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Separable Dynamic Programming and Approximate
Decomposition Methods

Dimitri P. Bertsekas

Abstract—We consider control, planning, and resource allocation prob-
lems involving several independent subsystems that are coupled through a
control/decision constraint. We discuss one-step lookahead methods that
use an approximate cost-to-go function derived from the solution of single
subsystem problems. We propose a new method for constructing such
approximations, and derive bounds on the performance of the associated
suboptimal policies. We then specialize this method to problems of reach-
ability of target tubes that have the form of a box (a Cartesian product
of subsystem tubes). We thus obtain inner approximating tubes, which
are the union of a finite number of boxes, each involving single subsystem
calculations.

Index Terms—Dynamic programming, optical control, reachability, sep-
arable problems.

I. INTRODUCTION

We consider a stochastic optimal control problem, which involves
M independent subsystems that are coupled through a control/decision
constraint. The mth subsystem is described by

x
m
k+1 = f

m
k (xmk ; u

m
k ; w

m
k ) ;

m = 1; . . . ;M; k = 0; 1; . . . ; N � 1 (1.1)

where xmk is the state taking values in some set, umk is the control, wmk
is a random disturbance, fmk is a given function, and N is the number
of stages. We assume a finite horizon, although the discussion also ap-
plies in part to infinite horizon problems where the stage costs are dis-
counted. We assume thatwmk is selected according to a probability dis-
tribution that may depend on xmk and umk , but not on prior disturbances
or the disturbances of other subsystems wjk , j 6= m. The cost incurred
at the kth time period by the mth subsystem is gmk (xmk ; u

m
k ; w

m
k ),

where gmk is a given real-valued function. There is also a terminal cost
gmN (xmN ) that depends on the terminal state xmN . To avoid mathematical
technicalities, we assume that wmk takes values in a finite set, but the
following discussion applies qualitatively to more general cases.

We assume perfect state information, i.e., that the control vector
uk = (u1k; . . . ; u

M
k ) is chosen with knowledge of the entire current

state xk = (x1k; . . . ; x
M
k ). However, the components umk of the con-

trol vector are coupled through constraints of the form

uk = u
1

k; . . . ; u
M
k 2 Uk; k = 0; 1; . . . ; N � 1

where the sets Uk are given. We are interested in policies
� = f�0; . . . ; �N�1g mapping states to controls and satisfying
the control constraints. Thus each �k must satisfy for all states xk

�k(xk) 2 Uk; k = 0; 1; . . . ; N � 1: (1.2)
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The total cost of a policy � is the expected value of the corresponding
cost

J
�
0 (x0)=E

M

m=1

g
m
N (xmN )+

N�1

k=0

g
m
k (xmk ; �

m
k (xk); w

m
k ) :

Given an initial condition x0, we wish to minimize J�0 (x0) over all
admissible policies �, i.e., over all policies that satisfy the constraints
(1.2).

Dynamic programming (DP for short) is the principal method for
addressing the problem, and its key concept is the cost-to-go of a policy
� starting from a state xk at time k given by

J
�
k (xk)=E

M

m=1

g
m
N (xmN )+

N�1

t=k

g
m
t (xmt ; �

m
t (xt); w

m
t ) :

The optimal cost-to-go starting from xk at k is

Jk(xk) = min
�

J
�
k (xk)

and it is assumed that J�k (xk) and Jk(xk) are finite for all xk , �, and
k. The optimal cost-to-go functions Jk satisfy the following dynamic
programming recursion:

Jk x
1

k; . . . ; x
M
k = min

(u ;...;u )2U
E

M

m=1

g
m
k (xmk ; u

m
k ; w

m
k )

+Jk+1 f
1

k x
1

k; u
1

k; w
1

k ; . . . ; fMk x
M
k ; u

M
k ; w

M
k (1.3)

for all xk = (x1k; . . . ; x
M
k ) and k, with the initial condition

JN(xN) =

M

m=1

g
m
N (xmN ) :

In this note, we place special emphasis on control constraint sets that
are Cartesian products of the form

U
1

k � � � � � U
M
k ; k = 0; 1; . . . ; N � 1: (1.4)

We refer to a set of this form as a box. If all the control constraint sets
Uk were boxes, the optimal cost-to-go functions would be separable of
the form

Jk x
1

k; . . . ; x
M
k =

M

m=1

J
m
k (xmk ) (1.5)

and an optimal policy would be decomposable (i.e., the control of each
subsystem would depend only on the local state of that subsystem). The
reason is that for box constraints, there is no competition for control
resource between the subsystems, and the minimization in the DP al-
gorithm decomposes into a separate minimization for each subsystem.
However, in the general case where there is coupling between the con-
trols u1k; . . . ; u

M
k , imposed by the control constraints uk 2 Uk , the

functions Jk are not separable, and this greatly complicates the DP
computations. This has motivated an approximate decomposition ap-
proach, first proposed in [18] (see also [16] and [8, ex. 6.3.8]), whereby
each control constraint set Uk is replaced by a box. The corresponding
single subsystem subproblems are solved to obtain an approximation
of the form (1.5) to the optimal cost function, which is used in turn
in a one-step lookahead scheme to obtain a suboptimal control policy.
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Kimemia focused on production control problems for flexible manu-
facturing, and within that context, his scheme has worked well.

On the other hand, it is evident that approximation of each control
constraint set Uk by a single box involves a substantial error; for ex-
ample, the volume of the largest box contained within the M -dimen-
sional unit simplex

u
1
k; . . . ; u

M
k ju1k + � � �+ u

M
k � 1; umk � 0;m=1; . . . ;M

is equal toM�M , while the volume of the simplex is 2�(M�1). Conse-
quently the corresponding approximating function (1.5) can be a poor
approximation of the optimal cost-to-go function Jk .

The purpose of this note is to propose suboptimal control methods
that are based on more accurate approximations of the coupling con-
straint sets Uk , with attendant improvements in the cost-to-go approx-
imations. In particular, the control constraint sets are approximated by
finite unions of boxes, and the optimal cost-to-go functions Jk are ap-
proximated by upper bounding functions of the form

~Jk(xk) = min
n=1;...;p

M

m=1

Ĵ
m
k (xmk ;n) : (1.6)

where p is some positive integer, and each function Ĵmk (xmk ;n) is ob-
tained through a tractable computation involving the mth subsystem
only. The method that we propose bears a relation to rollout algorithms
(see [8] and the survey [6] for an extensive discussion and references),
whereby ~Jk is computed by means of one or more suboptimal policies,
called base policies. In our case, the base policies are derived from op-
timal policies for approximating subproblems involving box approxi-
mations of the control constraint sets. These base policies are decom-
posable, in the sense that the components umk of the control applied to
the mth subsystem depends only on the current state xmk of that sub-
system. The approximate cost-to-go function ~Jk is either the cost-to-go
of a decomposable base policy or else it is computed as a function of
the costs-to-go of several decomposable suboptimal policies [for ex-
ample ~Jk may be the pointwise minimum of the costs-to-go of several
base policies; cf. (1.6)]. We refer to an extended version of this note for
an account of this connection [7].

The computational savings from our methods are potentially very
significant. For a crude calculation, assume that the state and control
spaces are finite (perhaps after discretization), and let ds and dc be the
numbers of points in the state and control spaces, respectively, of each
subsystem. Then the computational requirements of a single stage of
DP [measured in number of evaluations of the expected value in the
right-hand side of (1.3)] are of the order of O((dsdc)

M), while for our
methods they are of the order ofO(pM(dsdc)), where p is the number
of terms in the sum (1.6). Of course, the number p can also be very
large in our method if ~Jk is to be a very accurate approximation of
Jk . We believe, however, that for many practical problems a near-op-
timal policy can be obtained with a relatively small number of terms p
in (1.6) (for example, in Kimemia’s work [18], p = 1 yielded a very
well-performing suboptimal policy). An intuitive reason for this con-
jecture is that the addition of a constant to the cost-to-go function Jk+1
in the DP (1.3) does not affect the outcome of the minimization over
uk . This suggests that it is not important for the cost-to-go differences
~Jk+1(x)� ~Jk+1(x) to be small for all states x at time k+1, but rather
that the relative differences be small, i.e., that

~Jk+1(x)� ~Jk+1(x
0) � Jk+1(x)� Jk+1(x

0)

for any two states x and x0 that can be generated from any given state at
time k (see also the discussion in [8, p. 312]). Unfortunately, it seems

to be hard to get an understanding of the beneficial effect of this phe-
nomenon through a computational complexity analysis.

In Sections II and III, we discuss some specific approximation
schemes based on decomposition. In Section IV, we specialize our
approach to the problem of reachability of a target tube that has the
form of a box (a Cartesian product of subsystem tubes). Our method
then yields inner approximating tubes, which have the form of a
union of a finite number of boxes, each involving single subsystem
calculations. The target tube reachability problem, first introduced and
studied by the author in [3], is central, among others, to the context
of model predictive control (see the survey [6] for a discussion and
references).

II. AN ENFORCED DECOMPOSITION SCHEME

Our approximation scheme is based on the computation of the func-
tions Ĵmk (xmk ;n) in (1.6) as the optimal cost-to-go functions of optimal
control problems involving the mth subsystem only. In particular, we
approximate the constraint set of the problem, U0�U1�� � ��UN�1,
in multiple different ways, with subsets of the form

U0;n � U1;n � � � � � UN�1;n; n = 1; . . . ; p (2.1)

where p is some positive integer. Each set Uk;n is a separable inner
approximation of the corresponding set Uk , i.e., a box of the form

Uk;n=U
1
k;n � � � � � U

M
k;n � Uk; n=1; . . . ; p; k=0; . . . ; N � 1:

(2.2)
We refer to the set sequence (2.1) as the nth control allocation

schedule. It represents a particular way of allocating (a subset of) the
control constraint set U0 � U1 � � � � � UN�1 to the M subsystems.
The key property is that under a given control allocation schedule, the
corresponding subsystems do not compete for control resource and are
decoupled, because of the Cartesian product structure (2.2). Thus, when
the original constraint set is replaced by the control allocation schedule
(2.2), the problem obtained is decomposed along subsystems, into a
total of pM independent optimal control subproblems. In particular,
for each n = 1; . . . ; p and m = 1; . . . ;M , the subproblem involves
the system equation

x
m
k+1 = f

m
k (xmk ; u

m
k ; w

m
k ) (2.3)

the control constraint

u
m
k 2 U

m
k;n (2.4)

and the cost function

E g
m
N (xmN ) +

N�1

k=0

g
m
k (xmk ; u

m
k ; w

m
k ) : (2.5)

Let Ĵmk (xmk ;n) be the optimal cost-to-go function of this subproblem,
starting from state xmk at time k.

We propose the one-step-lookahead scheme where the optimal
cost-to-go function at time k is approximated by

~Jk(xk) = min
n=1;...;p

M

m=1

Ĵ
m
k (xmk ;n) : (2.6)

In particular, having computed the functions Ĵmk (xmk ;n) for all n,
m, and k, by solving the pM single subsystem problems corre-
sponding to each subsystem m and each control allocation schedule
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fU0;n; . . . ; UN�1;ng, this scheme applies at time k and state
xk = (x1k; . . . ; x

M
k ) a control

�k(xk) 2 arg min
u 2U

E

M

m=1

g
m
k (xmk ; u

m
k ; w

m
k )

+ min
n=1;...;p

M

m=1

Ĵ
m
k+1 (f

m
k (xmk ; u

m
k ; w

m
k ) ;n) : (2.7)

For each n, the function

M

m=1

Ĵ
m
k (xmk ;n)

is the cost-to-go at time k and state xk = (x1k; . . . ; x
M
k ) of an op-

timal policy for the problem where the control constraint set is inner-ap-
proximated by the set Uk;n of (2.2). It follows from general results on
rollout algorithms (cf. the analysis of [8, ex. 3.2]) that the optimal cost
of the suboptimal one-step-lookahead scheme, at each time k and state
xk = (x1k; . . . ; x

M
k ), satisfies

Jk(xk) � min
n=1;...;p

M

m=1

Ĵ
m
k (xmk ;n) : (2.8)

This relation provides some guidelines for choosing the sets Uk;n: they
should cover as much as possible the constraint set of the original
problem, in the sense that

[pn=1(U0;n � � � � � UN�1;n) � U0 � � � � � UN�1: (2.9)

In particular, it can be seen that if the problem is deterministic, and
equality holds in the preceding relation, the suboptimal control scheme
is exactly optimal. If the problem is stochastic, equality in (2.9) does
not guarantee that the suboptimal control scheme is exactly optimal,
but there are important classes of problems where this can be shown.
In particular, for multiarmed bandit problems with discounted infinite
horizon cost (see e.g., [8]), one can show equality in (2.9) under as-
sumptions guaranteeing that an index policy exists.

To get a sense of the potential loss of optimality for stochastic prob-
lems, consider the extreme case where each set Uk is finite, and we
choose the set of control allocation schedules to be the set of all fea-
sible open-loop control sequences. Then the scheme of this section is
equivalent to the open-loop-feedback control scheme, first proposed by
Dreyfus [12] and subsequently discussed in many sources (see, e.g., [8]
and [6] for recent accounts and references). Note that for deterministic
problems, open-loop-feedback control is optimal, which is consistent
with the preceding discussion.

In a variant of the scheme of the current section, the minimization
over uk 2 Uk in (2.7) may be replaced by a (potentially simpler) min-
imization over

uk 2 [
p
n=1Uk;n:

Then, it can be shown that the cost improvement property (2.8) is pre-
served, by using a modification of the analysis of [8, ex. 3.2]. A second
variant arises when certainty equivalence approximations are intro-
duced in either the subsystem subproblems used to compute the func-
tions Ĵmk (xmk ;n), or in the minimization (2.7). However, in this second
variant, it is possible that the cost improvement property (2.8) does not
hold anymore.

III. ALTERNATIVE IMPLEMENTATIONS

The decomposition approach of the preceding section was based on
the use of multiple control allocation schedules of the form (2.1), (2.2),
and the solution of the decoupled optimal control problems (2.3)–(2.5),
to obtain the cost-to-go approximations (2.6). In this section, we dis-
cuss methods for solving the decoupled problems.

A. Implementation by DP

The most straightforward possibility to solve the decoupled prob-
lems (2.3)–(2.5) is by DP. Here, for each subsystem m = 1; . . . ;M ,
and control allocation schedule n, we start with

J
m
N (xmN ) = g

m
N (xmN ) ; m = 1; . . . ;M

and generate the functions Ĵmk from the functions Ĵmk+1, by

Ĵ
m
k (xmk ;n) = min

u 2U
E

� g
m
k (xmk ; u

m
k ; w

m
k )+Ĵmk+1 (f

m
k (xmk ; u

m
k ; w

m
k ) ;n) : (3.1)

The approximate cost-to-go functions ~Jk have the form

~Jk x
1

k; . . . ; x
M
k = min

n=1;...;p

M

m=1

Ĵ
m
k (xmk ;n) : (3.2)

This leads to an interpretation of a special case of our method as an
approximate DP method. Consider the case where the set of control al-
location schedules is constructed using an independent approximation
of each constraint set Uk with a union of boxes. By this, we mean that
for each k, we introduce boxes of the form

U
1

k;l�� � ��U
M
k;l � Uk; l = 1; . . . ; rk; k = 0; . . . ; N�1 (3.3)

where rk is a positive integer, and we let the set of control allocation
schedules be the set of all possible subsets of the form

U0;n � U1;n � � � � � UN�1;n; n = 1; . . . ; p (3.4)

where p = r0 �r1 � � � rN�1 and eachUk;n ranges over the collection of
all boxes (3.3). Note that with this choice of the set of control allocation
schedules, the minimum defining the cost-to-go approximation

min
n=1;...;p

M

m=1

Ĵ
m
t (xmt ;n)

does not depend on the boxes (3.3) for k < t.
It can now be seen that stage k of our approach is equivalent to the

following: It starts with a cost-to-go for stage k + 1 of the form

~Jk+1(xk+1) = min
n=1;...;p

M

m=1

Ĵ
m
k+1 (x

m
k+1;n)

and executes a DP-like iteration that involves two complementary
approximations.

a) Replacing the constraint set Uk with the union of the rk boxes in
(3.3)

~Uk = [
r

l=1 U
1

k;l � � � � � U
M
k;l :

b) Writing the corresponding DP algorithm iteration, which has the
form of (3.5), as shown at the bottom of the next page, and mod-
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ifying its right-hand side by interchanging expectation over wk
and minimization over n, so that the minimization over uk is de-
coupled across subsystems. This yields

~Jk x
1
k; . . . ; x

M
k = min

n=1;...;p

M

m=1

min
u 2U

E

� g
m
k (xmk ; u

m
k ; w

m
k )+Ĵmk+1(f

m
k (xmk ; u

m
k ; w

m
k ) ;n) (3.6)

which is equivalent to the algorithm (3.1), (3.2).
Note that these two approximations, individually and together, result in
an overestimate of the true cost-to-go function, which is consistent with
the analysis of the preceding section. Furthermore, in the case of a de-
terministic problem, the interchange of minimization and expectation,
as in b), is superfluous, so the quality of the approximation obtained
depends solely on the accuracy of approximation of the control con-
straint sets Uk by the union of boxes ~Uk , as in a).

B. Distributed Implementation

Separable problems and decomposition schemes are usually well-
suited for distributed implementation, and this is true for our scheme
as well. In particular, consider the approach of the preceding section,
based on control allocation schedules, and suppose that the mth sub-
system has its own processor. Upon the transition to state xmk , the
mth subsystem can calculate for all possible values of (umk ; w

m
k ), the

quantities

~Jmk+1 (f
m
k (xmk ; u

m
k ; w

m
k ) ;n) ; n = 1; . . . ; p

and transmit these quantities, together with its current state xmk , to the
other subsystems. After all subsystems have done so, each subsystem
will have all the information needed to execute iteration (2.7). Thus, the
typically most computationally intensive portion of the computations
in our scheme, the calculation of the approximate cost-to-go function
needed in iteration (2.7)

~Jk+1 (fk(xk; uk; wk))

= min
n=1;...;q

M

m=1

Ĵ
m
k+1 (f

m
k (xmk ; u

m
k ; w

m
k ) ;n)

can be fully parallelized. Similarly, in the approach of the current sec-
tion, one may parallelize the calculations in (3.1), both across subsys-
tems and across states for each subsystem.

IV. TARGET TUBE REACHABILITY

We will now specialize our methodology to the problem of reach-
ability of target sets and tubes, introduced by the author in [3], and
subsequent papers [1] and [4]. Reachability, under disturbances with a
set-membership description, stayed outside mainstream control theory
and practice for a long time, but has received renewed attention since
the late 1980s, in the context of robust control and model predictive

control. We refer to [11], [17], [9], and [20], which give many addi-
tional references. Section 4.6.2 of [8] provides an introduction to the
subject, which is relevant to the material that follows.

We continue to consider the system of (1.1), which consists of
M independent subsystems. However, we assume that the dis-
turbance wm

k is not random, but instead is known to belong to a
given set Wm

k (xmk ; u
m
k ), which may depend on the mth subsystem

state and control. Our reachability problem is to find a policy
� = f�0; . . . ; �N�1g with �k(xk) 2 Uk for all xk and k, such
that for each k = 1; 2; . . . ; N , the state xmk of the closed-loop mth
subsystem

x
m
k+1 = fk (x

m
k ; �

m
k (xmk ) ; wm

k )

belongs to a given set Xm
k , called the target set for the mth subsystem

at time k. In other words, we want to find a policy � such that the
closed-loop system state xk belongs for each k to the set

Xk = X
1
k � � � � �X

M
k :

We may view the set sequence fX1; . . . ; XNg as a “tube”
within which the state must stay, even under the worst possible
choice of the disturbances wm

k from within the corresponding sets
Wm

k (xmk ; �
m
k (xk)). This is essentially a minimax control problem,

involving the cost-to-go function

J
�
k (xk) = max

�

M

m=1

g
m
N (xmN ) +

N�1

t=k

g
m
k (xmt ; �

m
t (xt); w

m
t )

where

g
m
k (xmk ; u

m
k ; w

m
k ) =

0; if xmk 2 Xm
k

1; if xmk 62 Xm
k ,

k = 0; . . . ; N � 1

g
m
N (xmN ) =

0; if xmN 2 Xm
N

1; if xmN 62 Xm
N .

Given an initial condition x0, the problem is to find � such that
J�0 (x0) = 0. The problem can be approached by DP, by determining
the set of initial states x0 and a policy �� such that for all possible
state sequences fx1; . . . ; xNg under this policy, we have

Jk(xk) = min
�

J
�
k (xk) = J

�
k (xk) = 0; k = 0; . . . ; N � 1:

We can view Jk(xk) as the optimal cost-to-go for the minimax
problem. The set

Xk = fxkjJk(xk) = 0g

Jk x
1
k; . . . ; x

M
k

= min
u 2~U

E

M

m=1

g
m
k (xmk ; u

m
k ; w

m
k )+ ~Jk+1 f

1
k x

1
k; u

1
k; w

1
k ; . . . ; fMk x

M
k ; u

M
k ; w

M
k

= min
l=1;...;r

min
u 2U �����U

M

m=1

E fgmk (xmk ; u
m
k ; w

m
k )g+E min

n=1;...;p

M

m=1

Ĵ
m
k+1 (f

m
k (xmk ; u

m
k ; w

m
k ) ;n) (3.5)
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is the set that we must reach at time k in order to be able to maintain
the state within the subsequent target sets. Accordingly, we refer toXk

as the effective target set at time k.
The corresponding DP algorithm can be expressed in terms of a set

recursion. Denoting

Xk =X
1

k � � � �XM
k

Wk(xk; uk) =W
1

k x
1

k; u
1

k � � � � �W
M
k x

M
k ; u

M
k

we start with

XN = XN

and for k = 0; 1; . . . ; N � 1, we have

Xk = fxk 2 Xkjthere exists uk 2 Uk such that

fk(xk; uk; wk) 2 Xk+1; for all wk 2Wk(xk; uk) ; (4.1)

see, e.g., [8, Sec. 4.6.2].
The implementation approach of Section III, based on inner approx-

imation of the control constraint set Uk and the approximate DP algo-
rithm (3.1), (3.2) is well-suited for inner approximation of the effective
target sets. To implement this algorithm, we start with an inner approx-
imation of each control constraint set Uk:

~Uk = [
r

l=1 U
1

k;l � � � � � U
M
k;l � Uk (4.2)

and derive an inner approximation of the corresponding effective target
setXk , which is denoted by ~Xk and is the union of boxes. In particular,
the sets ~Xk are generated sequentially, starting with

~XN = XN = X
1

N � � � � �X
M
N :

Given ~Xk+1 expressed as a union of boxes,

~Xk+1 = [
p

n=1
~X1

k+1;n � � � � � ~XM
k+1;n

we calculate for each m = 1; . . . ;M , l = 1; . . . ; rk , and
n = 1; . . . ; pk+1,

X̂
m
k;l;n = x

m
k 2 X

m
k jthere exists umk 2 U

m
k;l such that

f
m
k (xmk ; u

m
k ; w

m
k ) 2 X

m

k+1

for all wmk 2W
m
k (xmk ; u

m
k )g : (4.3)

We then set

~Xk = [
p

n=1 [
r

l=1 X̂
1

k;l;n � � � � � X̂
M
k;l;n (4.4)

which can also be written in the form

~Xk = [
p
n=1

~X1

k;n � � � � � ~XM
k;n (4.5)

where ~Xm
k;n are suitable sets and pk = rkpk+1. Note that the compu-

tation of the sets (4.3) involves single subsystem calculations.
The algorithm (4.3)–(4.5) can be simply explained. For each pair

(l; n), and corresponding control and state boxes

U
1

k;l � � � � � U
M
k;l (4.6)

and

~X1

k+1;l;n � � � � � ~XM
k+1;l;n (4.7)

we calculate the box

X̂
1

k;l;n � � � � � X̂
M
k;l;n

of states xk from which we are guaranteed to reach the box (4.7) using
control from the box (4.6). The union of these boxes is the set ~Xk of
(4.4), and by induction, can be shown to be a subset of the effective
target set Xk of (4.1).

A drawback of the preceding algorithm is that the number pk of
boxes involved in the union (4.5) increases with each iteration. This
motivates a modification of the algorithm, whereby some of the boxes
in (4.5) are discarded according to some criterion. As a result the
amount of computation is reduced, at the expense of additional inner
approximation of the effective target tubes.

We finally note that the approximate solution to the reachability
problem of this section may be used as a preliminary step towards im-
plementing a decomposition approach to model predictive control for
decoupled systems of the type considered here (see [8] and [6]). Such
an approach involves the solution of single subsystem minimax control
problems with state constraints derived from the inner approximations
(4.5) of the effective target tubes, and control constraints derived from
the inner approximations (4.2) of the control constraint sets. The de-
tails of this approach are beyond the scope of the present note.

V. CONCLUDING REMARKS

We have presented a new method for decomposition of the computa-
tions in DP problems involving independent subsystems and coupling
through the control constraints. A traditional methodology for prob-
lems of this type is based on Lagrangian relaxation and duality (see e.g.,
[19], [13], and [14]). Our approach is very different: it is based on inner
approximations of the control constraint sets by unions of boxes, and
it is guided by approximate DP methodology, and rollout algorithms
in particular. Our approach may be more general than the Lagrangian
relaxation approach, because it can deal with more general constraint
constraint sets. On the other hand, the Lagrangian relaxation approach
may be more general in other cases, because it can deal with more gen-
eral couplings, involving for example combined state and control con-
straint sets. The computations required by our methods can be formi-
dable, and much depends on the special structure of the subsystems. In
particular, it is essential that the subsystems are simple enough, so that
the corresponding optimal control problems are easily solvable.

There is no computational experience with our method, except for
the special case where each constraint set Uk is approximated by a
single box (see [18], which motivated much subsequent work along
related lines, e.g., [10] and [15]). The success obtained with this simple
special case is encouraging for the prospects of our more sophisticated
but also more computationally demanding approach.

Problems of target tube reachability and model predictive control, for
systems that have an independent subsystem structure, are of particular
practical interest. Our method is promising within this context, but the
exploration of its potential is a subject for further research.
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On the Rendezvous Problem for Multiple
Nonholonomic Agents

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract—In this note, a decentralized feedback control strategy that
drives a system of multiple nonholonomic unicycles to a rendezvous point
in terms of both position and orientation is introduced. The proposed non-
holonomic control law is discontinuous and time-invariant and using tools
from nonsmooth Lyapunov theory and graph theory the stability of the
overall system is examined. Similarly to the linear case, the convergence
of the multi-agent system relies on the connectivity of the communication
graph that represents the inter-agent communication topology. The control
law is first defined in order to guarantee connectivity maintenance for an
initially connected communication graph. Moreover, the cases of static and
dynamic communication topologies are treated as corollaries of the pro-
posed framework.

Index Terms—Cooperative control, decentralized control, nonholonomic
agents.

I. INTRODUCTION

In this note, the problem of rendezvous convergence for a system
of multiple nonholonomic unicycles in terms of both position and ori-
entation is considered. The rendezvous problem has been extensively
approached recently, addressing the control design issue from several
perspectives. Recent results include [6], [11], [12], [14], [17], and [19].
In most cases, linear models of motion are taken into account, while the
information exchange topology is considered both static and dynamic,
as well as bidirectional or unidirectional. A recent review of the various
approaches of the rendezvous problem for linear models of motion is
[21].

In this note, a decentralized control strategy that drives a system of
multiple kinematic unicycles to rendezvous is presented. The proposed
nonholonomic feedback law is discontinuous and time invariant, some-
thing expected, as nonholonomic systems do not satisfy Brocketts nec-
essary smooth feedback stabilization condition [3]. These controllers
have in general better convergence properties than time-varying ones.
An experimental comparison between these two types of controllers
that supports our preference to time-invariant strategies has appeared
in [13], where the authors concluded that time-varying controllers were
too slow and oscillatory for most practical cases. In contrast, time-in-
variant controllers achieved a significantly better performance.

A first contribution of this note is that the control law is first defined
in order to guarantee connectivity maintenance. Hence, if the commu-
nication graph is initially connected, it remains connected throughout
the closed loop system evolution and rendezvous is reached, under the
proposed control law. Connectivity preserving for linear agents was
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