
Feature-Based Aggregation and Deep Reinforcement Learning

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Arizona State University

April 2018

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 1 / 28

AlphaZero Program (2017)

AlphaZero (Google-Deep Mind)

Plays different!

Learned from scratch ... with 4 hours of training!

Plays much better than all chess programs

Same algorithm learned multiple games (Go, Shogi)

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 2 / 28

AlphaZero was Trained Using Self-Generated Data

Policy Improvement
Policy Improvement

Neural Network Features Approximate Cost
Neural Network Features Approximate Cost

erent! Approximate Value Function Player Features Mappin erent! Approximate Value Function Player Features Mappin

Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “ImprovLearned from scratch ... with 4 hours of training! Current “Improved”Position “values” Move “probabilities”
Position “values” Move “probabilities”

AlphaZero implements a form of policy iteration/approximate DP method
Generates a sequence of players/policies, each implemented by a deep neural net

A player’s games are used to train an “improved" player (self-learning)

The neural net of a player/policy provides at any position: the "value" of the
position, and a “probabilistic ranking" of the possible moves

The games of a player are generated by Monte-Carlo Tree Search (MCTS, a form
of randomized multistep lookahead)

Training uses a form of regression

AlphaZero bears similarity to earlier works, e.g., TD-Gammon (Tesauro,1992), but
is more complicated because of the MCTS and the deep NN

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 3 / 28

DP/RL: A CLASSICAL AND UNIVERSAL METHODOLOGY

Exact DP applies (in principle) to a very broad range of optimization problems
Deterministic <—-> Stochastic

Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces

One decision maker <—-> Two player games

... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/Reinforcement Learning
Overcomes the difficulties of exact DP by using:

I Approximation (to reduce dimension)
I Simulation (in place of a math model)

Can be used in a very broad range of challenging/large scale problems

Has proved itself in many fields ...

... BUT implementation is a challenge/art and success is not guaranteed

Still there is theory that guides the art

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 4 / 28

A Summary

Some History
1950s-60s: Bellman (DP), Shannon (chess), Samuel (checkers)

80s-early90s: Approximation and simulation-based methods: Barto/Sutton [TD(λ),
AI-DP connection], Watkins (Q-learning), Tesauro (backgammon, self-learning)

1990s: Rigorous analysis, mathematical understanding, first books

Late 90s-Present: Rollout, Monte-Carlo Tree Search, Deep Neural Nets, Model
Predictive Control

Methodology
Math framework is DP (plus function approximation, training by simulation)

Approximations in value space and in policy space (compact/low-dimensional,
feature-based parametric architectures)

Supervised vs unsupervised learning (using external vs self-generated data)

No dominant method. Some ideas are solid and some are heuristic

Success depends on finding the right mix of implementation ideas, and using
massive computational power

The AlphaZero program combines in a skillful way ideas that have been known
since around 2005

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 5 / 28

Purpose of this Talk

Selectively survey the state of the art with focus on:
Approximate policy iteration

Neural network implementations

Aggregation

Describe the relevant contributions of neural networks:
Provide an approximation architecture for the cost function of a policy

Automatically construct the features of the architecture using self-generated data

Use in neural network-based policy iteration

Describe the feature-based aggregation methodology, and how it can be used
in combination with neural nets

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 6 / 28

References

Survey paper
Bertsekas, “Feature-Based Aggregation and Deep Reinforcement Learning: A Survey
and Some New Implementations," Lab. for Information and Decision Systems Report,
MIT, April 2018; http://arxiv.org/abs/1804.04577

DP/RL Book references
Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996

Sutton and Barto, Reinforcement Learning, 1998 (2nd ed. on-line, 2018)

Bertsekas, Dynamic Programming and Optimal Control: 4th edition, 2017

My latest theoretical monograph on DP
Bertsekas, Abstract Dynamic Programming: 2nd edition, 2018

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 7 / 28

Relations and Terminology in RL/AI and DP/Control

RL uses Max/Value, DP uses Min/Cost
Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) State cost.

Value (or state-value) function = (Opposite of) Cost function.

Controlled Markov chain terminology
Agent = Controller or decision maker.

Action = Control.

Environment = System.

Methods terminology
Learning = Solving a DP-related problem using simulation.

Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.

Planning vs Learning distinction = Solving a DP problem with math model-based
vs model-free simulation.

Prediction = Policy evaluation.

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 8 / 28

Outline

1 Exact and Approximate Policy Iteration

2 Approximate Policy Evaluation with Neural Nets

3 Feature-Based Aggregation

4 Feature-Based Aggregation with Neural Networks

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 9 / 28

Discounted Infinite Horizon Problem

α i j tα i j t i j t

Cost αkg(i, u, j)

i, u, j) Transition probabilities pij(u)

Controlled Markov Chain

A Markov chain with states 1, . . . ,n, and control u
pij(u): Transition probability from i to j under u

αk g(i, u, j): Cost of the k th transition; α ∈ (0, 1): discount factor

Policy (or feedback controller) µ: Maps each state i to a control µ(i)

Total cost of µ starting at i0: Jµ(i0) = E
{∑∞

k=0 α
k g
(
ik , µ(ik), ik+1

)}
Optimal cost starting at i0: J∗(i0) = minµ Jµ(i0)

Optimal policy µ∗: Satisfies Jµ∗(i) = J∗(i) for all i

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 11 / 28

Basic Theory

Bellman’s equation for J∗

J∗(i) = min
u

n∑
i=1

pij(u)
{

g(i, u, j)+αJ∗(j)
}
, for all i

Optimal cost at i = minu E{1st stage exp. cost + optimal cost of remaining stages}

Policy evaluation (Bellman) equation for the cost function Jµ of a given policy µ

Jµ(i) =
n∑

i=1

pij(µ(i))
{

g(i, µ(i), j) + αJµ(j)
}
, for all i

Policy improvement principle
Given a policy µ and its evaluation Jµ, we can obtain an improved policy µ̂ through

µ̂(i) = arg min
u

n∑
i=1

pij(u)
{

g(i, u, j) + αJµ(j)
}
, for all i

We have Jµ̂(i) ≤ Jµ(i) for all i

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 12 / 28

Exact and Approximate Policy Iteration (PI)

Exact policy iteration is successive policy improvement:

µ0 ⇒ µ1 : improved policy over µ0 ⇒ µ2 : improved policy over µ1 ⇒ · · ·

We have Jµk → J∗.

Approximate policy iteration is policy improvement w/ approximate evaluation:

µ0 ⇒ µ1 : “improved" policy over µ0 ⇒ µ2 : “improved" policy over µ1 ⇒ · · ·

“Converges" to optimum within an error bound [of order O((1− α)2) or O((1− α))].

Approximate Policy

Evaluation

Policy Improvement

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

Evaluate Approximate Cost Vector

of Current Policy µ

µ µ̂

Generate “Improved” Policy µ̂

Evaluate Approximate Cost J̃µ of

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 13 / 28

Feature-Based Policy Evaluation

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

Evaluate Approximate Cost Vector
of Current Policy µ

Generate “Improved” Policy µ̂

()

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

Approximation in a space of basis functions Plays much better than

Cost J̃µ
(
F (i), r

)
of i

()

()

J̃µ
(
F (i), r

)
: Feature-based parametric architecture

()

r: Vector of weights

Features F and weights r provide a lower-dimensional representation of Jµ
The features can be viewed as basis functions

The weights depend on µ (sometimes the features also)
Critical question: How to find good features?

I Handcrafted, based on a priori knowledge/intuition
I Constructed from data, e.g., using a neural network (this is the BIG contribution of NNs)

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 15 / 28

NN-Based Evaluation of J̃µ for a Given Policy µ

. . .

.

1 0 -1 Encoding

Cost ApproximationLinear Layer Parameter
Cost Approximation

) Sigmoidal Layer Linear Weighting) Sigmoidal Layer Linear Weighting
) Sigmoidal Layer Linear Weighting) Sigmoidal Layer Linear Weighting

) Sigmoidal Layer Linear Weighting
Linear Layer Parameter Linear Layer Parameter

Linear Layer Parameter v = (A, b) Sigmoidal Layer Linear Weighting

State Nonlinear

i y(i) Ay(i)+b
i) Ay(i) + b) F1(i, v)J {

) F2(i, v)

}∑s
ℓ=1 Fℓ(i, v)rℓState i y

State

b Fs(i, v)

r = (r1, . . . , rs)

: Feature-based architecture Features

i ≈ Jµ(i)

Generate state-cost samples (im, βm), m = 1, . . . ,M, βm = Jµ(im)+“noise"

Use nonlinear optimization/regression: Find (v , r) that minimizes
M∑

m=1

(
J̃µ(im, v , r)− βm

)2

Use of an incremental gradient method (also called SGD, backpropagation)

Making the method work is an art (regularization, hot start, stepsize, etc)

Universal approximation theorem

To generate the cost samples: We simulate the Markov chain under µ

We can use alternative regressions (e.g., based on temporal differences, etc)

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 16 / 28

Use of Deep NNs

.
.

.

1 0 -1 Encoding
State
) Sigmoidal Layer Linear Weighting

) Sigmoidal Layer Linear Weighting
) Sigmoidal Layer Linear Weighting

) Sigmoidal Layer Linear Weighting
) Sigmoidal Layer Linear Weighting) Sigmoidal Layer Linear Weighting

) Sigmoidal Layer Linear WeightingNonlinear Nonlinear Ay

}∑s
ℓ=1 Fℓ(i, v)rℓState i y

Cost ApproximationLinear Layer Parameter
Cost Approximation

State

}∑

) Linear Weighting ofState
Features

: Feature-based architecture Final Features

A deep NN just has many layers
Can be viewed as providing a “hierarchy of features"

The last set of features is the one used in the cost approximation

More “sophisticated" features with each stage, fewer weights needed (?)

Sampling and training is the same as in single layer nets

Is deeper better? Tesauro’s and subsequent backgammon implementations used
one nonlinear layer!

For our purposes, deeper is better. There are fewer final features in deep NNs

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 17 / 28

Basic Principles of Aggregation

An old idea: Problem approximation (rather than algorithm approximation)
Group “similar" states together and represent them as a single state

Approximate the original DP problem with a fewer-state DP problem, called
aggregate problem

Solve the aggregate problem and “extend" its cost function to the original

The aggregate problem can be solved by exact DP and simulation-based methods

A simple example: Approximate a fine grid with a coarse grid

Another example (hard aggregation): Partition the state space into disjoint
subsets, each viewed as a single “aggregate state"

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 19 / 28

Use a Feature Map F (i) to Form the Aggregate DP Problem

Idea: Group together states with “similar" features (i.e., small variation of F)

1 10 20 30 40 50 I1 1 I2 I 2 I3
3 i

1 10 20 30 40 50 I1 1 I2 I 2 I3
3 i

1 10 20 30 40 50 I1 1 I2 I 2 I3
3 i

1 10 20 30 40 50 I1 1 I2 I 2 I3
3 i

Feature Vector F (i) Approximate Cost

Aggregate States) J̃µ(i)

) Jµ(i)

Aggregate states: Disjoint subsets S1, . . . ,Sq of state-feature pairs (i ,F (i))

System states j relate to the aggregate states according to
“membership/interpolation weights" φ1`, . . . , φn` (called aggregation probabilities)

Each aggregate state S` relates to its “footprint", the set I` =
{

i | (i,F (i)) ∈ S`
}

,
according to “importance weights" d`1, . . . , d`n (called disaggregation probabilities)
Constraints:

I If j ∈ S` then φj` = 1 (membership weight 1 for states in the footprint)
I If i /∈ I` then d`i = 0 (importance weight 0 for states outside the footprint)

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 20 / 28

Aggregate DP Problem: Approximation through Features

according to pij(u), with cost
, j = 1i

Original System States Aggregate States

{

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

, g(i, u, j)
Matrix Matrixwith Aggregation

Aggregate States

Aggregate States Sℓ ℓ Sℓ̄

dℓi = 0 if i /∈ Iℓ φjℓ̄ = 1 if j ∈ Iℓ̄

States: Aggregate states plus two copies of the original system states

Costs and transition probabilities: As shown

Optimal costs: r∗` for aggregate state S`, J̃0(i) for left state i , J̃1(j) for right state j

By Bellman’s equation for the aggregate problem we have

J̃1(j) =
q∑
`=1

φj`r∗` , j = 1, . . . , n (piecewise linear)

Once we compute r∗` , we can obtain an “improved" policy

µ̂(i) = min
u∈U(i)

n∑
j=1

pij(u)

(
g(i, u, j) + α

q∑
`=1

φj`r∗`

)
, i = 1, . . . , n

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 21 / 28

Aggregation-Based Approximate Policy Iteration

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ()

of Current Policy µ

Generate “Improved” Policy µ̂

Generate Features F (i) of Formulate Aggregate Problem

) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
) of Formulate Aggregate Problem

Possibly Include “Handcrafted” Features

Form the Aggregate States Choose the Disaggregation and Aggrega-

Choose the Aggregation and Disaggregation Probabilities

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 22 / 28

Properties of the Aggregate Problem

according to pij(u), with cost
, j = 1i

Original System States Aggregate States

{

Original System States Aggregate States

, g(i, u, j)
Matrix Matrix

Aggregate States

Aggregate States Sℓ ℓ Sℓ̄

Self-Learning/Policy Iteration Constraint Relaxation dℓi φjℓ

Aggregate costs r∗ℓ Aggregate costs r∗ℓ

Cost function J̃0(i) Cost function) Cost function J̃1(j)

Aggregate problem lends itself to simulation if the original problem does

r∗` is computable with exact/tabular methods, e.g., TD(λ), LSTD, LSPE, Q-learning

Intuition and analysis/error bounds suggest the following general strategy:
Use features that conform to J∗, i.e.,

J∗(i) ≈ J∗(i ′) =⇒ F (i) ≈ F (i ′)

Form aggregate states so that F varies little within their footprint

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 23 / 28

Using “Scoring" Functions

3 i

Aggregate Problem Approximation
Aggregate Problem Approximation

Aggregate States Scoring Function V (i)

) J∗(i)

2 iℓ. . . i . . . i

r∗1

r∗q

r∗ℓ

Form the Aggregate States I1 1 Iq

Suppose we have a function V with “similar form" to J∗ (up to a constant shift)
We can use V as a feature map and group states with similar values of V

Each interval may contain one or multiple states

Many intervals lead to more accurate but more time-consuming solution

Extend this idea to a vector of scoring functions V (i) =
(
V1(i), . . . ,Vs(i)

)
Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 24 / 28

Approximate PI with Aggregation and Neural Nets

“Standard" NN-based PI

Neural Network Features Approximate Cost

Policy Improvement
Policy Improvement

µ Approximately Improved Policy ˜

Approximately Improved Policy ˜Current Policy
Current Policy µ Improved Policy ˜

Neural Network Features Approximate Cost
Neural Network Features Approximate Cost

Approximately Improved Policy µ̂

Plays much better than all computer programs F (i)
) Feature Map

Cost J̃µ
(
F (i), r

)

NN-based PI with aggregation

Current Policy
Current Policy µ Improved Policy ˜

µ Approximately Improved Policy ˜

Approximately Improved Policy ˜

Neural Network Features Approximate Cost
Sampling

Optimization

Neural Network Features Approximate Cost
Neural Network Features Approximate Cost

Aggregate Optimization

Approximately Improved Policy µ̂

with Aggregation Problem

Aggregate States
Aggregate States SPlays much better than all computer programs F (i)

) Feature Map

Start with a training set of state-cost pairs generated using the current policy µ

Evaluate µ using the NN; obtain a feature map F , and a sample of
(
i,F (i)

)
pairs

Construct aggregate states and a feature-based aggregate problem (essentially
use F as a vector scoring function, possibly with some handcrafted features)

Use as “improved" policy µ̂ the optimal policy of the aggregate problem

More work for policy improvement, but may yield better “improved" policy

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 26 / 28

Concluding Remarks

NNs resolve a major difficulty of approximate PI: Automatically extract features of
the cost function of a policy

Good features, once extracted can be used for other purposes, including
aggregation. Deep NNs provide fewer final features, which favors aggregation

Aggregation benefits from the solidity of exact DP algorithms

Some words of caution on approximate PI
There are challenging implementation issues

I Approximation architecture design using features
I Sample design/explore well the state space
I Training algorithms
I Oscillations
I Recognizing success or failure!

The RL game successes are spectacular, but they have benefited from perfectly
known and stable models and relatively small number of controls (per state)

On the positive side, massive computational power together with distributed
computation are a source of hope

There is an exciting journey ahead ...

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 27 / 28

Thank you!

Bertsekas (M.I.T.) Aggregation and Reinforcement Learning 28 / 28

	Exact and Approximate Policy Iteration
	Approximate Policy Evaluation with Neural Nets
	Feature-Based Aggregation
	Feature-Based Aggregation with Neural Networks

