficulty!

There is an exciting journey ahead!

Thank you!

Bertsekas (M.I.T.) Reinforcement Learning 82 / 82

	Principle of Optimality
	Approximation in Value Space
	Approximation in Policy Space
	Model-Free Methods and Simulation
	Policy Improvement, Rollout, and Self-Learning
	Approximate Policy Improvement, Adaptive Simulation, and Q-Learning
	Features, Approximation Architectures, and Deep Neural Nets
	Incremental and Stochastic Gradient Optimization
	Direct Policy Optimization: A More General Approach
	Gradient and Random Search Methods for Direct Policy Optimization

